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Abstract This paper deals with the collapsing knapsack problem. In the literature, to solve the problem, 
a method incorporating a reduction from the problem to  the 0-1 knapsack problem has been proposed. In 
this paper we show an alternative reduction which produces coefficients smaller than those by the previous. 

rlOUS. The improvement makes it possible to solve the resulting 0-1 knapsack problem faster than the pre\' 
On our estimation in a case, the efficiency attains up to  150 times. We also show that  the coefficients 
produced will be the smallest possible. 

1. Introduction 
In the classical 0-1 knapsack problem (KP), where items and a knapsack of a certain 

capacity are given, we pack the items into the knapsack so that the total profit of the packed 
items is maximized without exceeding the capacity. In the KP, the capacity of the knapsack 
is constant, while Posner and Guignard [4] introduced a more complicated problem with a 
nonconstant capacity, named Collapsing 0-1 Knapsack Problem (CKP). In the CKP, the 
knapsack will collapse according to the number of packed items. For instance, each item is 
an antique, and should be covered with something strong respectively when packed. Then 
the larger the number of packed items, the smaller the capacity of the knapsack, due to the 
strong covering each item. For more applications, see [4]. The CKP is formally stated as 
follows: 

(CKP) maximize cizi 
i? N 

subject to 5  ̂aizi < b xi) 

where N := {l ,  2, . . . , n} and each z E TV indicates an item. The 0-1 variable xi corresponds 
to the selection of item 2, that is, xi = l(select)/xi = O(no select). The numbers c, and 
a, associated with each item z will be called the profit and weight of item i, respectively. 
Throughout this paper we assume that both the profit ci and weight a1 of any item 2 are 
given positive integers. Also, b(-) represents a capacity of the knapsack, and is a given 
monotone nonincreasing function on the discrete domain N as b(1) 2 b(2) > - - 2 b(n). In 
the case where b(-) is constant, the CKP is reduced to KP. The CKP thus includes KP as 
a special case; and is NP-hard. 

In the literature several algorithms for CKP have been proposed, e.g. Fayard and 
Plateau [I], and Pferschy et a1 [3]. In particular, Pferschy et a1 [3] proposed two simple 
but efficient algorithms, in which our interest is in the first one. It incorporates a reduction 
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which produces a, KP equivalent to given CKP, and solves the resulting instance with an 
algorithm for KP. On the other hand, the second algorithm is tailored for CKP. 

In fact the first algorithm is outperformed by the second, one reason for which is that 
very large coefficients appear by the reduction, which makes the resulting instance hard to 
solve. Still the reduction scheme seems ast tractive, because the KP is .MP-hard whereas not 
only it is solvable in pseudopolynomial time with dynamic programming but also there exist 
several efficient approaches to solve KP, e.g. a tight upper bound obtained by LP-relaxation 
or others, fixing 0-1 variables, and introducing core, etc. For a comprehensive overview of 
recent studies on KP, see Martello et a1 [2]. 

In the next section we show another reduction which produces coefficients smaller than 
those in [3]. We also show that the coefficients produced will be the smallest possible. 

2. Another Reduction 
Based on the CKP (1.1); the reduction proposed in [3] constructs KP with I n  items of 

weights Q I , .  . . , ~ ' 2 ~  and profits 71,. . . , ~ 2 ~ .  The coefficients are defined as follows: 

a,+A for i = 1, . . . ,  n 
Q, = 

(4n - i ) A  - b(i - n), for i = n + 1,.  , . :2n 
ci + C for z =  l . . . . , n  

Ti = (3n+1-i)C, for z = n + l ,  . . . ,  2n, 

where A = xieN a, and C = xieN ci. Then the resultant KP, which is called SKP, is stated 
as follows: 

2n 

(SKP) maximize yi xi 
i= l 
2n 

subject to oixi 5 B 
z= l 
xi E {O, l}, i = l , .  . . ,2n, 

where the capacity is defined as B = 3nA. Following the terminology in [3] we hereafter 
call an item with index in N small item, and with index in {n + 1 , . . . ,2n} large i t em .  The 
following validates the equivalency between CKP and SKP: 
Theorem (Pferschy et al, 1997). The instance of CKP has a feasible solution with ob- 

jective value V if and only if the instance of SKP has a feasible solution with objective 
value V + (2n + 1)C. 

Here, with respect to a solution (0-1 n-vector) X of CKP with EiEN xi = j >  we define a 
solution corresponding to X in SKP as a 0-1 2n-vector the elements of which are X for 
small items and the remaining n of ( x ~ + ~  = 1; 0 otherwise) for large items. The reason for 
this definition is that packed it-ems of which the total profit is maximized in SKP without 
exceeding the capacity comprise one large item n + i  and just 2 small items, and furthermore 
the total profit of the z small items calculated in given CKP results in being maximized, the 
essence of which could be summarized as follows: 
1. A solution X is feasible in given CKP if and only if a solution corresponding to X in SKP 

is feasible. 
2. At most one large item can be packed into the knapsack. 
3. The total weight of large item n + z and any combination of more than i small items 

exceeds the capacity. 
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4. The total profit of large item n + 2 and any combination of less than 2 small items does 
not achieve an optimal value. 

5.  At least one large item should be packed to achieve an optimal value. In other words, 
the total profit of all small items is less than an optimal value. 

Namely, if SKP satisfies these five points then a solution of given CKP which is corresponding 
to an optimal solution of the SKP is also opt,imal in the CKP. In what follows we re-const-ruct 
the coefficients of SKP according to these five points: The first three are concerned with q ' s  
and B, and the remaining two are yi3s. Since the following reduction does not take advantage 
of the monotonicity of b(-) as same as the previous, it is also valid for any capacity function 
b(-). Throughout this paper, without loss of generality, we assume b(2) >, 0 for any i\ 
otherwise we replace the negative b(2) with 0. 

First, let weights be as follows: 

= a i + A  for z = I , . .  . , n  
On+i = ( t -2 )A+sÃ‘b(z )  for I = l ,  . . . ,  n, 

and x be a feasible solution of CKP with EieN xi = j. 
On the first point above: In order that a solution corresponding to x in SKP is also 

feasible, we have -+j + LEN agi  + jA < B. Then, B := tA + s.  Conversely, a capacity 
B - Otn+i - 2A = b(2) should remain for 2 items in CKP, which also implies B = tA + s.  
In the following we assume that all weights of CKP are sorted in nondescending order such 
that a1 5 a; $ . - an. In a,ddition we define amin(2) := a;. 

On the second point above: First, any large item is available since; assuming A > 0, we 
have 

an+* = B - iA - b(2) <B, for 2 = 1,2,.  . . , n. 

Second, we assume s > b(z) + b(j) for any 1 $ 2 < j < n. In the case where A > 0, 

By the last inequality we have t := 2n - 1 as the smallest possible. Also, s := maxi+;{6(i) + 
b(j)} + 1; otherwise A = 0, it can be confirmed that, with the s determined, the inequa.1it.y 
of an+* + h + j  > B is still valid under A = 0. Last, the s and t obtained implies a + i  > 0 
for all large items. 

On the third point above, because 0:1 > 0 for any small item by the assumptions of 
a, > 0 for any 2 and A > 0, the following for 2 = 1,2: . . . , n - 1 validates the point: 

Then we have A > b(i) - amin(2 + 1). Therefore, A is determined as follows: 

A := max {b(i) - amin(2 + I)} + 1. 
z=l. ..., n-1 

In the case where this A is negative against the assumpt.ion A 2 0; we replace the value 
with 0. Incidentally, if the A calculated is negative then it follows that amin(2 + 1) > b(i) 
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for i = 1,2, . . . , n - 1, which is the same as the condition (2.1) with A = 0. To summarize, 

a, + A for i =  l , . . . , n  
"i = { (3n 

- 1 - i)A - b(i - n) + maxj+k{b(.f') + b(k)} + 1, for i = n + 1, .  . . , I n  

A = max max {b(i)-amin(i+1)}+1,0 { i=l, .... n-1 

B = (2n - 1)A + ma.x{b(j) + b(k)} + 1. 
j#fc 

Next, let profits be as follows: 

7i = ci + C for i = l , . . . , n  
7n+i = (t - i)C + s ,  for 2 = 1, .  . . , n. 

Here we assume that all profits of CKP are sorted in nondescending order such that ci < 
c2 < - < cn. In a.ddition we define cmax(i) := Y,^=n-i+l c . Moreover we employ a feasible 
solution of CKP, say x", and let cmin be a profit given by x", i.e. EiEN cix; Assuming 
ZEN x'; = j we have a profit given by a feasible solution corresponding to x' in SKP as 
yn+j + cmin + J'C' = t c  + cmin + S. 

For the fourth point above, under an assumption C > 0 to have % > 0 for any small 
item, it is sufficient to ensure that, for i = 1,2, .  . . , n, 

Then we have C > cmax(i - 1) - cmin. Thus, 

C := max{maxi=l ,..., mcmax(i - 1) - cmin+ 1,0} 
= max {cmax(n - 1) - cmin + 1, O} . 

For the fifth point above, it is sufficient to ensure that 

cmax(n) + nC < t C  + cmin + s .  

Here we assume s > cl. In the case where C > 0, we have 

cmax(n) + n C  <  ̂ (n + 1)C + cmax(n) - cmax(n - 1) + cmin - 1 
= ( n + l ) C + c m i n + c l - 1  
< (n + l)C + cmin + s. 

Hence t := n + 1 is the smallest possible. Also s := cl; otherwise C = 0, it ca.n be confirmed 
that, with the s determined and an inequality of cmax(n - 1) < cmin obtained from the C 
defined above; the condition (2.2) is still valid under C = 0. Summarizing, 

for i =  l ; . . . , n  
" = { - i ) ~  +el ,  for i = n +  I , .  . . ,2n  

cmin = cix[; x" is a feasible solution of CKP. 
iEN 

As observed above, the magnitude of ~ ~ ' s  is in inverse proportion to the one of cmin. To 
obtain x' by which a fairly large profit is given, ordinary greedy heuristic will be of use. 
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Example. Consider an instance of CKP with n = 3; items a,re given as {(ai, c*)} = 

{(2,2), (2,3), (2,4)], and b(1) = 5, b(2) = 4, b(3) = 3. Then A = 2, and we have 
C = 1, employing a feasible solution x' = (0,1,1) with cmin = 7. The coefficients of 
SKP corresponding to the instance are as follows: 

The optimal value of this SKP is 13 gained by a solution (0.1,1,0,1,0). Extracting a 
part for small items from it we have a solution (0,1, I ) ,  which is optimal to the given 
CKP as expected. 

We would like to add that, as observed in Example, large item 2n provided for all items 
being packed in CKP is redundant, provided bin) < ai. In general, on an instance of 
CKP, we would obtain m := max{i 1 Gzi a j  <: b(Z)} less than n, i-e. more than m items 
cannot be packed. In this case we can customize coefficients of SKP. Concretely, 

a, + A for z =  1, . . . ,  n 
c& = 

( 2 m + n -  1 - i )A-  b ( i - n )+b ( l )+b (2 )+1 ,  for i = n + l ,  ..., n + m  

for z =  1, ..., n 
Yi = (2n+ l - i ) C + ~ ~ ~ ~ c ~ ,  for Z = n + 1 ,  ..., n + m  

C = max {cmax(rn - 1) - cmin + 1, O} , 

Applying, to the CKP in Example, the above with the same xf = (0,1,1) as the previous 
we have the following SKP: 

Finally, based on the reduction above, we will roughly estimate how many times the first 
algorithm in [3] improves. Here we employ the examined data provided in [3] ,  especially 
the last one in Table 4 (large-sized problems), where n = 1000, weights ai7s are randomly 
distributed in [I, 10001, and b(z)'s are bounded by 50000. In the case where b(i )  = 0 set for 
z > 100, the average solution time of the first algorithm is 938.18 seconds. 

The first algorithm solves SKP by dynamic programming, and its time bound is O(nB), 
where B = 3nA in [3]. On the reduction above, first, the coefficient 3 is about one third 
smaller than the previous. Next we have m < 100 in the data above, then it is ten times 
smaller than n or less. Last, the previous A = EiEN a* would be estimated at about 500000 
in the data above: while our A is less than 50000; thus i t  is also ten times smaller. Totally, 
the first algorithm with our reduction will be performed in 938.18 x (2/300) = 6.25 seconds. 
Considering that the average solution time of the second algorithm is 16.10 seconds in 
Table 4, we may conclude tshat our reduction could make the first algorithm a promising 
competitor to the second. 
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