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Abstract Grotschel, Lovhz and Schrijver introduced a convex set containing the stable set polytope of 
a graph. They proved that the set is a polytope if and only if the corresponding graph is perfect. In this 
paper, we give an alternative proof of the fact based on a new representation of the convex set described by 
infinitely many convex quadratic inequalities. 

1. Introduction 
In this paper, we consider a graph G = (V, E) without loops and multiple edges. A subset 
S C V of mutually nonadjacent vertices is called a stable set, and a subset C C V of 
mutually adjacent vertices is called a clique. We denote the sets of all stable sets and of 
all cliques by S and C, respectively. R denotes the set of all real numbers and IRn the 
n-dimensional Euclidean space. We denote by RV the set of all mappings from V to R. If 
there is no confusion, we may identify K" with RIv1. 

Given a nonnegative weight vector w = (wi ? IR 1 z ? V), the maxZmum weight stable set 
problem (MWSSP) is to find a stable set S of G, which maximizes the sum of its weights, 
' & s ~ i .  The MWSSP is a well-known NP-hard problem. The stable set polytope is a 
polytope in Rv, which is defined as 

STAB(G) = conv ({es 1 S e s})  , 

where es = (ef E {O, l} 1 1 6 V) is the incidence vector of S, defined as ef = 1 <=> z E S, and 
conv(-) denotes the convex hull. The MWSSP is equivalent to maximizing wTx = &, W i X i  

subject to x E STAB(G). Since the nonnegativity constraints 

and the clique constraints 

i?C 

are valid for STAB(G), the polytope QSTAB(G) defined 

QSTAB(G) = {x 6 IRv 1 x satisfies 

contains STAB(G), i. e., STAB(G) C QSTAB(G). Note 
over QSTAB(G) is NP-hard in general [8]. 

Groschel, Lovhz and Schrijver [7] (see also [8]) introduced the convex set TH(G). An 
o-rthonomal representation of G is a set of vectors {ui R 1 i E V} such that l~uil~ = 
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1 ( 2  E V) and u^u, = 0 (i # j ,  (i,j} $ E) ,  where N is a positive integer. The orthonormal 
representation constraints 

E(C~".)~X. < 1 
{ui 6 IRN 1 2 E V }  : orthonormal representation of G, 

if-v c E R" with llcll = 1 ) (3) 

are valid for STAB(G) [ l l ] .  Hence, the set 

TH(G) = {x 6 IRv 1 satisfies (1) and (3) } 

contains STAB(G). We note that TH(G) is a convex set, not necessarily a polytope, since 
there are infinitely many orthonormal representation constraints (see Theorem 1.4). Never- 
theless, TH(G) has the following quite nice properties. 

Theorem 1.1 ([7]) (i) STAB(G) C; TH(G) 2 QSTAB(G), and (ii) optimizing a linear 
function over TH(G) can be done in polynomial time. R 

An important consequence of Theorem 1.1 is that we can conclude the polynomial time 
solvability of the MWSSP for "perfect graphs" defined as follows. Let u(G) denote the 
maximum cardinality of a clique of a graph G. A k-coloration of G is a partition of V 
into k stable sets of G, and the minimum integer k for which G admits a k-coloration is 
denoted by x(G). It is clear that w(G) < x(G) holds in general. A graph G is said to 
be perfect if ^(GI) = x(Gt) holds for any vertex-induced subgraph G' of G. See [6, 81 for 
a comprehensive treatment of perfect graphs. The polynomial time solvability for perfect 
graphs is now proved by the following polyhedral characterization of perfect graphs. 

Theorem 1.2 ([Z, 51) STAB(G) = QSTAB(G) i f  and only i f  G is perfect. R 

In this paper, we propose a new representation of TH(G) and, using the representation, 
we provide alternative proofs of Theorem 1.1 and the following Theorems 1.3 and 1.4 con- 
cerning geometric properties of TH(G). To state Theorem 1.3, we need some definitions. 
Let K Rn be a closed convex set. For our purpose, we have only to consider the case 
where K has dimension n. F K is called a facet of K if F has dimension n - 1 and there 
is an inequality aTx $ 6 valid for K such that F = K n {x 1 aTx = 6). We also say that 
the inequality aTx $ 6 defines facet F of K .  

Theorem 1.3 ([?I) A facet of TH(G) is defined by a positive multiple of one of the non- 
negativity constraints or of one of the clique constraints. R 

Theorem 1.4 ([7]) TH(G) is a polytope i f  and only i f  G is perfect. R 

Our representation of TH(G) is Theorem 1.5 below, which is obtained by applying the 
general representation theorem (Theorem 2.2) to the Loviisz and Schrijver 's representa- 
tion [l2]. The Lovbz and Schrijver's representation of TH(G) is a projection of a feasible 
set of a certain semidefinite programming relaxation problem for the MWSSP (see Theo- 
rem 2.1). Let Sn be the set of all n x n symmetric matrices. For a graph G = (V, E) ,  S" 
is the set of all IVI x IVI symmetric matrices whose rows and columns are indexed by V. 
The inequality A >_ 0 means A is a symmetric and positive semidefinite matrix, where 0 
denotes the zero matrix. 
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Theorem 1.5 

where 
f ( M ,  x) = ~ M X  - V Miixi, 

See Section 2 for proofs of Theorems 1.5 and 1.1. 
Section 3 is devoted to the alternative proof of Theorem 1.3. Our proof is based on 

Theorem 3.1 concerning sets represented by convex quadratic inequalities. 
The proof of Theorem 1.4 proceeds as  follows. By Theorem 1.2, it is sufficient to show 

that TH(G) is a polytope if and only if STAB(G) = TH(G) = QSTAB(G). Thus, the 
"if" part is trivial. To prove the "only if" part, suppose TH(G) is a polytope. Then, by 
Theorem 1.3, TH(G) = QSTAB(G). Our contribution is to provide a new proof of the fact 
that TH(G) = STAB(G). To this end, we will prove the following theorem in Section 4. 

Theorem 1.6 Let 5 be a vertex of QSTAB(G) . If 2 is non-integral, then 2 $ TH(G) . 

Since we have TH(G) = QSTAB(G), Theorem 1.6 implies that vertices of TH(G) consist 
of integral vertices of QSTAB(G). Since conv(QSTAB(G) (-1 {O, I } ~ )  = STAB(G) is a well- 
known fact, TH(G) = STAB(G) is proved. 

We note that the original proofs of Theorems 1.3 and 1.4 utilized the concepts of the 
antiblocker of a down-monotone set and the complement of an undirected graph, while 
our alternative proofs utilizes neither of them : Our proofs relies on the representation (4) 
and geometrical properties of convex sets described by convex quadratic inequalities. The 
following facts are merits of our approach. Using (4), we can obtain interesting properties 
such as Theorem 1.6 which holds for not only perfect graphs but also imperfect graphs. 
Moreover, our proof technique can be extended to more general case. For example, Theorems 
1.1, 1.3 and 1.4 can be extended to a bidirected graph case [4]. In the bidirected graph case, 
the antiblocker and the complement are meaningless, and hence; the original proofs may 
not be extended to the case. 

2. A Representation of TH(G) by Convex Quadratic Inequalities 
In this section, we first prove Theorem 1.5 and then prove Theorem 1.1 using Theorem 1.5. 
Theorem 1.5 is derived by Theorems 2.1 and 2.2 below. 

Theorem 2.1 ([12]) 

Note that, by using the Schur complements(see, e.g. [9]), we have X - xxT >. 0 
- - 

( ) > 0. Hence, Theorem 2.1 states that TH(G) is a feasible set of a semidefinite 
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programming relaxation of the MWSSP, which is obtained in the following way : 

This relaxation method can be applied to more general sets arising from nonconvex quadratic 
programming problems. Let 

where Qi E Sn, q, E Kn and vi E R for z = 1, . . . , m. The notation A B stands for the 
inner product of n x n symmetric matrices A and B : A B = xy= l  AijBij .  Then 
we have 

C { X 6 R n l  3 X e ~ " s . t .  Q i o ~ + g T a ; + 7 r i < 0  ( 2 = 1 ,  . . . ,  m), x - x x T > O  =: N^F). 

N + ( F )  is studied in [3, 101 etc. In particular, it is shown that N+(F)  is equivalent to a set 
defined by convex quadratic inequalities. 

Theorem 2.2 ([3, 101) 

Fujie and KO jima [3] proved the theorem under a certain condition. Kojima and Tuncel [lo] 
later showed that the equality holds without such a condition. 

Proof of Theorem 1.5. Let E i j  E SV denote the matrix where ( 2 ,  j )  and ( j ,  2 )  elements 
are equal to 1 and other elements are equal to 0. Then 
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^ â SV s.t. EÃ x 5 0 ((2, J') a, 
-Eve  X - < 0 ((w E), 

En.X - x i  5 0 (2 â V), 
-&fX+Xi ^ 0 (z? V)) 
x - x x T > - 0  I 

(iJ')?E i f-v 
t$, t; > 0 ((z,j) E E ) ,  

t , +  t,Â¥ > 0 (2 â V), 

(t; - t y )  EG + (t: - t-)E. za n -  +- 0 
(2j)e-B iâ‚ 

If we define M = E(i,j)eE (t$ - t;) E,, + (tf. - t ; )  Eu, then we have (4). 

Proof of Theorem 1.1. Since we have shown that optimizing a linear function over TH (G) 
is a semidefinite programming problem, it can be solved in polynomial time [I]. This proves 
(ii). To prove (i), we note that (5) shows STAB(G) TH(G). Moreover, since En W(G), . 

is valid for TH(G). Hence, the nonnegativity constraint xi > 0 is valid for TH(G). Similarly, 
since (ec)(ec)T 6 W(G) for C E C, 

is valid for TH(G). Hence, the clique constraint = c c  xi 5 1 is valid for TH(G). Therefore, 
we have TH(G) C QSTAB(G). 

3. Alternative Proof of Theorem 1.3 
Let us consider a set 

where P is a closed convex cone in S1+" and 

K is a closed convex set defined by infinitely many convex quadratic inequalities. This 
description of K using P and <2+ is due to Kojima and Tungel [lo]. TH(G) in Theorem 1.3 
is described in the form of (6) if we take 

where cone(P) denotes the cone generated by P. The following theorem is concerned with 
a characterization of "facet defining" convex quadratic inequalities of K.  

P = cone ({ ( ) 9/2 Q 

7T = 0, 
~i = Qii (2 V), 
Q i j = O  ( - i # j ,  (i,jl # E )  
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Theorem 3.1 Assume that K defined by (6) has dimension n and that F is a facet of K .  

(i) There is ( z 2  ) E v n Q+ such that 

(ii) rankQ $ 1, that is, Q = 0 or Q = ppT for some p Rn. 
(iii) If Q # 0 then 

Proof : Since F is a facet of K ,  there exist n affinely independent points x l ,  x 2 , .  . . , xn 
in F .  

(i) Let Â = -1- xj .  We have 2 E F because F is convex. Since 2 is a boundary 
. -  ., 

point of K and P n Q+ is a closed set, we can prove that there exists ( 2 z 2  ) 
'P n Q+ such that g(2)  := Â £ ~  - qTi? + v = 0. Since g is a convex function and g(x) < 0 
is valid for F ,  we have 0 = g(2) < z l  $(xj) 5 0. Thus, g(xj) = 0 holds for j = 1, . . . , n. 
Analogously, we can prove g(x) = 0 holds for any x ? F. 

(ii) From (i) and the convexity of F ,  we have g($ (x j  + a;')) = $g(x') + !jg(xl) (= 0) 
for j = 2 , .  . . , n .  This implies (xj - X ' ) ~ Q ( X ~  - xl) = 0 for j = 2,. . . ,n. Since Q >: 0, 
there is an n x m matrix V with Q = V V ~ .  Hence, vT(xj - xl) = 0 for j = 2,. . . , n. 
Moreover, x2 - xl , .  . . , xn - x1 are linearly independent. Therefore, rank Q = rank V < 1. .. 

(iii) From (ii), V = p for some p E Rn with p # 0, where 0 denotes the zero vector. 
Hence p T ( x j  - xl) = 0 (j  = 2, .  . . ,n) .  Let a = pTxl(= pTx2 = . - .  = pTxn). Then 
F = K n {x I pTx = a}. On the other hand, qTx = xTQx + v = (pTx)' + v = a2 + v 
for any x ? F. Hence there is f3 such that (q,  a2 + n) = o(p, a). Then we can show that 
( p ,  a ,  0) satisfies (7). 

Proof of Theorem 1.3. It is well-known that STAB(G) has dimension IV). Indeed, 0 = 

eO E STAB(G) and el'' 6 STAB(G) for z 6 V. Hence, STAB(G) Q TH(G) implies TH(G) 
has dimension [V\. Let F be a facet of TH(G). From Theorem 3.1 (i), there is M E W ( G )  
such that xTMx - EigV Miixi = 0 for any x F.  We have M # 0 since otherwise 
xTMx - EiEv Muzi = 0 holds for any x 6 R". Hence, by Theorem 3.1 (iii), we have a 
represent ation 

x T ~ x  - V M,,xi = (pTx - a)  ('Tx - /3 + a)  = 0 ("a; E F) .  

From (8), we have 

(9) implies pi = 0 or f3 for each z E V. We have /3 # 0 since otherwise we have p = .0 and thus 
M = p p T = O .  Let C =  { Z E V  \pi=/3}. F o r a n y i , j  E C ,  wehave- = p i p ,  = Q 2 # 0 .  
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Hence, by the definition of W(G), C must be a clique of G. By the definition of C, the 
inequality, valid for TH (G) , 

is equivalent to 

iâ‚ 

Since (10) implies a = (3 or a = 0, (12) and (13) are equivalent. Here we only consider (12). 
If a = (3 then (12) becomes 

while if a = 0 then (12) becomes 

(14) and (15) are also equivalent 
summary, (1 1) is equivalent to 

iâ‚ 

because (14) implies (3 > 0 and (15) implies 0 < 0. In 

where C is a clique of G. If xi > 0 defines a facet of TH(G) then it must be the 
nonnegativity constraint for some element of V.  heref fore, a facet defining inequality of 
TH(G) is a positive multiple of one of the nonnegativity constraints or of one of the clique 
constraints. 

4. Proof of Theorem 1.6 
In this section, we prove Theorem 1.6. Our proof technique is closely related to the descrip- 
tion of Section 3 of [3] and Lemma 4.1 (iii) of [lo]. 

Proof of Theorem 1.6 : Let 55 be a non-integral vertex of QSTAB(G). Since Â is a vertex 
of QSTAB(G), there are i l ,  . . . ,if 6 V and Ct+l,. . . , Cwl 6 C such that Â is a unique 
solution of the system : 

, = 0  ( k = l ,  . . . ,  f), E x i = l  ( k = l + l ,  ..., \V\). 
i e c k  

Let us denote the system by Ax = b and define 

Then M s W{G). Since Â is assumed to be a vertex of QSTAB(G), A is nonsingular, and 
hence M is positive definite. Moreover, we have 
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Since 2 is assumed to be non-integral, there is j E V with 0 < 5$ < 1. Since M is positive 
definite, M' = M - & B j j  is positive semidefinite for sufficiently small e > 0. Hence we have 
M' 6 W(G).  On the other hand, by (16) and Zj(% - 1) < 0, 

f[M', 2) = f (M, 2) - - 1) = -&Â£j(Â - 1) > 0. 

Therefore, 2 # TH(G). 
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