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Abstract A large-scale project can be modeled as a project network in AOA form (arrows denote the 
activities and nodes denote the events). We study the case that activity durations are integer random 
variables. Given the project time (the deadline required to complete the project) constraint and budget 
constraint, we use some techniques in network analysis to develop two algorithms in order to generate 
all longer boundary duration vectors and shorter boundary duration vectors, respectively. Each feasible 
duration vector is between such longer and shorter boundary vectors. Whenever accidents happening in 
the project duration, the project manager can update the activity durations according to  the longer and 
shorter boundary duration vectors without contradicting project time and budget constraints. 

1. Introduction and Problem Description 
In project management, PERT (program evaluation and review technique) and CPM 

(critical path method) are the most prominent procedure to manage a large-scale project. In 
general, the activity will cost more if it is required to shorten the activity duration (the time 
needed to complete the activity). For convenience, the activity duration is called duration 
throughout this paper. The project is modeled as a project network (a graph with nodes 
and arrows) to portray the interrelationships among the activities of a project, which can be 
represented in AOA (activity on arrow) form or AON (activity on node) form. In AOA form, 
each node denotes an event of the project, and in AON form, arrows denote the relationships 
between activities. A project network is called a stochastic project network throughout this 
paper if each duration is a random variable. Traditionally, assuming that each duration is 
a random variable with beta distribution in advance, three duration estimates (most likely 
estimate, most optimistic estimate and most pessimistic estimate) are used [4,5,7]. The 
probability that the project is completed within a given time can be approximated. 

This paper is mainly to  consider the case that each duration is an integer random variable 
with arbitrary probability distribution. We use AOA form to represent the project network 
in which the dummy activity is set to be duration 0 with probability 1. Given the project 
time (the deadline to complete the project) constraint and the budget (total cost) constraint, 
this paper tries to find all longer boundary duration vectors and shorter boundary duration 
vectors. However, in the process of executing the project, whenever some accidents happen- 
ing, the project manager should update the durations without contradicting project time 
and budget constraints. Hence, the project manager can adjust the durations according to 
the longer and shorter boundary duration vectors. We use the properties of minimal paths 
discussed in network analysis and operations research to solve t.his problem. A minimal 
path is an ordered sequence of arrows from the source node (start event) to the sink node 
(end event) that has no cycle. Note that a minimal path is different from the so-called 
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minimum path. The latter is a path with minimum cost. Two algorithms are proposed 
to enumerate all longer boundary duration vectors and shorter boundary duration vectors 
under such constraints, respectively. Such vectors represent the duration of each activity. 
Each feasible duration vector must be between the longer and shorter boundary duration 
vectors. 
1.1. Notation 

number of activities of the project 
activity (arrow) i, z = 1,2,. . . , n 
x l ,  x2, . . ., xn): duration vector where denotes the (current) duration of activity 
i (the time needed to complete activity i) 
c 1 ,  c2, . . ., en): cost vector where ci denotes the (current) cost of activity i 
maximum duration of activity z; minimum duration of activity i. Thus, I ,  < xi < ui 
maximum cost of activity i 
number of minimal paths 
minimal path j, j = 1, 2, . . . , m 
maximum duration of Pj; i.e., M(Pj) = ui 

ai ? Pj 

project time under X (the earliest time to complete the project under X )  
total cost under X 
required project time (the deadline to complete the project) 
budget of the project 
(dl, d2, . . ., dn) with di = 1 and dj = 0 for j # i, i = 1, 2, . . . , n 
(xi, x2, . . ., xn} < (yi, y2, . . ., yn): xi <: yi for each i = 1, 2, . . . , n 
(XI ,  x2, . . ., xn) < (a, 92, . . ., gn): X < Y and xi < % for at least one i 

1.2. Assumptions 
1. Duration 2:i takes possible values: l*, 1, + 1, li + 2, . . . , ui and its corresponding cost C, 

takes values: wi, wi - 1, wi - 2, . . . , wi - (ui - Zi). 
2. Different durations are statistically independent. 

2. Stochastic Project Network 
The project manager is required to complete the project both within project time T and 

within the budget B. In order to satisfy the project time constraint, each duration should 
be shortened possibly. In order to satisfy the budget constraint, each activity cost should be 
reduced possibly. The project manager is required to schedule the feasible duration vector 
X such that T(X) < T and B(X) < B.  For convenience, such an X is called to satisfy 
(T, B). We propose a concept of longer boundary duration vectors and shorter boundary 
duration vectors for (T, B). The duration vector X is called a longer boundary duration 
vector for (T, B) if T (X)  = T, B(X) < B and T(Y) > T for each duration vector Y 
such that Y > X .  Similarly, X is called a shorter boundary duration vector for (T, B) if 
B(X) = B, T(X) < T and B(Y) > B for each duration vector Y such that Y < X .  The 
following Lemmas show that all duration vectors satisfying (T, B)  are between the longer 
and shorter boundary duration vectors. 

Lemma 1. If X satisfies (T, B),  then there exists a longer boundary duration vector S, such 
that X < S,. 
Proof: It is known that T(X)  5 T.  If T(X + e,) > T for each arrow up with a;,, < u,, then 
S, is taken as X. Otherwise, there exists an arrow ak with xk < ~k such that T(X + ek) < T 
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and B(X + et) < B. Let Xi  = X + ek. If T(Xl + e,) > T for each arrow a, with xp < up, 
then < is taken as Xl. Otherwise, the same procedure can be repeated for Xi in finite 
steps, i.e., there exists an integer T such that Xr > Xr-\ > . . . > Xi with T(Xr) = T and 
T(Xr + en) > T for each arrow a, with xp < up. The proof is concluded by letting < = Xr. 

Lemma 2. If X satisfies (T, B) ,  then there exists a shorter boundary duration vector $J 

such that @ <, X .  

Proof: It is known that B(X) < B. If B(X - e,) > B for each arrow a, with xp > 1,: then 
X is taken as $. Otherwise, there exists an arrow ak with xk > lk such that B(X - ek) < B 
and T ( X  - ek) < T. Let Xl  = X - ek. If B(Xi - e,) > B for each arrow a, with xp > 1,: 
then Xi is taken as +. Otherwise, the same procedure can be repeated for Xi in finite 
steps, i.e., there exists an integer r such that Xr < Xr-i < ... < Xi with B(Xr) = B and 
B(Xr - en) > B for each arrow an with X, > 1,. The proof is concluded by letting @ = Xr. 

3. Proposed Algorithms 
As those approaches proposed in [9-111, we suppose that all minimal paths have been 

pre-computed. Minimal paths can be efficiently derived from those algorithms discussed 
in [ l ,  8,131. Two algorithms in terms of minimal paths to generate all longer and shorter 
boundary duration vectors for (T, B) are proposed in the following, respectively. 
3.1. Algorithm I: Generate all longer boundary duration vectors for (T, B) 

Step 1. Compute M(Pj) and let Aj  = 
T i f M [ P , ) > T  
M(Pj)  if M(Pj) < T f o r j = 1 , 2  , . . . ,  m. 

Step 2. Find all integer solutions X = (xi, x~ . . . , xn) satisfying constraints (3.1) and (3.2) 

Step 3. Check each X of step 2 whether its total cost B(X) exceeds the budget B.  If yes, 
delete X. Otherwise, X is a longer boundary duration vector for (T, B). 

Constraint (3.2) means that X is a duration vector, and constraint (3.1) implies that 
T(X) = T and T(X + e,) > T for any a, with xp < up. Henc.e, steps 2 and 3 generate 
all longer boundary duration vectors for (T, B) .  In order to solve step 2, we can apply the 
implicit enumeration methods (e-g., branch-and-bound [5 ,6]  or backtracking PI) which are 
always denoted by a search tree composed nodes and arrows. Choose any variable as the 
starting variable, treat all constraints as bounding functions of the search tree. Repeat this 
procedure to find all integer solutions of constraints (3.1) and (3.2). 
3.2. Algorithm 11: Generate all shorter boundary duration vectors for (T, B) 
Step 1. Find all integer solutions C = (cl, 02, . . . , G) satisfying (3.3) and (3.4). 

C l + C 2 +  . . . + &  = B 
- (v,iÃ‘li < ci < wi forz = 1,2, ..., n 

Step 2. Transform each C in step 1 to the corresponding X = (xi, ~ 2 , .  . . , Xn}. 
Step 3. Check each X whether T(X)  < T. If yes, X is a shorter boundary duration vector 
for (Ti B). 

Steps 1 and 2 generate all duration vectors X such that B(X) = B, and step 3 saves 
those X s  satisfying T(X) < T. Hence, algorithm I1 generates all shorter boundary duration 
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vectors for (T,  B). In step 3, we can easily use the minimal paths to check the condition 
T(X) < T by calculating T(X) = max { x,}. Similar to Algorithm I, the implicit 

l^J<m ai?.pi 

enumeration method can be applied to solve step 1. 

4. A Numerical Example 

Start End 

Figure 1: A project network. 

A project composed of five activities is represented as a project network with five arrows 
and four nodes in Figure 1. The project manager is required to complete the project within 
7  weeks and within the budget US$ 3400. The data of activity duration and activity cost 
are listed in table 1. It is known that T = 7 ,  B = 34, Pi = { a l ,  u2} ,  P2 = { a l ,  0 3 ,  as}: 
p3 = { 0 4 ;  4, (11 ,  u1) = (2 ,  4 ) )  (12 ,  u*) = (3:  51, (13, u s )  = (1 ,  31, (14: u4) = (2 ,  4 )  and { k ,  
us) = (3 ,  5) .  All longer and shorter boundary duration vectors for (7,34) are obtained b y  
the following procedure. 

Table 1: Data of activity duration and activity cost of Figure 1. 

Activity Duration Cost Activity Duration Cost 
(weeks) (US$IOO) (weeks) (US$lOO) 

a\ 2 8 a4 2 6 
3 7 3 5 
4 6 4 4 

a2 3 8 0 s  3 8 
4 7 4 7 
5 6 5 6 

a3 1 7 
2 6 
3 5 

Algorithm I 
1. M(P1) = U l  + 'W = 4  + 5  = 9, M(P2)  = ~1 + ~3 + us = 4  + 3 + 5 = 12 and 

M(P3) = ~4 + u5 = 4  + 5  = 9. Hence, Al = A2 = A3 = T = 7.  

Step 2. Find integer solutions X = ( x 1  , % x3, x4 x5)  of constraints (4.1) and (4.2). 

The solutions are Jfi = (2 ,5 ,1 ,3 ,4 ) ,  X; = (2 ,5 ,2 ,4 ,3)  and = (3 ,4 ,1 ,4 ,3 ) .  
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Step 3. The corresponding cost vector of Xi is (8,6,7,5,7). Thus B ( Z )  = 8+6+7+5+7 = 
33. Similarly, B ( z )  = 8 + 6 + 6 + 4 + 8 = 32 and B ( Z )  = 7 + 7 + 7 + 4 + 8 = 33. Hence -- 
XI ,  X i  and are a.11 longer boundary duration vectors for (7,34). 

Algorithm I1 
Step 1. Find integer solut.ions C = (el, C*, cy, 04, c5) satisfying constraints (4.3) and (4.4). 

18 (el, c2, e3, c4, c5)'s are obtained (see Table 2). 

Steps 2 and 3. Table 2 shows the final result. 

Table 2: Result of algorithm 11. 

Corresponding Corresponding 

In sum, we obtain three longer boundary duration vectors for (7,34) and nine shorter 
boundary duration vectors for (7,34): Xi = (2,4,1,4,3) ,  X f  = (2,5,1,3,3) ,  = (3 ,3 ,1 ,4 ,3) ,  
xi= (3 ,4 ,1 ,3 ,3 ) ,&= (2 ,3 ,2 ,4 ,3) ,%= (2,4,2,3,3) ,X-,= (2 ,5 ,2 ,2 ,3 ) ,&= (2 ,4 ,1 ,3 ,4)  - 
and XQ = (2,5,1,2,4) .  Figure 2 shows the relationships between longer and shorter bound- 
ary durakion vectors for (7,34). If the duration vector X is scheduled to be (2,5,2,3,3) ,  
then there exists a longer boundary duration vector = (2,5,2,4,3)  and a shorter bound- 
ary duration vector Xs  = (2,4,2,3,3)  such that % > X > Xy. Hence, X = (2,5,2,3,3)  is 
a feasible duration vector under the project time constraint a n d  budget constraint. 

5. Computational Time Complexity Analysis 
5.1. Algorithm I 

Ti 

The number of feasible solutions of constraint (3.2) is ?' = Y\ (ai - I ,  + 1). Hence, the 
i= 1 

number of solutions of constraints (3.1) and (3.2) is bounded by <I>. In the worst case, step 
1 needs 0 ( n )  time for each minimal path and 0(m - n) time for all minimal paths. Each 
solution of constraint (3.2) needs 0 ( n )  time to test whether it satisfies xi = Aj for 

a, ? Pj 

each minimal path and 0 ( m  n)  time for all minimal paths in the worst case. Hence, it 
takes 0 ( m  - n - @) time to execute step 2 in the worst case. Each solution in step 2 needs 
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Figure 2: Relationships between longer boundary duration vectors to for (7 ,34)  and 
shorter boundary duration vectors - XI to - Xg for (7,34) 

0 (n )  time to further test the budget constraint. Hence, step 3  needs O ( n  - a) time in the 
worst case. Therefore, the computational time complexity of Algorithm I in the worst case 
is 0 ( m - n - @ )  = 0 ( m - n ) + O ( m - n - @ ) + O ( n - a ) .  
5.2. Algorithm I1 

n 
The number of feasible solutions of constraint (3.4) is @ = n (ui - li + 1). Hence, the 

2=1 
number of solutions of constraints (3.3) and (3.4) is bounded by $. Similarly, the number 
of X s  transformed in step 2 is bounded by @. Each solution of constraint (3.4) needs 0 0  
time to test constraint (3.3). Hence, it takes 0(n  @) time to execute step 1 in the worst 
case. Each solution in step 1  needs 0 ( n )  time to transform to the corresponding X. Hence, 
step 2 needs O ( n a @ )  time in the worst case. In the worst case, it further needs 0(m-n)  time 
to test T(X) < T for each X and O ( m  n @) time for all Xs. Thus, the computational time 
complexity of Algorithm I1 in the worst case is 0(m-n-@) = 0(n-@) + 0(n-@)+0(mmn-a).  

6. Discussion and Further Research 
This article generate all longer and shorter boundary duration vectors under the project 

time constraint and budget constraint, in which each activity duration a;* takes value from 
{li, li + 1, li + 2, . . . , ui}, and the corresponding cost ci takes value from { w i , ~ ~  - 1, wi - 
2,. . . , wi - (u, - lo}. We use a stochastic project network to represent the project, and use 
the properties of minimal paths to develop two algorithms in order to generate all longer 
and shorter boundary duration vectors, respectively. If the probability distribution of each 
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duration is given, then the probability that the project is completed within a project time 
and within the budget can be computed by using the state-space decomposition discussed 
in [Z, 3,9-121 in terms of longer and shorter boundary duration vectors. Such a probability 
is a performance index of project management. In particular, the probability distribution 
of activity duration is not limited to  any existing distribution but arbitrary. Furthermore, 
we can apply the sensitivity analysis for performance index to evaluate the most important 
activity. 

Future research can develop algorithms to  generate all longer and shorter boundary 
duration vectors for the general case that the activity duration xi takes integer values 
lil < la < . . . < liri (lij is an integer number for j = l , 2 ,  . . . , ri) and its corresponding 
cost ci takes integer values wil > wa > . . . > wri ,  where is the number of possible values 
of xi. Furthermore, calculate or approximate the probability that the project is completed 
under project time constraint and budget constraint. Another interesting topic is to study 
the optimal duration vector, keeping both B(X) and T ( X )  as small as possible. 
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