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Abstmct This study discusses the mathematical structure of the dominant AHP and the concurrent 
convergence method which were originally developed by Kinoshita and Nakanishi. They introduced a new 
concept of a regulating alternative into an analyzing tool for a simple evaluation problem with a criterion 
set and an alternative set. Although the original idea of the dominant AHP and the concurrent convergence 
method is unique, the dominant AHP and the concurrent convergence method are not sufficiently analyzed 
in mathematical theory. This study shows that the dominant AHP consists of a pair of evaluation rules 
satisfying a certain property of overall evaluation vectors. This study also shows that the convergence of 
concurrent convergence method is guaranteed theoretically. 

1. Introduction 
AHP is a flexible decision making system that  can deal with the subjective judgments of 
a decision maker. Numerously successful applications have been reported in this field [6]. 
In AHP, the decision maker identifies an ambiguous evaluation problem into a hierarchy 
structure within the evaluation goal, criteria and alternatives, each of which corresponds to 
a node of the hierarchy. The hierarchy with a top, middle and bottom, structure usually 
consists of three levels, the goal, the criteria, and the alternatives, respectively. This study 
also discusses the three-level hierarchy. Directed arcs of the hierarchy form a parents-child 
relationship among the nodes and the existence of a pair of parents-child nodes means that  
the decision maker judges the relative importance of the child-nodes from the parents-node. 
That is, for example, directed arcs from the top level to the middl? level indicate the decision 
maker's judgment on the relative importance of all criteria from the goal. Saaty [6] proposes 
that in this three-level hierarchy the decision maker firstly judges the relative importance 
of the criteria from the goal and secondarily judges that of the alternative from the criteria. 
Judgments of the relative importance are expressed numerically, which are called evaluation 
values. Let I and J be a set of alternatives and that of criteria, respectively, and denote 
their cardinalities by 111 and J J l ,  respectively. Then we have a total of IJI x (111 + I) 
evaluation values in the three-level hierarchy. By plotting a set of evaluation values on the 
arcs of hierarchy, the hierarchy becomes a tree of a network with the directed arcs. .In the 
original AHP, the evaluation value of a child-node from a parents-node is quantified under 
the assumption that the decision maker compares all pairs between distinct two children of 
the parents. 

Kinoshita and Nakanishi [2] focus on the following empirical result: When the decision 
maker evaluates relative importance of the criteria from the goal, he/she focuses on a specific 
alternative and refers to relative importance of the criteria from the specific alternative. The 
specific alternative is called the regulating alternative. Kinoshita and Nakanishi [2] assume 
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that if there exists exactly one regulating alternative then the relative importance of the 
criteria from the regulating alternative determines that from other alternatives. If there 
exists only one regulating alternative in the alternative set, then the regulating alternative 
is called the dominant one and they implement the assumption into the dominant AHP. 
The mathematical description of the dominant AHP is as follows: 
Step0 : The decision maker selects a regulating alternative from the alternative set I .  Let 

alternative k be the regulating alternative. 
Step1 : From the vieivpoint of every criterion j E J, the decision maker evaluates the 

relative importance of all alternatives and quantifies the evaluation values of a11 alter- 
natives. Let uij be the evaluation value of the alternative i from the criterion j and 
let A be an 111 x [Jl evaluation matrix whose (2, j )  element is uij. 

Step2 : From the viewpoint of the regulating alternative k ,  the decision maker evaluates the 
relative importance of all criteria and quantifies the evaluation values of all criteria by 
such as the eigenvalue method for a pairwise comparison matrix of the criteria. Let bk 
be a 1 Jl-climensional vector whose j t h  element is the evaluation value of the criterion 
j from the regulating alternative k. 

Step 3: Let Ak be a 1 Jl x 1 Jl diagonal matrix whose ( j ,  j )  element is akJ. Calculate AAilbk 
and define the i th element of A A F ' ~ ~  as the overall evaluation value of alternative i, 

Suppose that the alternative k is the dominant one. Let 6' be a IJI-dimensio*lal vector 
whose j t h  element is the unknown evaluation value of the criterion j from the alternative 
i # k, and let Ai be a diagonal matrix whose ( j ,  j )  element is Uij. Then, Kinoshita and 
Nakanishi [2] propose a following evaluation rule under their assumption: 

for all i I \ {k), where e is all one vector and stands for the transpose operation. They 
define 

AA;%' (1-2) 

as the overall evaluation vector derived from the alternative i and they point out that  
AA;'~' coincides (except for a scalar multiple) with AAilbk for all i E I \ {k}. Therefore, 
they assert that the overall evaluation vector A A ; ' ~ ~  is valid. 

In order to  deal with an additional data to  A, they relax their assumption and extend 
single regulating alternative to  multiple ones. Let K be an index set of regulating alterna- 
tives, then bk of the regulating alternative k K can be given by Step 2 and IKI types of 
A, say { ~ ( ~ ) l k  E K } ,  can be given by Step 1. They assume that the relative importance 
of criteria from every alternative is an aggregately relative importance of criteria from all 
regulating alternatives. Under the assumption they develop a two-stage procedure as fol- 
lows: First, merge 1 k E K} into a positive matrix A by an appropriate method [2]. 

Next, apply the evaluation rule (1.1) to  estimating hi from relative importance bk of each 
regulating alternative k K.  Hence, calculate 

for all i E I and all k E K and generate gi from { A i ~ i l b k  1 k E K }  by an iterative proce- 
dure [2], for every i E I. 
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The two-stage procedure is called the concilrrent convergence method in [2]. However, 
convergence of the iterative procedure in the second stage has not been guara.ilteed theoreti- 
cally and it  is still an open problem [14]. Kinoshita and Nakanishi [2] observe in a numerical 

exampIe that the concurrent convergence method provides a limit point set b 1 i E 1 and r2 1 
that AAT1b' coincides (except for a scalar multiple) with AA;'b2 for all i E I. The latter 
observation arises in both the dominant AHP and the concurrent convergence rnethocl. It 
is called the consistency property. 

The first aim of this study is to show that some pairs of evaluation rules satisfy the 
consistency property other than the pair of (1.1) and (1.2) in the dominant AHP. The second 
aim is to prove the convergence of the iterative procedure in the concurrent convergence 
method. This study contributes the ~iiathernatiml foundations and gerleralizations of the 
dominant AHP and the concurrent convergence r~~e thod .  

This paper has five sections. Section 2 discusses the ~nathematical structure of the 
dominant AHP, especially the pair of evaluation rules (1.1) and (1.2). Section 3 sho~vs the 
convergence and the consistency property of the concurrent convergence method. Section 4 
provides a numerical example illustrating these j~roperties of the concurrent convergence 
method. The final section is a brief conclusion. We outline some future extensions as well. 

2. Mathematical Structure of the Dominant AHP Model 
In this section, we discuss mathematical properties of the overall evaluation vector AA;' bk 

and alternative i's evaluation vector bz of the criteria that is estimated by regulating alter- 
native k .  (Note that Ai is well defined for a11 i E 1 since A is a positive nlatrix.1 We only 

focus on the directions of the overall evaluation vectors, AAilbk and AA;'bi, and the eval- 

uation vectors of criteria, bk and 6'. The overa11 evaluation vector is to  indicate the relative 
importance of alternatives and its length has no information concerning alternatives. So, 
if a vector a coincides except for a scalar multiple with a vector b, we say that a has the 
same direction as b- In order to  express the mathematical properties of the dominant AHP, 
we introduce two linear transformations, Bf (-) and &(-) as follo~vs: For a IJI-dimensional 
vector b, we define v ( b )  = AA;'b and Bf(b) = A i ~ i l b  for all z ,  k E I .  Then, the overall 

evaluation vector by the evaluation rule (1.2) is given by the function value ~ ( b ' ) .  

Lemma 1 Suppose that bz is defined by (1  . I )  for all i E I \ { k } ,  then 

That is, bi has the same direction as ~ f ( b ~ )  for all i E I \ { k } .  
Proot  

for all z E I \ { k } .  

Then we summarize the consistency property of the dominant AHP as follows: 
Theorem 2 Let b be a ~J~-dzme~xszonal  vector, then Vk(b) = L((Bf(b)) for all z ,  k E I .  
Suppose that bz is defined bg ( 1 - 1 )  for all i E 1 \ { k } ,  then vk(bk) has the surrbe direction us 

( 2 ) .  

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



Properties of  Dominant AHP and CCM 

Prook For every 1 Jl-dimensional vector b, 

for all i ,  k E I .  I t  follows from Lemma 1 and (2.2) that 

for all z E I\ { k ) .  

From Theorem 2, Kinoshita and Nakanishi [2] mention that the pair of evaluation rules (1.1) 
and (1 -2) provides a consistent overall evaluation vector among all alternatives. 

Under the assumption that alternative i has the evaluation vector bi of ~r i ter ia ,  we 

apply (1.1) to  estimating alternative k7s evaluation vector of criteria from bz and then 
obtain bk. Hence> Bf ( - )  can be considered as an inverse function of B i ( - )  in the sense as 
follo?vs: 
Theorem 3 Let b be a 1 Jl-dzmenszonal vector) then Bf (Bi(b))  = b for all 2 )  k E I .  Suppose 

that bi is defined by (1.1) for all i E I \ { k } )  then B;(bi) has the .same direction as bk. 
ProoE I t  follows from definitions of B i ( - )  and B f ( - )  that  

Since 

it  follows from (2.3) that 

for all i E I \ { k ) .  

In the context of the dominant AHP, we now consider normalization of A and inner 
dependence among criteria, which are discussed in [7] and [9], respectively. Suppose that b 
is an evaluation vector of criteria from alternative 1 and that A is an evaluation matrix of 
alternatives from criteria then we might assume that AL1b is an evaluation vector of criteria 
from the goal. Let N be a 1 Jl x 1 Jl diagonal matrix whose (j, j )  element is l/ aij, then 
A N  is a column-normalized evaluation matrix of alternatives and ANA;lb is an overall 
evaluation vector of alternatives for the normalized evaluation matrix AN. (For an evaluation 
vector b which is independent of a specific alternative's view point, Saaty [7] shows that 
ANb is an overall evaluation vector of alternatives). Suppose that  the inner dependence 
relation among criteria is represented by a 1 Jl x [J l  matrix M and that  A;'b is an evaluation 
vector of criteria from the goal) then Saatjr and Takizawa [9] shows that A4A;'b is an overall 
evaluation vector of criteria having the inner dependence. Therefore, AA4AF1b is an overall 
evaluation vector of alternatives and Ai~4L4r1b could be an estimated evaluation vector of 
criteria from the viewpoint of alternative i .  Though Ai14~4;'b is interpreted as A(A4AF1b) 
according to  [9], we could regard AA4AL1b as (AA4)A;'b. Here, A M  is called an adjusted 
evaluation matrix by the inner dependence. For the adjusted evaluation matrix A M  we 
have (AA4)A;lAiA;lb = AA4A;'b. Therefore, AiAylb  night be an estimated evaluation 
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vector of criteria from the viewpoint of alternative z .  (For the diagonal matrix N ,  Saaty [7] 
gives the same interpretation AN6 = ( A N )  b = A ( N b )  as the above.) 

For two IJI x IJI matrices M and N ,  we propose a new pair of linear transformations 
Bf( - )  and K ( - )  as follows: 

B;(b) = A i ~ A i l b  (2.4) 

and 

for all z ,  k I l  then we have the following similar results to Theorems 2 and 3. 
Theorem 4 Consider that B f ( - )  and \G(*) are defined bp (2.4) and (2.5),respectzvely. Sup- 
pose that there exists a nonzero scalar A such that N M  = AN. Let b be a IJI-dimenszonal 
vector, then \fk(b) has the same direction as ~ ( B f ( b ) )  for all z l  k E I .  Moreover, zf M 2  is 
a multiplicatzon of the unzt matrix, then Bf ( B i ( b ) )  has the same dzrectzon as 6 .  
Proof Since NAd = ANl  we have 

l k  K ( B f ( b ) )  = ANAL Bi ( b )  = A N A r 1 A i ~ 4 ' A i 1 b  = A A ~ M A ~ '  b = A A N A i l b  = AVk(b). 

Let E be the unit matrix, then there exists a scalar p such that M 2  = pE. Therefore, we 
have 

B; ( ~ ; ( b ) )  = A ~ M A ; ~ B ; ( ~ )  = A ~ A ~ A ~ ~ A ~ M A ; ~ ~  = A ~ M ~ A ; %  = pb. 

w 
2 

Corollary 5 Suppose that B! (-), (-), N ,  M and A are the same as Theorem 4 and let b = 

B f ( b k ) ,  then x ( b i )  has the same direction as \fk(bk). Moreover, if M 2  is a multiplication 

of the unit matrix, then B i (b2 )  has the same direction as bk.  
Proof: It is directly from Theorem 4. H 

Introducing a nonnegative parameter a into a matrix M of (2.4)> we consider a IJI x IJI 

and 
~ ( b )  = A M ( Q ) A ; ~ ~  

matrix as follows: - - 

for all z 1  k E I .  
Corollary 6 Let B t ( - )  and K ( - )  be defined by (2.6) and (2.71, respectively. Let b be a 
[Jl-dzmenszonal vector and suppose that a = 0 or 1, then \fk(b) has the same dzrection as 
K ( ~ f ( b ) )  for all i E I \ { k } .  
Proof Since M(0l2 is the unit matrix and A ~ ( I ) ~  = [ J l M ( l ) ,  it follows immediately from 
Theorem 4. W 

M ( a )  = 

Suppose that (111 J l ) M ( l )  is an evaluation matrix representing inner dependence among 
criteria and that b is an evaluation vector of criteria from alternative k .  We assume that 

1 a --â a 

a 1 . -  . . 

.. a 
a . . *  a 1 - 

Then M ( 0 )  is the unit matrix. We consider a variation of the pair of (2.4) and (2.5) as 
follows: 

~ ; ( b )  = A ~ M ( ~ ) A ; ~  6 ,  (2.6) 
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AM(1) is the adjusted evaluation matrix and A * A T ' ~  is an estimated evaluation vector of 
criteria from the viewpoint of alternative i .  By applying the inner dependence matrix M(1) 
and the unit matrix E to  N of (2.5) and M of (2.4), respectively, it  follows from Theorem 4 
that  Vk(b) has the same direction as l̂  (5:(b)) for every IJj-dimensional vector b and all 
i ? I \ {k}. By decomposing the inner dependence matrix (111 J I ) M ( l )  into (1/I J I )M( l )  
of (2.7) and ( l / I J I )M( l )  of (2.6), we have 

where 14(b) = (111 J ~ A M ( ~ ) A ; ' ~  and Bfib) = (111 . / D A i ~ 4 ( l ) A ~ ' b .  This also implies from 
Corollary 6 that Vk(b) has the same direction as I7, ( ~ , * ( b ) )  for every 1 Jl-dimensional vector 
b a n d  all i G I \  {k}. 

The following theorem asserts that  there exists an evaluation vector of criteria such that 
the overall evaluation vector by the pair of (2.6) and (2.7) is independent of a. 
Theorem 7 Suppose that a 1 J\-dimensional vector b satisfies A;' b = Ae for some nonzero 
scalar A. Let Baa)  and u-) be defined by (2.6) and (2.7), respectively. For every positive 
a, then both Vk(b) and y^(B:(b)) have the same direction as Ae. 
Proof: I t  follows from M(a)e = (1 + a(IJ1 - 1) )e  that 

In a similar way to the above, we have for every i I 

Next we give an illustration to make the dominant AHP model more readable. 
Example 1 Schenkeman[10l gives an example for criticizing Saaty's AHP that the order 
of alternatives can be in reverse by normalizing the judgment value of an  alternative from a 
criterion. In his example, he considers how to evaluate the circumferences of three rectangles 
of farmland by the lengths and the breaths of the rectangles. Here the alternatives are 
farmland. The  set of alternatives is I = {l, 2,3}. The criteria are the length and the 
breadth. The set of criteria is J = {l ,  2}. The lengths and the breadth (column) of the three 
rectangles (row) is listed as 

A =  200 100 * [: :I 
Generally, the length is as the same important as the breadth for measuring the circumference 
of a rectangle. Then the evaluation vector of the criteria from the goal is given in [10l by 
b = [0.5,0.5]^. Let alternative 1 be a regulating alternative. W e  obtain easily 

Consider two vectors b and b\ = [1/9,8/9IT as regulating alternative 1's evaluation vectors 
of two criteria. The overall evaluation vectors by the pair of (2.6) and (2.7) with several 
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Table 1: The overall evaluation vectors in the dominant AHPs 
a Overall evaluation vectors by b Overall evaluation vectors by 6 ,  

a =  10 [0.51,0.09,0.40]~ [0.45,0.15,0.40]' 
Saaty 's AHP [0.37,0.23,0.40]~ [0.50,0.10,0.40]~ 
The real rate [0.45,0.15,0.40] ' 
#: See [I&']. $: Replacing b with b\, we can obtain $ by the same way as that of #. 

T a s  are shown i n  Table 1. Note that b\ = A [an, aI2] for some A. Then/or any a 2 0 the 
overall evaluation vector by b} is equal to the percentages of the real circumferences of the 
three rectangles. Moreover, for a = 1 the overall evaluation vector by any positive vector b 
yields the percentages of the real circumferences of the three rectangles. 

3. Mathematical Structure of the Concurrent Convergence Method 
In this section, we consider the case that there exist several regulating alternatives, that is 
the case of \K\ > 2. The concurrent convergence method begins with merging {A^ 1 k E K\ 
to generate a common evaluation matrix A for all alternatives. This is the first stage of 
the concurrent convergence method. Then, we go to the following initial step of the second 
stage: 
Algorithm 0 
Step 0: For a given set of the evaluation vectors of criteria, {bk  1 k ? K } ,  in the first stage, 

let 
6; := bk (3.1) 

for all k E K. Let t := 0 and go to  Step 1. 

Step 1: Let 
1 A.A;%; 

:= - 
IKI k,Ã eTAiAilbf 

for all z ? I .  
Step 2: If maxig/ 1 1  bi.1 - 6'11 = 0 then set b' = b:+, for all i 6 I and stop. Otherwise, 

update t := t + 1 and go to  Step 1. 
Note that all bk of Step 0 are normalized in the first stage, that  is, eTbk = 1 for all k 6 K .  

Kinoshita and Nakanishi [2] observe in some numerical experiments that  Algorithm 0 
has a limit point set {&' 1 i 6 I }  such that AA,'~'  has the same direction as A A ' ~ '  for all 
2 ,  l ? I .  

To prove the observation above, we consider the following Algorithms 1 which is simpli- 
fied from Algorithm 0. 
Algorithm 1 
Step 0: For all k E K ,  let 

- 1  k Pi := At b . 

Set t := 0 and go to  Step 1. 
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Step 1: For all i G I, let 

Step 2: If m a x k 6 ~  l l p f + l  - p? 11 = 0, then let pk := P , + ~  for all k E K and stop. 
Otherwise, set t := t + 1 and go to Step 1. 

We can correspond { p? 1 t = 0,1,2, . . .} of Algorithm 1 to { bf 1 t = 0,1,2,  . . .} of Algo- 
rithm 0 as follows: 
Lemma 8 The equation 

Â  b" =a" (3.5) 

holds for all k 6 K and t = 0,1, . . . and 

holds for all i E I and t = 1 ,2 . .  . . I f  Algorithm 0 is convergent finitely , then so is Algo- 
rithm 1, and vice versa. 
Proof: We will show (3.5) by induction of iteration t .  At iteration t = 0, A,.' bk = pE follows 
directly from (3.1) and (3.3) for all k 6 K.  We assume that at  iteration s APbt  = pl', holds 
for all k ? K .  Then it follows from (3.2) and (3.4) that 

for all k E K. Therefore, we complete (3.5) for all k 6 K and t = 0,1, .  . . . This means 
from (3.2) that 

1 bZ - - 

for all i 6 I and t = 1,2 , .  . . . 
When Algorithm 0 stops at  iteration t ,  we have b\,, = b\ for all i E I and hence, 

A ~ ' b f + ~  = ~ t ' b f  for all k E A". Therefore, Algorithm 1 stops at  iteration t .  On the 
contrary, if Algorithm 1 stops at iteration t ,  we have ~ i ' b f + ~  = ~ ~ ' b t .  This 'implies that 
b;+l = bf . 

From Lemma 8 we discuss the convergence of Algorithm 1 instead of Algorithm 0. Further- 
more, Lemma 8 means that it is sufficient to calculate (3.4) for all k 6 K I. Therefore, 
we consider Algorithm 1 replacing I with K in the sequel. 
Lemma 9 The vector pf is a positive vector for every k E K and t = 0,1, . . .. 
Proof: Note that bt is a positive vector for all k 6 K. Since every diagonal element of the 
diagonal matrix Ak is positive, it follows from Lemma 8 that p; is also a positive vector for 
all k K. Assume that pf is a positive vector for all k 6 K ,  then it follows from (3.4) that 
p{+. is positive for ail k 6 K .  Â 

Lemma 10 For every k ? K and t = 0,1 , .  . ., the followinq equation holds 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



206 E. Kinoshita, K. Sekitani & J. Shi 

Proof: From (3.3) it is easy to see that eTAkpk = eTbk = 1. For t = 0 , 1 , .  . ., we have 
from (3.4) that 

= 1. 

It  is the assertion. Â 

Lemmas 9 and 10 imply that {pf \ t = 0 , 1 , .  . .} is a bounded set in the positive orthant for 
all k G K.  
Lemma 11 For all k ? K  and t = 0 ,1 , .  . . , 

Proof: The assertion is directly from Lemma 10. W 

Consider the following convex cone 

Cone ( { p f + l ~ k  6 K } )  ^ p L i  and pk 2 0  for all A E K  } , (3.7) 

which is generated by the vectors { p k 1  1 k E K } .  For a set D we denote the relative interior 
and relative boundary of D by riD and bdD, respectively. 
Lemma 12 Let R be an extreme ray set of Cone ({pf \k  K } ) .  If dim R = 1, then Algo- 
rithm 1 stops. Otherwise, for every k E K  and t = 0, l , .  . . , 

pt+l 6 ricone ( { p f  lk E K } )  

p;+i i R- 

Proof: Note that Cone(R) = Cone ( {p f lk  6 K } ) .  
Firstly we consider the case of dim R = 1. Since p* 6 Cone(R) for all k E K,  there 

exist positive numbers ph for all k, l G K  such that pi = dikpf .  This means from (3.4) 
and Lemma 11 that 

for all k E K. This satisfies the stopping condition of Step 2. 
Next, we consider dim'R > 2. Then, it follows that riCone(l3) c Cone(R) and that 

riCone(R) n R = a. Note that if u k  > 0  for all k E K  then (EkEK- ukpf) riCone(I3). It 
follows from Lemma 9 that eTAkp' > 0 for all k, I â K.  This means from (3.4) that 

for all k G K. This means that pf+; $! R for all k 6 K. 

Lemma 13 

cone ({P?+i 

cone ( { P k l  

for t  = 1 , 2 , .  . . . 

I k E K } )  c Cone ( { p ;  1 k 6 K } )  and 

I k 6 K } )  n bdCone ( {pf  1 k 6 K } )  = { the origin } 
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Proof: I t  is directly from Lemma 12. Â 

Lemma 13 means that Cone ( {pf  1 k E K } )  shrinks monotonically for t = 0,1 , .  . . . We 

assume that Algorithm 1 generates an infinite sequence of points {pf \ k E K } .  Let Sk = 

{ ~ p b  16 >. 0 and eTb = l} for all k s K ,  then Sk is compact and the product set fl Sk is 
also compact. This implies the following lemma. 
Lemma 14 For all k E K  and t = 0 ,1 , .  . . , 

Moreover, there exist an  index set T & {I, 2 , .  . .} and a n  accumulation point pk for all 
k G K  such that 

lim p", pk. 
t?T,t-+oo 

Proof: I t  follows from Lemma 10 that pf 6 Sk for all k s K  and t = 0,1, . . .. Since 
the set Sk is compact for all k s K ,  the product set mk is also compact. Therefore, 
limteT,t+OO pf = pk for all k s K.  Â 

limtgTtÃ‘o pf = fik for all k E K ,  then 

f i k  â sk 

for all k ? K and 

Cone ( { p k  1 k s K } )  \ Cone ( { p f  

f o r t  = 0,1, .  . . . 

Lemma 15 Suppose that an  index set T C {l, 2 , .  . .} and \K\ points { p k  1 k 6 K\ satisfy 

Proof: For all k s K  and every t = 0,1,2,  . . . , pf is included in the compact set Sk .  
Therefore, f i k  6 Sk for all k 6 K. 

Note that Cone ( { f i k  1 k E K } )  c Cone ( { p t  1 k E K}) for every s 6 T ,  that is, 

Cone ( { f i k  1 k 6 K } )  \ Cone ( { p 9  k 6 K } )  = 0. 

For every t = 0,1 , .  . . , there exists an index s s T such that s > t .  I t  follows from Lemma 13 
that Cone ({pi; 1 k s K ) )  c Cone ({pf  1 k 6 K } ) .  Therefore, we have 

Cone ( { p k  1 k G K } )  \ Cone ( {pf  1 k 6 K } )  = 8 

for every t = 0,1 , .  . . . . Â 

Lemma 16 Suppose that an  index set T C {I, 2, . . .} and \ K  \ points { f i k  1 k E K} satisfy 

k lim pf = f i  k 
tâ‚¬T, 

for all k s A", then Cone ( { p k  1 k s K } )  is a half-line. 
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Proof: I t  follows from lemmas 15 and 13 that fik E Sk f l  Cone ({pi 11 E K}). Since sk fl 
Cone ({pi 11  6 K}) is included in the positive orthant, so is pk and hence, 

for all I, k E K .  We can well define 

and elk > 0 for all 1,  k E K.  Notice Lemma 13 asserting that piÂ E (~one{p;  1 z 6 n sk) C 
(~one{p;  1 i E K} n s*) for all k 6 K and every t = 1 , 2 , .  . ., and hence eT-41plf > elk for 
all I ,  k E K and every t = 1 , 2 , .  . . . Let e = rnin{elk 1 1 ,  k K}. We have > e for all 
I ,  k E K and every t = 1,2,  . . . . It follows from (3.4) and (3.13) that for every I 6 K 

Let p' = lirntE7-,i-Ãˆmp~+l then it implies from (3.14) that 

i>' 6 riCone ({pk 1 k 6 K}) (3.15) 

for all 1 E K .  This means that Cone ({pl \ I 6 K}) <s Cone ({pk 1 k â K}) . 

Now we are going to show Cone ({fit I /  E K ) )  = Cone ({pk 1 k E A'}). Suppose that 

Cone ({pi 11 E K}) c Cone ({pk 1 k 6 A"}) and let 

Because Cone ({p' 11 6 A"}) is a closed set, there exists a positive scalar E such that 

Cone ({pk 1 k 6 K}) \ G(Â£ # 0. (3.16) 

It follows from (3.15) that there exists an index t i  E T such that Cone ({pf,+l I k E K}) C 
G(z). Therefore, suppose that t2 > ti + 1 and that t2 E T, then it follows from Lemma 13 
that Cone ({p: \ k E A"}) c Cone ( { ~ f , + ~  1 k E K } )  C G(E). It follows from (3.16) that 

Cone ({pk \k 6 K } ) \ ~ o n e  ({& 1 k E K}) # 0. This is a contradiction for (3.11) of Lemma 15. 

Therefore, Cone ({p' 1 l 6 A"}) = Cone ({pk 1 k 6 K}) and hence, it follows from (3.15) that 

Cone ({pk 1 k q) is a half-line. rn 

The following lemma guarantees the existence of a limit point of the infinite sequence 
{piÂ 1 t = 0,1 , .  . .} for all k 6 K .  
Lemma 17 If Algorithm 1 repeats infinitely, there exist a half-line H and a limit point pk 
of {plf I t = 0,1, . . . } for all k E K such that 

Hence, fik has the same direction as for all I E K .  
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Proof: Suppose that an index set T C {I ,  2 , .  . .} and IKI points {Pk 1 k e A"} satisfy 

limfeT,t-KYI pf = 3' for all A; 6 I<', then it follows from lemmas 14 and 16 that  there exists a 
half-line H such that pk 6 H for all k 6 K. Let C(e) = l-lkeKCone ({x 6 Sk 1 1 1 ~  - pk\ \ e}), 

then for every positive scalar e we have C(e) ("I Sk \ H # 0 and 

for all k 6 K. 
Choose a positive scalar c arbitrarily. I t  follows from Lemma 15 that  for all k 6 K there 

exists tt E T such that pf 6 C(e) n Sk for every t E {s 6 T 1 s > t! }. Let iE = max{t! 1 k 6 

K}, then we have Cone ({pi 11 6 K } )  n Sk 5 C(e) n Sk for every t 6 {s e T \ s > i,} 
and all k 6 K .  This implies from Lemma 13 that Cone ({pf \k 6 K}) C; C(e) for every 

t > i,. Hence, it follows from (3.18) that pf 6 Cone ({p; 11  6 K}) n Sk C C(e) fl Sk C 
{x E Sk 1 lla; - pkll <. 4 for every t > <"; and all k E K.  

From the viewpoint of set convergence [5], Lemma 17 implies that Cone ({pf 1 A; 6 3) 
converges on a half line of the positive orthant. When Algorithm 1 converges within finitely 
many iterations, the point set {pk 1 k e K] of Step 2 has the same property as stated in 
Lemma 17. 
Lemma 18 Suppose that Algorithm 1 stops within finitely many iterations and let pk be 
defined by Step 2 of Algorithm 1 for all k E K ,  then pk has the same direction as for all 
k , l e K .  
Proof: Suppose that Algorithm 1 stops a t  iteration t ,  then we have 

for all k 6 K. I t  follows from (3.4), Lemma 11 and (3.19) that 

for all k E K. Therefore, we have 

which means that pk 6 Cone ({pL \ I E K,  1 # k}Y This implies that  dim Cone ({pk 1 k E K}) = 

1. Hence, Pk has the same direction as for all k ,  1 6 K. 

By the above lemmas we can summarize the mathematical properties of the concurrent 
convergence met hod as follows: 
Theorem 19 The concurrent convergence method has a limit point set { b' \ i E I } .  Let 

AA,'$ be the overall evaluation vector of alternative i, then the overall evaluation vector 
of alternative i has the same direction as that of alternative 1 for all i, I E I. 
Proof: The assertion follows directly from Lemma 8, 17 and 18. Â 
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4. A Numerical Example 
In this section, we give a numerical 
Consider an evaluation matrix 

illustration for the concurrent convergence method. 

and suppose that K = { I ,  2 ,4}  and evaluation value vectors bl = [1/5,4/5IT,  by = 
[3/5,  2/5IT and bi = [1/3,  2/3IT. Then) 

One can calculate pk a t  Step 0 of Algorithm 1 and obtain 

and 

e T ~ l  = [2 ,1] ,  eT~lpA = 1/5+4/5 = 1,  e T ~ l p :  = 12/5+1/5 = 13/5,  e T ~ i p i  = 2/3+1/3 = 1- 

Therefore, 

Similarly, one obtains 

Following the steps of the algorithm, one has 

for t = 2. And for t = 3, One can obtain 

At iteration 4, i.e., t = 4, Algorithm 1 yields that 

Here, 
p\ w 0 . 7 8 8 4 8 0 ~ ~  p i  w 0.961554~4, pi Ã 1.219504~:. 

Overlooking a tolerance 1 0 " ~ )  we consider it is a concrete example of Theorem 19. Moreover, 
Figure 1 portrays Lemma 10, i.e., for a given k ,  eTAisp; = I holds for each t ,  and Lemma 
13, i.e., Cone 1 k e K } )  C Cone ( { p f  1 k â K } ) .  
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0.25 0.5 
Figure 1: An illustration for the concurrent convergence method 

5. Conclusion 
This paper develops the mathematical foundations of the dominant AHP and a mechanism 
for the convergence of the concurrent convergence method. Hence, we show the rnathemat- 
ical description that the dominant AHP consists of a pair of simple evaluation rules (1.Q 
and (1.2) and that the pair of the rules provides the consistency property between regulating 
alternative's overall evaluation vector and other alternative's ones. Furthermore we discuss 
an extension of the evaluation rules (1.1) and (1.2) without violating the property. As stated 
in Example 1 in Section 2, one can apply the proposed evaluation rules to sensitive analysis 
for the overall evaluation vector. 

This paper shows the convergence of the concurrent convergence method whose p\,̂  is 
fixed as the non-weighted average of {pi/(eTAip;) \ I E K }  in Step 1. By the same way as 
the proofs from Lemma 9 to Theorem 19 in Section 3, we can guarantee the convergence 
of a variant concurrent convergence method whose pi+i is given by a weighted average 
of [p^/ieTAipl) \ 1 6 K } .  Exploiting the convergence, we can extend the dominant AHP 
into an analyzing tool for an evaluation problem with a complex network structure [3, 121, 
interval AHP [l] and group AHP 14, 161. We outline each of them briefly as follows: 

An evaluation matrix of a complex network structure includes an evaluation sub-matrix 
whose element is hard to be quantified uniquely by the decision maker. (Sekitani [ll] 
illustrates a mutual evaluation system which has multiple evaluation values of the criterion 
from the alternative.) This sub-matrix is called an unstable evaluation matrix in [2, 3, 151. 
For example, [bl, . . . , b1"'I] is an unstable evaluation matrix when K = (1, . . . , P I } .  We can 
stabilize the sub-matrix by using the concurrent convergence method (see [3] for details) 
and then apply Sekitani and Takahashi's algorithm [12] to the whole evaluation matrix. 
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In the group AHP, there exist multiple evaluation vectors of criteria from an alternative 
and multiple evaluation matrices of alternatives from criteria. By the same way as Step 1 
of the concurrent convergence method, we can unify an evaluation matrix A for multiple 
evaluation matrices of alternatives from criteria. Suppose tha t  there exist m evaluation 
vectors {bb), . . . , bini1} of criteria from &ernative i and let B^ = [bb), . . , , him)] for all 
i ? I .  Let A^ be an m x 1.71 matrix whose every row vector is eTAi for all i ? I ,  then we 
can apply the concurrent convergence method with input of 1 i E I} and { ~ ^ \ i  E I} 
to  the group AHP. 

In the interval AHP, there exists a feasible region Bi of criterion's evaluation vector from 
alternative i for all i E I. Suppose tha t  n i p i { A 1 ~ l a ;  G B'} = 0 and that  $ i s  an  output 
vector of the concurrent convergence method for all z G I, then there exists an  alternative 
k E I such that  4 1 p k  4 Bk by any choice of an input vector pz of the concurrent convergence 
method from {A,lx\x 6 B'} for all z 6 I .  Hence, the concurrent convergence method can 
not provide any acceptable overall evaluation vector if nicf{A1x}x E Bi} = @. 

Finally, we have three important points in tlie further research of the dominant AHP 
and the concurrent convergence method as follows: 

1. To develop of a mathematical model for the concurrent convergence method. (Geo- 
metric means method and Eigenvalue method correspond t o  a statics model and an 
optimization model [13], respectively.) 

2. To discuss an evaluation value 0 and to  develop an evaluation method under incomplete 
information.(In the case of evaluation value aij = 0. Ai is singular.) 

3. Case studies for evaluation problems by the dominant AHP and the concurrent con- 
vergence method. 
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