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Abstract Minoux considered the manmum balanced /low problem, i.e. the problem of finding a maximum 
flow in a two-terminal network Af = (V, A) with source s and sink t satisfying the constraint that any 
arc-flow of Af is bounded by a fixed proportion of the total flow value from s to t ,  where V is vertex set 
and A is arc set. Several efficient algorithms, so far, have been proposed for this problem. As a natural 
generalization of this problem we focus on the problem of maximizing the total flow value of a generalized 
flow in a network Af = (V, A) with gains ?(a) > 0 (a E A) satisfying any arc-flow of Af is bounded by a fixed 
proportion of the total flow value from s to t,  where ?(a) f (a) units arrive a t  the vertex w for each arc-flow 
f (a) (a  '= (v, w) E A) entering vertex v in a generalized flow in At. We call it the generalized maximum 
balanced flow problem and if ?(a) = 1 for any a E A then it is a maximum balanced flow problem. The 
authors believe that no algorithms have been shown for this generalized version. Our main results are to 
propose two polynomial algorithms for solving the generalized maximum balanced flow problem. The first 
algorithm runs in O(mM(n, m, B') log B)  time, where B is the maximum absolute value among integral 
values used by an instance of the problem, and M(n, m, Bf)  denotes the complexity of solving a generalized 
maximum flow problem in a network with n vertices, and m arcs, and a rational instance expressed with 
integers between 1 and B'. In the second algorithm we combine a parameterized technique of Megiddo with 
one of algorithms for the generalized maximum flow problem, and show that it runs in O({M(n, ~X,B')}~) 
time. 

1. Introduction 

Minoux [7] considered the maximum balanced flow problem, i.e. the problem of finding 
a maximum flow in a two-terminal network N = (V, A) with source s and sink t satisfying 
the constraint that the value of any arc-flow of Af is bounded by a fixed proportion of the 
total flow value from s to t ,  where V is vertex set and A is arc set. Such a constraint 
is described in terms of a balancing rate function a : A -+ R+ - {O} with a ( a )  :< 1 
(a A), where R+ is the set of nonnegative reals. The maximum balanced flow problem 
is motivated by Minoux's research of reliability analysis of communication networks. If a 
flow from source s to sink t is balanced, then it is guaranteed that the value of the blocked 
arc-flow is at most the fixed proportion of the total flow value from s to t. So far, several 
algorithms ([l] , [7], 181, [9], (1 21) have been proposed for the maximum balanced flow problem. 
They contain a network simplex method without cycling, and a parameterized maximum 
flow algorithm, and a binary search method and so on. The latter two run in polynomial- 
time. For the problem of finding an integral maximum balanced flow, Zimmermann [12] 
showed this problem is W-hard, where Cui [l] gave an efficient algorithm in the case when 
the balancing rate function is constant. On the other hand, Ichimori et al [5] considered 
the weighted minimax flow problem and proposed a couple of polynomial algorithms for this 
problem, and Fujishige et al. [3] have pointed out the equivalence of the maximum balanced 
flow problem and the weighted minimax flow problem. 
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By the way, we can study some directions for generalizing the maximum balanced flow 
problem. There is a problem of discussing the kernel or null space {x : Qx = 01 of any real 
matrix Q in place of the circulation space which is the kernel of the vertex-arc incidence 
matrix of the underlying graph with a new arc (t, s) attached. Zimmermann [12] treated 
another direction of generalization of the problem, i.e. the maximum balanced submodular 
flow problen over totally ordered commutative groups. In this paper we focus on generalized 
maximum balanced flow problem, i.e. the problem of maximizing the total flow value of a 
generalized flow in a network N = (V, A) with gains ~ ( a )  > 0 (a 6 A) satisfying the value 
of any arc-flow of N is bounded by a fixed proportion of the total flow value from s to t, 
where ~ ( a )  f (a) units arrive at  the vertex w for each arc-flow f (a) (a = (v, w) E A) entering 
vertex u in a generalized flow in N. The generalized maximum balanced flow problem with 
gains ?(a) = 1 (a G A) is equivalent to the maximum balanced flow problem. 

The objective of the present paper is to propose two efficient algorithms. The authors 
believe that no algorithms, so far, have been shown for the generalized maximum balanced 
flow problem. The complexity of the first algorithm is O(nM(n, m, B') log B) time, where 
B is the maximum absolute value among integral values used by an instance of the gener- 
alized maximum balanced flow problem, and M(n, m, B'} denotes the complexity of solving 
a generalized maximum flow problem in a network with n vertices, and rn arcs, and inte- 
gral/rational instance expressed with integers between 1 and B'. In the second algorithm we 
combine the parameterized technique of Megiddo with one of algorithms for the generalized 
maximum flow problem, and show that it runs in 0({M(n, m, B')}') time. Finally, we will 
touch our future studies in the concluding remarks. 
2. Definitions and Preliminaries 
Let G = (V, A) be a connected directed graph with vertex set V and arc set A, where 
\V\ = n and IAI = m. We distinguish two special vertices : a source s ? V and a sink t G V. 
For simplicity, we assume that the directed graph contains no multiple arcs and self-loops. 
Moreover, we may assume that (v, w) E A implies (w, v) # A. For each arc a E A, 8+a 
(resp. 8 a )  is tail (resp. head) of a. Let 7 : A -+ R+ - {O} be a gain function, u : A + R+ 
a capacity function, Q : A + R a function, a : A -+ R+ - {O} a balancinq rate function 
with a(a)  < 1 (a E A) where R (resp, R+)  is the set of reals (resp. nonnegative reals). 
Throughout this paper, we assume that u and Q are integral, and that ?(a) (resp. a (a) )  

TO (a) (a E A) is expressed as Ã‘,Ã (resp. -) for some positive integers yi(a) and ai(a)  (i = 0 , l ) .  
For a function f : A + R and a gain function 7 : A + R+ - {O}, boundery &f : V + R 
is defined by aTf(v) = xaEs+v f (a) - Eaes-u ?(a)f(a), where S+v = {a E A : @a = u} and 
S v  = [a E A : 9 a  = v}. We also assume S+! = it). This assumption is without loss of 
generality. 

Given a network N = (G, u, 7, a, /?, s, t ) ,  the generalized maximum balanced flow problem^ 
(GMBF)  for short, is defined as follows: 

( G M B F )  : Maximize valN(/) subject to 

where valN(f) = Ea6(-t T(a)f(a). If problem (GMBF)  with $0) = 1 for any a 6 A, then 
it is called the maximum balanced flow problem. Given a network Af' = (G, u, 7, s; t), the 
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generalized maximum flow problem, ( G M F )  for short, is as follows. 

(GMF):  Maximize valNf(fl) subject to (2.1) - (2.2), 

where f in (2.1) - (2.2) should be replaced by f'. Let Nz = (G = (V, A), u , , ~ ,  s, t )  be the 
network N with a parameter z > 0, where u d a )  = min{u(a), a (a )z  + @(a)} for each a E A. 
Given network A/,, consider the following parameterized problem (GMF(,z)). 

(GMF(z)):  Maximize valx(f,) subject to (2.1) and 

where f in (2.1) should be replaced by fz.  A generalized flow f (resp. f') of Af (resp. N') 
is a funcion f : A -> R (resp. f '  : A -> R) satisfying (2.1) - (2.2). A generalized flow 
f is balanced in N if f also satisfies (2.3). If we consider a generalized flow in A/,, then 
it is a funcion f, : A -> R satisfying (2.1) and (2.4). The value of a generalized balanced 
flow f of N is valN(f). The value of a generalized flow f, (resp. f') of N, (resp. N' ) 
is defined similarly. An optimal flow of N is a generalized balanced flow maximizing its 
value. An optimal flow fz (resp. f') of Nz (resp. N' ) is a generalized flow maximizing 
the value. A residual network with respect to a generalized flow f, of Nz is defined as 
Nz(fz) = (G(f,) = (V, A(fz)), u'-, - ,fz,  s, t), where A(/,), u/-, and ^fz are defined as follows: 

The dual problem (DGMF(z)) for a primal problem (GMF(z))  can be written as: 
(DGMF(z))  : Minimize ~ l - ~ z ( a ) Q , ( a )  subject to 

where 7rz(s) = 0,7r,(t) = 1. Note that if we let ffZ(a) = [-7rz(8+a) + ~(a ) r , (8 -a ) ]+  for 
any 7rz(v) (u E V) then (T,, 9,) is a dual feasible solution of (DGMF(z)),  where [dl+ = 
max{O, d }  for d ? R. Complementary slackness conditions imply that at  optimality, for 
each a E A, 

Define Az,C(Oz), and D(Cz) by: 
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If there is an optimal solution of (DGMF(z)) ,  then the value is expressed as: 

where f>s an optimal flow in N, and 9; is a corresponding optimal solution of (DGMF(z)) .  
We call a network feasible if there exists a feasible flow in it, i.e. a flow satisfying all the 
constraints given in the network. The following proposition shows fundamental relations as 
to an instance of network N .  
Proposition 2.1: Let z > 0. Then we have (i) - (Hi), 
(i) If f is a generalized balanced flow i n  Af, then valN(f) < valN' (f ') < n ~ ' ~  for some 
generalized maximum flow f ' in Af', where B' = maxaeA{max{ +yo(a), +yl (a), "(a)}}. 
(ii) Nz is feasible i f  and only if z 2 [max,,^ -sj^]+. 
(Hi) If z >. 2B2, then problem (GMF)  is identical to problem (GMF(z)), 
where B s max{Bt, B"} and B" s maxaeA{max{a1(a), 1(3(a)I}}. 

dM]+ and Proof: It is easy to see (i) and (ii). We only prove (iii). Let J l ( N )  = [maxaEA a(al 

J2(N)  = TI+- If z 2 J2 (N) ,  then problem (GMF(z)) with an instance is 
identical to problem (GMF)  with the instance without o and (3. From Jl (Af) < J2 (N)  < 
2B2, we have (iii). 0 

A characterization as to the value of an optimal flow in N ( if it exists) is given as follows. 
Proposition 2.2: If network Af is feasible, the value of an  optimal flow inM is the maxi- 
mum z such that z = v a l N z ( f ~  for some generalized maximum flow f in Afz. 0 

Function y = F (z) with a variable z satisfies the following property, where F (z )  = valN, (/,"). 
Proposition 2.3: Assume network Nz is feasible and let F(z) = valN(/*) for some gen- 
eralized maximum flow f* in NZ. Then y = F(z)  is nondecreasing, continuous, piecewise 
linear, and concave. 13 

From (2.18), we have another characterization of the optimal value in N. 
Proposition 2.4: The value z* of an  optimal flow in network N is 

where 9; is a corresponding dual optimal solution of (DGMF(z)) .  

In the following, we give a criterion for a generalized flow f' in network At' to be maximum. 
For each v V, let P, be a residual directed path from v to t in the network M'( f '), where 
the path is simple. The gain +yf'(~,)  of P, with respect to -y^" is ?'(P,) = llaeA(p,)7"(a), 
where $' is the gain function of A/"'(/') and A(Pv) is the arc set of the path P,. The highest 
gain path from v to t is a residual directed path PL such that +yf1(P;) = maxp g l ( P v )  
where the maximum is taken over all the residual directed paths from v to t .  For a residual 
directed simple cycle Q of N'( f ' ) . ,  the gain of Q is defined similarly. A flow-generating 
cycle (resp. flow-absorbing cycle) is a directed residual simple cycle Q sa.tisfying +yfl(Q) > 1 
(resp. ^'(Q) < 1). A labeling function with respect to M'( f') is a function p : V + 

(R+ - {O}) U {m} such that p(t) = 1. The relabeled gain $' (a) of arc a 6 A( f ') with 
respect to p is defined by ?/ ' (a) = +yf'(a)p(y'a)/p(9-a). The canonical label of v E V in 
M ' ( f f )  is the inverse of the gain of the highest gain residuaJ path from v to t .  If no such 
path exists, its label is oo. The following theorem is a result of Wayne [ll]. 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



Theorem 2.5: Let f be a feasible generalized flow in network Nf . The generalized /low ft 
is maximum if and only if there exists a labeling function p such that: 

where Af (f) is the residual network with respect to f of Af . a 

The above theorem shows that if f r  is a generalized maximum flow there is no generalized 
augmenting path in N'(ft), where this path is defined as a residual flow-generating cycle, 
together with a (possibly trivial) residual path from a vertex on the cycle to t. It also shows 
that there is no residual directed path from s to t. 
3. Algorithms for Generalized Maximum Balanced Flows 

In this section, we describe the first algorithm based on a binary search method. The 
binary search algorithm is composed of three parts (Steps 1 - 3). Step 1 is an initialization 
and determines an upper and a lower bounds for the binary search. The work of Step 2 is to 
repeat a binary routine until the difference between the upper and lower bounds is sufficiently 
small. Step 3 determines whether there exists an optimal flow in network N or not if we 
can not make the decision during Step 2. The detailed description of the algorithm is as 
follows. In the description, an 'optimal flow3 in network Â  means a generalized maximum 
flow for some specific value of z while one in network N is a generalized maximum balanced 
flow. 

Input: N = (G, u, 7, a, /?, s, t )  
Output: An optimal flow in N if it existsfor we decide that none exists.) 
Step 1: Initialization 
(1) Set B' = max^{max{~o(a), 71 ( a ) ,  "(a)}} and B" = maxaâ‚¬~{max{ai(a P ( a )  \ll}. 
(2) Set U +- min{nBt2, 2B2}, where B = max{Bf, B"} and U is an upper bound. 
(3) Find an optimal flow fu of Nu. 
(4) If val.vu(fo) >. U then stop (an optimal flow in N is /, with z = val/^(fu).). 
(5) Set L +- [maxaEA , where L is a lower bound. 

(6) Find an optimal flow fL of &. 
(7) If val% (fi,} < L and C(9',) < 1 then stop (N is infeasible.). 
(8) If v a l ~ ,  ( fL )  = L and C(0',) < 1 then stop (an optimal flow in N is fL.). 
Step 2: Binary search 
(9) repeat 

U+L (10) Set z +- 7 
(11) I f v a l N z ( f z ) = z t h e n  
(12) begin 
(13) If C ( c )  < 1 then stop(/, is optimal in N . ) .  
(14) Otherwise, set L +- z. 
(15) end 
(16) else if valNz(A) < z then 
(17) begin 
(18) If C(9') = 1 then stop ( M' is infeasible.). 

(19) If C(t3;) < 1 then set U <- z else set L +- z. 
(20) end 
(21) else set L +- z. 
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1 
(22) until  U - L < F. 
Step 3: Decision of an optimal flow in J\f if it exists 

W@* 1 
(23) set  z + - 
(24) Find an optimal flow f, of A/,. 
(25) If valN, (f,) = z, t h e n  stop (an optimal flow f, in A/" is obtained.). 
(26) Otherwise,  stop (Af is infeasible.). 

Finding an optimal flow fz  of N; for a specific value of z in steps 1 "- 3, we use one 
of efficient algorithms for the generalized maximum flow problem. Moreover, in computing 
C(0;) and/or D(0:) we need to know the values of TTJ, which can be obtained by one shortest 
path computation. We explain the way to calculate T T ~  in detail in the following section. 
4. Analysis 

In this section, we mainly analyse the correctness of the above algorithm, where a t  
the end of this section we will outline the second algorithm combining the parameterized 
technique of Megiddo with one of algorithms for the generalized maximum flow problem, and 
show that it runs in 0({M(n, m, B')}2)  time, where B' 5 maxa6A{max{70(a), (a), "(a)}}. 

Proposi t ion 4.1: While the algorithm continues in Steps 1 and 2, it maintains the follow- 
ing two invariants that 
ii) an invariant with respect to U : C(Of,) < 1 and valNÃ£(fu < U, 
'ii) an invariant with respect to L : one of the following three 

(a) C(9',) > 1 and val% ( fL) < L, 
W val,v,(f!.) > Â£ 

(c) C ( 6 )  > 1 and valML(fd = L. 

Proof: Figure 1 shows two cases (i)+(ii)(b) and (i)+(ii)(c), where C(9;) and C(96) are the 
slopes of two lines IL with a point Pi (L, valNL (A,)) and lu with a point Ps(U, valv,, (fu)) , 
where (i)+(ii)(a) will be seen in Figure 2. We only prove (i). Initially, suppose that the 
algorithm does not stop during Step 1. Then the invariant (i) is satisfied from (4) of Step 1 
and proposition 2.1. Note that we may assume C ( 6 )  = 0, though C(0;) may not be able 
to be determined uniquely. While the repeat statement (9)-(22) continues in Step 2, U is 
updated a t  (19) only. So, we have (i). 

Figure 1: Cases (i)+ (ii) (b) and (i)+(ii) (c)  of Proposition 4.1 

Next, we will show that each interval [L, U ]  is cut in half. Suppose that there exists an 
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optimal flow in network N.  If the algorithm does not stop during Step 1 then the value of 
the flow is contained in [L, U] at the end of the step. This observation is preserved during 
Step 2 while the length of interval [L, U] is cut in half. 

Proposition 4.2: Let Li and Ui be a lower and an upper bounds at the beginning of z -  
th repetition of the repeat statement (9)-(22) of Step 2, where Ll and Ul are the values 
obtained at the end of Step 1. Then we have for each z 
(i) Ui+l - L. = Ui - Li 

z+ 1 2 '  

(it) If there is the value 2" of an optimal flow in N ,  then z* E [Li, Ui]. 

Proof: When we prove (ii), we show that z* ? [Li+l, U1+l] assuming z* E [b, Ui]. We have 
seen that (ii) holds for i = 1. Let z = z, = uliL1- at the beginning of i-th repetition of the 
repeat statement. First, we consider the case when valNzG (fzi) = zi. We devide this case 
into the following two cases: 
Case 1.1 (C(6zi) < 1) : From proposition 2.3, we see that zi is optimal. 
Case 1.2 (C'(6Zi) > 1) : From proposition 2.3 and (14) of Step 2, we have z* [zi, Ui] = 
[Li+l, Ui+\}. Hence, we have Ui+i-Li+l = U--z- = Ui-L. 

~t . See Figure 2, where P1(zi, valNz, (f,,)) 
is the intersection point of Y = z and Y = F{z). 

Next we consider the case when valN,.(fz,) # Zi. Moreover, devide this case into the 
following two cases: 
Case 2.1 (valNzG (f,,) < 2,) : From proposition 2.3 and (19) of Step 2, if C(6;i) < 1 and there 
is an optimal value z* then z* 6 [Li, zi) = Ui+l], which implies (i). For C(9;) = 1, we 
have no optimal flow in N. Otherwise(C(@;,) > l ) ,  an optima.1 flow in N ,  if exists, can not 
belong to [Li, zi], i.e. z* E [Li+l, Ui+l]. We also have (i) in this case. 
Case 2.2 (valNzi (fzi) > zi) : We can see (i) and (ii) similarly. 0 

Figure 2: Case 1.2 in the proof of Proposition 4.2 

In the following we describe the way to calculate potentials <(v) (v E V). Given network 
Afz with a specific value z, find a generalized maximum flow f, at first. Then let Tz be a 
subgraph of the residual graph G( fz) induced by the vertices that can reach the sink t by 
using the (residual) arcs of A( f,). From theorem 2.5, G( f,) has no generalized augmenting 
paths. So, there exist no flow-generating cycles in G( f,). Consequently, the canonical 
labels pz(v) (v ? V) are well-defined and can be computed by a Bellman-Ford shortest 
path algorithm with length wz (a) = - log f ^  (a) (a E A(Tz)). Let P, be such a shortest 
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path from v to t for each v E V(T,). Then we have ~ ( v )  = 2w2(pu) (v 6 V(T,)), where 
w,(Pv) = '^.aeA(Pv} w,(a). After the shortest path computation, we have p,(v) (v E V) 
satisfying that p-,(%a) > qz(a)uÃ£(9+a for each a E A(f,), where p,(v) is defined as ca 
for each v ? V - V(T,). The following proposition shows a relation between p, and v'. 

Proposition 4.3: The potentials T T ~  can be obtained by xi(v) = (v E V), where we 
P': (v) 

define <(v) = 0 for each v with p,z(v) = oo. 

The following proposition states that the denomina.tor of each nonzero rational potential 
v'(v) (v 6 V - {s, t}) might be as big as r l ,  where rl = n a g A ( ~ o ( a ) ~ l  (a)). 

Proposition 4.4: Each nonzero value of <(v) (v s V(T2)) is an integral multiple of F l l  
and bounded by Fl,  where Tz is defined above. So are Oz(a) (a ? A). 

Proof: For each v ? V(T,), let Pv be a simple shortest (directed) path from v to t of the 
residual graph G(fz) with length w,(a) s - log 'y^(a) (a E A(f,)). We can find such a 
simple path efficiently. Note that P, is also a highest gain residual path from v to t of G( fz) 
with a gain ?fz(a) (a A( f,)). From proposition 4.3, a v )  is expressed as 

where ii is the reverse arc of a. This means that xi(v) is an integral multiple of I',' and 
bounded by Fi. Next, we determine the values of 6*(a) ( a  E A).  Choose any arc a E A 
and assume u,(a) > 0. If a A(f,), then from a # A(Pa-a), @*(a) = (-v;(a+a) + 
:'^i21~*(8a)]+ i i W z  and irz 2 0, $;(a) is an integral multiple of F l l  and bounded by Fl for 

* < 1, which implies 6̂ {d) > 0. Otherwise, ii ? A(f,). From theorem 2.5 we have To(aln;(a+a) - 

-7r; (@a) + 3%; (%a) 2 0. Hence we have this proposition. 

From proposition 4.4 and integrality of u and /? we have 

Proposition 4.5: For any z 2 0, D(6;) (resp. C(03)  2s an integral multiple of r i l  (resp. 
(F1ra)-') where F2 = naaai (a). 

Let Li and Ui be a lower and an upper bounds at  the beginning of z-th repetition of the 
repeat statement of Step 2 for 2 > 1. Consider an intersection between Y = z and a line with 
a slope C(Oci) passing through a point (Ui, valNu. ( fui )). The line is F(z)  = C(O[,)z+ D(0&). 

D(@&. From proposition 4.1, the intersection is well-defined and is (z[, z',) with z[ = . Let 

Proposition 4.6: If H(z9 > 0 and any one of the following conditions are satisfied during 
step 2, then we have Ui - L, 2 rife;. 
(i)Li < ( f L i  ) , 
(22) Li = (ft ,)  and C(OL,) > 1, 
(222,) Li > valfi, (fLi ) , C (Ok ) > 1, 2: 2 Li and H (za 5 Ui - Li . 

Proof: Note that these conditions (i)-(iii) correspond to (ii) (b), (ii) (c) a.nd (ii) (a) in 
proposition 4.1, respectively. The left graph (I) of Figure 3 shows a situation of (iii), where 
P'l (hi, val% ( f ~ , ) ) ,  Pf2(Ui, valAk ( fui)), and Pr4(z;, valN-, -L (f,;)) are points on Y = F ( z ) .  
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we have 

From proposition 4.5, H ( 4 )  is an integral multiple of ( r ~ r ~ r 1 r z  - J ) ) l  for some integer 
J (0 < J < Fira) .  Any case of the above conditions (i)-(iii) satisfies U, - Li 2 ff(z,'). 
Note H(z[) 5 z; - Li for cases (i) and (ii), because val^, (f,;) = 2; - H(zi) and Y = F(z)  

2 
1 is nondecreasing. So, we have Ui - Li > (F;I ' j) l  2 n;̂ -. 

Suppose that we have reached Step 3. If H(z1) > 0, then from proposition 4.6 we only have 
the invariant (i)+(ii)(a.) with z' < L or H ( 2 )  > U - L. If H(z') = 0, then we have an 
optimal flow f z r  in Af from proposition 4.1. Assume H ( 2 )  > 0. If z' < L, then we see that 
Af is infeasible. The remaining case is as follows: H (2') > U - L, L > valAr, (ft), C(@i)  > 1 
and z' > L. 

Proposition 4.7: If H(zt) > U - L. L > valNL (fL), C(0;) > 1 and z' L after (21) of 
Step 3, then we have no optimal flows in network Af. 

Proof: From H{zl)  > U - L and U > zf we have z' - L < H(zi). Consider the right - - 
graph (11) of Figure 3, where we have Pap4 = P4P5 = H(zt) .  We can not find any optimal 
solutions in the region of a triangle PsP4P5. 

Figure 3: Situations (I) and (11) of Propositions 4.6 and 4.7 

In order to compute an optimal flow in Afz in Steps 1 ~ 3  we will use one of efficient algo- 
rithms for the generalized maximum flow problem. Such two examples are Iterative Fat-Path 
Algorithm by Radzik [lo] and Highest-Gain Augmenting Path Algorithm due to Goldfarb, 
Jin, and Orlin [4]. The former is a best known combinatorial approximate algorithm, while 
the latter is a best known combinatorial exact one with 0 (m2(m + n logn) log B'), where 
B' is the largest integer used to represent the gains and capacities in the network. We take 
up the former ,here. His algorithm repeatedly cancels flow-generating cycles for finding an 
e-optimal flow in network Aft = (G, u, 7, s, t) with a given e (1 > e > 0). A generalized flow 
f in At' is e-optimal if valNi (f I )  - valNr (f)  < e valN (f ') for some generalized maximum 
flow f t  in Aff. The next lemma from [11] indicates that if a generalized flow is e-optimal for 
sufficiently small e, then it is essentially optimal. 
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Lemma 4.8: Let f be a B'3'n-optimal flow in network A/"'. Then we can compute an  
optimal flow in N' in 0(mnmin{rn, n log B'}) time, where 0 is the complexity deleting a 
factor polylogarithmic i n  n and B' = m a . ~ ~ ~ ~ { m a x { 7 ~ ( a ) ,  yi (a), " ( a ) } }  . 

The description of his algorithm is as follows where we wll omit the details here. 

Iterative-Fat-Path-Algorithm(Af', e): 
A - Ao; 
f + 0, where 0 is zero flow in At'; 
while A > e valN/ ( f )  d o  

begin 
(h, p)  ^- Cancel-Cycles (N'( f )  , & ) ; 
f + f  + A ;  
f t Remove-Cycles ( f ) ; 
?(a) + - for each (residual) arc a of A/"'('); 
ij +- FatAugmenta t ion((G(  f ) ,  uf ,  T), &); 
g  +- Interpretation(g}\ 

f ^ f  + g ;  
A - 4 -  

2 '  
end;  

r e t u r n  f ;  0 

In this algorithm, we can choose A. as any value satisfying fi-11 $ valNI(f1) $ A0 for 
some optimal flow f f  in A/"'. Moreover, procedures not defined are as follows. Can- 
cel-Cycles(A/"', e) returns a pair (A, p)  of a pseudoflow A with fl,/i(v) < 0 (u e V) and 
a labeling p such that %(a) 5 1 + e for each a of .A/"'(h) where a pseudoflow h in A/"' 
is a function h : A + R+ satisfying (2.2). Remove-Cycles(f) repeatedly finds and 
deletes a flow-generating cycle flow from f ,  and returns the final pseudoflow without such 
cycle flows. Fat-Augmentation((G( f ), uf, Â¥:I) &) finds a pseudoflow ij in (G( f ), u!, 7) 
such that I ~ a l ~ < ; ( ~ ~ , ~ ~ , - , )  (9') - valjc; jl,u;,q) (ij)l for some optimal flow g' in (G( f ), uf ,  q). 
Interpretation(3) returns a function g : A -+ R+ such that g  is equal to ij as a function 
restricted on A(f) but is interpreted as a pseudoflow in At'. Concerning the complexity 
of the above algorithm, the following facts (i) and (ii) are known from [lo]: (i) The run- 
ning time of one iteration of the while statement is 0(m(m + n log n log(: log B'))) where 
B' = maxaEA {max{'yo(a), (a), u(a) }} ; (ii) There are at most O(1og 9 iterations. We 
summarize the total complexity as a theorem. 

Theorem 4.9: PO] Iterative Fat-Path algorithm computes a generalized maximum flow of 
network N' in 0 ( m  log a ( m  + nlog n log(: log B')) time. D 

From theorem 4.9 and lemma 4.8, we can find an optimal flow in network JV in O(m2(m + 
mn log n log B') log 5')  time. Now we show the total running time of our algorithm: 

Theorem 4.10: Our binary search algorithm runs in O(m log B M{n, m, B')) time, where 
B = max{B1, B"} for B', B" in OUT algorithm, and M(n, m, BF) denotes the complexity of 
solving a generalized maximum flow problem i n  a network with n vertices, and m arcs, and 
nonnegative capacities and gains expressed as integers between 1 and B'. 

Proof: We use Bellman-Ford shortest path algorithm to compute IT'. Such a shortest path 
computation takes O(nm). From O(nm+M(n, m, B')) = O(M(n, m, B')), Steps 1 and 3 run 
in O(M(n, m, B')). The bottleneck operations are in Step 2. From Ff r j  < Bgm, the number 
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k of repetitions of the repeat statement in Step 2 satisfies < &. Each repetition takes 
M(n, m, B'} time. From B > B', we have this theorem. a 

We present an example in the following. 
Example: An instace Af has G with V = {s, x, y, t} and A = {(s, x), (s, y), (x, y), (x, t) ,  
(y, t)}. A triple (u(a), ~ ( a ) ,  &(a)) for each a E A is given by (s, a:) : (8, $, j), (s, y) : (5, $, $), 
(x, y) : (2, i, j ) ,  (x,t)  : (1, 3, $), (y, t) : (4,2,$) where /3 = 0. Then we have B = B' = 8. 
Apply our algorithm for this instance. At the end of Step 1, we have U = 2 x 64 = 128 and 
L = 0 and go to Step 2. After the fifth iteration of the repeat statement in Step 2, we have 

1 14 1 L = 4 and U = 8. Continuing these processes, we have L = - and U = 7 + 
after Step 2. Finally, we get the optimal value z* = during Step 3. 

The second algorithm uses the parameterized search technique of Megiddo instead of 
our binary search in addition to one of efficient algorithms for finding generalized maximum 
flows. The reasons for proposing the second algorithm are as follows. If B' is sufficiently 
smaller than B", then it is possible that the second algorithm is faster than the first one 
where B', B" are defined in Step 1 of the first algorithm. Moreover, it can be regarded as a 
generalization of a parameterized algorithm given by Zimmermann [12]. We briefly explain 
the second algorithm because the analysis is quite similar to Zimmermann's. Choose an 
efficient algorithm A for the generalized maximum flow problem. Note that it is easy to  test 
feasibility of the generalized maximum flow problem, because lower capacities are zero in 
our model. Each step of the algorithm A consists of additions, scalar multiplications, and 
comparisons. We use the algorithm A to obtain a generalized maximum flow in network 
Nt, where this generalized maximum flow contains z as a parameter. Each scalar value p 
considered by the algorithm corresponds to a linear function p + zq for some scalar q in 
the parameterized problem. Instead of adding p + p' for another scalar p', we add linear 
functions (p + zq) + (p' + zq'), where q' is a scalar. If we compare p + zq with p' + zq', then 
we need to know the critical value z" determined by p + zq = p' + zq' unless q = q'. Then 
we can decide whether z >, z" or z < z" by running the algorithm A for network NZ". In 
our case, add a super sink t' and an additional arc (t. t') to network Nz.  Define uz(t, t') = z 
and ~ ( t ,  t') = a ( t ,  t') = 1. Let A/" be the enlarged network. Suppose that network Jf;, is 
feasible. If (t, t') is saturated then we have z 2 z". Otherwise, we have z < z". We say 
that (t, t') is saturated if the flow value of (t,  t') is equal to az (t, t'). In the case when is 
infeasible, we have z > z". With that information in hand, we can work the algorithm A for 
the parameterized problem A/*. Finally, we get a generalized maximum flow fz in network 
x. If (t, t') is not saturated, then there exists no generalized maximum balanced flow in 
N .  Otherwise, the optimal value is z* = minaeA za, where Za = max{z : 0 < fz(a) 5 az(a)} 
for each a ? A. 

If we use a highest-gain augmenting path method in the second algorithm, then we have 

Theorem 4.11: The second algorithm runs in O({'mP(m + n log n) log B'}2) time, where 
B' = maxa~  A { ' m a x { ~ ~  (a) TI (a), u{a) ) 1 .  
5. Conclusions 

As a new generalization of the maximum bala,nced flow problem considered by Minoux, 
we gave the generalized maximum balanced flow problem and proposed two efficient algo- 
rithms. One of future researches is to consider our model with nonzero lower ca-pacities 
l(a) (a E A). Though we can analyse the model with ((a) ( a  E A)  in the sa'me way as in 
this paper, we must solve a feasibility problem, i.e. a problem of testing whether there is a 
feasible generalized flow in the underlying network with l(a) ( a  E A). The authors believe 
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that this feasibility problem is open. On making our algorithms strongly polynomial even if 
l(u) = 0 (a E A ) ,  there is an obstacle which is another open question of answering whether 
it is possible to solve the generalized maximum flow problem in strongly polynomial time. 
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