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Abstract This paper deals with a search game. In a search space, a target wants to avoid a searcher by 
selecting his path. The searcher has superior mobility and makes effort to detect the target by distributing 
divisible searching effort anywhere he wants. The target might move diffusively from the starting points but 
his motion is restricted by some constraints on his maximum speed and energy consumption. The  searcher 
also has limits on the total amount of searching effort. A payoff of the game is assumed to be the detection 
probability of the target, which is represented by an exponential function of the cumulative searching effort 
weighted by the probability distribution of the target. Regardless of the payoff function, we name the game 
the search allocation game with energy constraints. We formulate it  as a two-person zero-sum game and 
propose a linear programming method to solve it. Our formulation and method have the flexibility to be 
applied to other search models by a small modification. 

1. Introduction 
This paper deals with a search game. In a search space, a target wants to avoid a searcher 
by selecting his path. The searcher has superior mobility and makes effort to detect the 
target by distributing divisible searching effort anywhere he wants. The target might move 
diffusively from the starting points but his motion is restricted by some constraints within 
his maximum speed and energy consumption. The searcher also has limits on the total 
amount of his searching effort. This type of search problem has many applications such as 
the search-and-rescue operation and military ones in the ocean. As an example, we can take 
so-called datum search for a smuggler ship by custom airplanes, which is motivated by the 
information of position of the smuggler/target. We call the position the datum point. The 
datum information, which is composed of the datum point, the time when the datum point 
is exposed and other data, is reported to the custom and it triggers the datum search by 
the custom. They are going to detect the target by dispatching some airplanes at hand and 
the target acts as an evader in the search. 

Koopman[13] compiled the results of the naval Operations Research by the U.S. Navy in 
the Second World War and put them into a book. He studied the datum search where the 
target took a diffusive motion after randomly selecting his course from the datum point. 
Meinardi[14] modeled the datum search as a search game. He considered the discrete model, 
in which the search took place on a discrete space at discrete time points. In order to solve 
the game, he investigated the target transition so as to make the probability distribution of 
the target as uniform as possible on the space any time. That is why his method is difficult 
to be applied to other datum search problems. The direct application of the datum search 
model could be military operations such as the anti-submarine warfare(AS W). Danskin[2] 
dealt with a search game of ASW, where a submarine selected a course and speed once at the 
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beginning of the search, while an ASW helicopter chose a sequence of points to dip a sonar. 
He found an equilibrium point. The optimal target's strategy was the uniform distribution 
of speed on a speed space and the optimal searcher's one was the uniformly scattering the 
covering area of his sonar on the space. Baston and Bostock[l] and Garnaev[4] discussed 
games to determine the best points of hiding a submarine and throwing down depth charges 
by an ant i-submarine helicopter on a one-dimensional cell space. Washburn's work[17] was 
about a multi-stage game for target's and searcher's discrete motions, where both players 
had no restriction on their motions and the payoff was the total traveling distance until the 
coincidence of positions of the target and the searcher. Nakai[15] dealt with an interesting 
model in the sense that a safety zone was set up for the target. His model was also a 
multi-stage game with the payoff of the detection probability of the target. Kikuta[ll, 121 
studied a game with the payoff of traveling cost. Eagle and Washburnp] worked on a single- 
stage game, where the payoff was defined as the total of the value determined by players' 
positions. They assumed constraints on the cells which both players were able to move to. 
In these studies, the searcher's strategy was to choose his cells. But it could be regarded as 
the distribution of searching effort on search space, especially in the case that the searcher 
can move quite faster than the target. Let us name such a game the search allocation 
game regardless of the payoff function. For the search allocation game, a basic problem is 
to determine a point of hiding a stationary target and a distribution of searching effort[5]. 
Nakai[16], and Iida, Hohzaki and Sato[lO] did research in such stationary target games with 
the payoff of the detection probability or some reward. For moving target games, there were 
Iida's and Hohzaki's works[9, 6, 71. Hohzaki and Iida[8] proposed a numerical method to 
solve more generalized games, where it is just required that the payoff is concave for the 
searcher's strategy and linear for the target's strategy. 

In the games of the datum search for a moving target outlined above, authors did not 
set so many constraints on the capability of target motion. Even when they did, those were 
just on the maximum speed or the selection of a target path among the limited number of 
preplanned ones. Under the former constraint, the problem preserves a kind of uniformity for 
optimal solution and then the solution is easy to be estimated. Under the latter constraint, 
the solver does not need to worry about the computational complexity of the problem, 
which often becomes burden when the large size of problems are solved. In this paper, an 
additional constraint on target energy is assumed, which makes the problem more practical, 
e.g. problems with limited capacities of batteries and the energy consumption of players 
by waves created on the sea or in the air. It carries off uniformity from optimal solutions. 
Washburn and Hohzaki[18] considered a datum search game with energy constraint in a 
continuous search space but failed to derive optimal solution because the continuous space is 
more difficult to deal with than the discrete one for the optimization problem. In this paper, 
we deal with a search allocation game with energy constraint on a discrete search space. 
We can regard the problem as a generalized discrete version of Washburn and Hohzaki's 
study[18] and also as the specialization and the extension of Hohzaki and Iida's study[6]. 

In the next section, we describe assumptions of the problem and formulate it. In Section 
3, we prove that there exists an equilibrium point for the problem. We propose two formu- 
lations where two kinds of representations are adopted for the target strategy in Section 3 
and 4. The method in Section 4 will be useful for solving large size of problems. In Section 
5, we show that our basic formulation is easily applied to some other models after a small 
modification and illustrate several examples. 
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2. Description and Formulation of Discrete Search Allocation Game 
We consider the following two-person zero-sum game, which a searcher and a target partic- 

in as two players. 
A search space consists of two spaces: discrete cell space K = {I, - - , n} and time 
space T = {I, .  - - , m } .  

In order to evade a searcher, a target chooses a path among feasible paths, which satisfy 
the constraints stated later, in advance and goes along it throughout the search game. 
There are possibly nm paths in all in the search space. We denote a set of the paths by 
0. Number w = 1, - - - , nm is assigned to each path as its identification. Path w â H 
goes through cell w(t) at time point t = 1, - - , rn. The target has some constraints 
on his movement. He is supposed to start from one of starting cells So C K at time 
t = 1. The target can move to cells N ( i ,  t)  from cell i at time t. The set N ( i ,  t)  defines 
the neighborhood of cell i a t  time t. He consumes energy p(i, j) by moving from cell 
i to cell j .  He has an initial energy eo at the beginning but its exhaustion means his 
staying where he is ever since. We call a path satisfying these constraints a feasible 
path. A pure strategy of the target is to choose a feasible path w from 0. 
In order to detect the target, the searcher distributes divisible searching effort in the 
search space. However he can not begin searching earlier than time r .  Now we denote 
the searching time period by T := {r, , rn} C T .  The total of searching effort is 
limited up to @(t) for each time t E T .  Letting y(i,  t )  denote the amount of searching 
effort t o  be distributed in cell i at  time t, a pure strategy of the searcher is to decide 
a plan of {y(i, t),i ? K , t  ? T } .  
The searcher and the target decide their own strategies in advance of the search game. 
The payoff is assumed to be the detection probability of the target and be given by 
an exponential function of the total amount of the searching effort cumulated along 
the target path. The effectiveness of unit searching effort on the payoff depends on 
cells, which is indicated by parameter a, for cell i. The searcher acts to maximize the 
payoff and the target does to minimize it. 

The problem is to solve a single-stage two-person zero-sum game with a maximizer/searcher 
and a minimizer/target. The nonnegativeness of searching effort is represented by y(i,  t) >_ 0 
and the amount of available effort Y.,. y(i,  t )  is limited by @(t) each time t. Then we can 
represent the feasible region of y by 

Q = { f ( i ,  t )  > O,i â K ,  t â T 1 y y(i,  t )  < @(t), t  â T} . 
i EK 

For the target strategy, his mobility constraint is given by w(t + I) E N(w(t), t) for each 
path w. The expression x;i1 ~ ( w ( t ) ,  w(t + 1)) < en is for his energy constraint. Now we 
obtain a set of feasible paths fi := 00 P ,  where P is a set of path w satisfying the following 
constraints. 

^(I) e s o ,  

1= 1 

For a search strategy y and a path strategy w, a payoff function is defined by 
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We already know that the so-called convex game has an equilibrium point within the range 
of pure strategies. Noting that the payoff function is concave for y and its feasible region 
XP is convex and bounded, we don't have to  consider any mixed strategy for y .  We denote 
a mixed strategy of path selection by 7r = {7r(w),w 6 H}, where ~ ( w )  is the probability of 
selecting path w. Now we can state the following theorem about the solution of the game. 
Theorem 1 The discrete search allocation game has an equilibrium point for the pure strat- 
egy y of the searcher and a mixed strategy 7r of the target. 
Since we can express the expected payoff by R( y, 7r) = EWE.. 7r ( U ) R ( ~ ,  w ) for two strategies 
y and T T ,  the value of the game is given by the optimal value of the following problem. 

( P f )  max min R(Y,T) 
f 7T 

s .t. 

From 
wen 

now on, we denote the feasible region of 7r by 11, which satisfies conditions (7), (8). 

3. Optimal Solution 
In this section, we propose a method to give an optimal solution. We already know that 

- 

there exists an equilibrium point for the game and it satisfies minT maxf R(y,7r) = 
rnax,,, minT R(y,  7r). We can transform the problem (P f )  as follows. 

max min R(y17r) = max rnig R(9 ,u )  = max {-yjR(y,w) 2 7,w E 0, y 6 Q} . 
vâ‚¬ %En wcfi (9) 

log 1 / ( I Ã  7) ,  writing r f  = log 1/(1 - y), the transformation (9) points a linear programming 
method to solve the game. 

teT iâ‚ 
Using an optimal solution q* of this problem, we can obtain the value of the game by 
1 - exp(-q*). An optimal distribution of searching effort y* is given by another for- 
mulation, too. For simplicity, we redefine the payoff function of the game as R(y, w) = 
S T  c ~ ~ ( ~ ~ y ( w ( t ) ,  t )  from now on. Now we can transform the expectation of the redefined 

payoff as follows. 

~ ~ R ( Y , w )  = W E o w ( t ) W ) , t )  = E E E Whi~C'i') 

we6 we6 teT e +  i eK we6 

A 

where dij is Kronecker's delta and Hit is a set of paths going through cell i at time t ,  namely, 
Hit := {w E fl lw(t) = i}. Now we have 
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and another linear programming problem D; to give an optimal selection of target paths 
7r* .  

,. 
wen,t m e n  

Two problems (P!) and (D')  are dual each other. 
The proposed method looks simple but the applicability of the theory depends on the size 

of the feasible paths H satisfying conditions (1)-(3). We are confronted with the difficulty 
of the combinatorial explosion by the reason that 6 possibly has nm elements for n cells 
and m time points. From the practical point of view, it is crucial how much extent we can 
reduce the total number of feasible paths by the constraints on the target path to. 

4. A Method Based on Transition Probability 
To avoid the combinatorial explosion, we consider the transition probability of the target 
instead of directly dealing with target paths, noting that any mixed strategy of target's 
selecting paths can be represented by its transition probability. Eagle and WashburnjS] 
took the similar idea for two moving players. For simplicity, it is assumed that the energy 
consuming function p(  -) is an integer-valued function and initial energy eo of the target is a 
positive integer. We denote energy states of the target by E = {O, - - - , eo). Variable q(i, t ,  e) 
indicates the probability that the target has energy e in cell i at time t and v(i^j,t,e) the 
probability that the target in state (i, t ,  e) moves to cell j at the next time t + 1. In this 
section, we take variables {qd.t, e)) and {v(i,j,t, e)] as the target strategy while {y(i,t)} 
still represents the searcher's strategy. 

As stated above in the formulation (PT), we let R(y ,  w )  = - awit)p(u(t), t )  be a tâ‚ 
new payoff function. Variable h(t) represents the maximum expected payoff gained by the 
search after time t . Since reachable cells from state (i, t, e )  are denoted by N(i, t, e) = {j E 
AT(i, t ) \p(z, j l  5 e}, the cells from which the target comes into state (i, t ,  e) at  time t are 
given by N*(i, t, e )  = {j K\z 6 N(j ,  t - 1 , e  + p ( j ,  i))}. It is self-evident that N(i, t ,  e) are 
empty sets for e > eo. The following recurrence relation is valid for h(t). 

h(t) = max x a;y(i,  t )  q(i, t ,  e) + h(t + 1) 
vâ‚ { ~ E K  eeE 

= @(t)max 
i~ K 

(10) 

In the brace, there are two terms. The first is the expected payoff at time t and the second 
is the maximal payoff expected after t .  Taking account of constraint E i E ~  p(& t) 5 @(t), 
the maximum of the first term is given by concentrating all searching effort @(t) in a cell i of 
arg maxi a, xe q(i, t, e). Now we have Equation (10) and then hit) > @(t)a, xe q(i, t , e) + 
h(t + 1) holds for any i .  The target intends to minimize the searcher's reward h(r )  after 
time T. In the result, we can obtain optimal solutions q*, v* for the target's strategy by 
solving the following linear programming problem. 

(PI') min h(r )  

s-t .  h(t) 2 @(t)oi q(i,f, e) + h(t + I), i 6 A", t = T ,  - .  - ,m - 1, (I1) 
e â ‚  
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h(m) 2 g ( i ,  m, e ) ,  i ? AT, (12)  
eel3 

q ( i , t , e ) =  v ( i , j , t , e ) ,  zeK,  t = 1 , - - - , m - l ,  e ? E ,  
jeN(i,t,e) 

(13)  

q(i,t,e) = v ( j , i , t - l , e + p ( j , i ) ) ,  16  A", t = 2 , - - . , r n ,  e ?  E, 
j â ‚¬NÃ‡( i5 t  

(14)  

y o ( i , l , eo )  = 1,  
i'eso 

(15)  

T Y q ( , , t , e )  = 1. t T ,  (16)  
e K  e ^ E  

v ( i , j , t , e )  2 0 ,  i , j e K ,  t = l , - - - , m Ã ‘ 1  e c E .  (17)  
Conditions (11) )  ( 1 2 )  come from recursive Equation (10)  and conditions (13) ,  (14)  from the 
conservation law of the transition probability, and furthermore Eqs. (Is), (16)  from the 
facts that the total of the distribution probability of the target should be one a t  every time. 
It ought to be noted that the memory size is reduced to the order 0 ( n 2  m - eo) comparing 
with the order O ( n m )  for the previous path-based method. 

The next step is to obtain an optimal strategy of the searcher. Let us construct the dual 
problem of (Pf ). We assign dual variables rf(i, t )  to condition ( 1  1 )  and do y(i  , t ,  e ) ,  z ( i ,  t ,  e ) ,  A 
and v( t )  to (13) )  (141, (15)  and (16) ,  respectively. 

m 

z ( i ,  m, e )  + v(m) - ai@(m)rf(i, m) = 0 ,  i E K ,  e E E,  (23) 
- y ( i , t , e )  - z ( J , t  + l , e  - p ( i , j ) )  < 0,z E K, t  = 1 , - - - , m  - l,J E N ( i , t , e ) , e  E E,  (24)  

E rf(i ,^)  = 1,  (25)  
i~ K 
- E rf(i , t)+ E r f ( i , t + I ) = O ,  t = ~ ; . - , m - l ,  (26)  
î K îK 

q ( i ,  t )  > 0, i E K ,  t = T ,  - - - , m. (27)  
There is redundancy between variables y  and z ,  as seen from the transformation y( i ,  i, e)  = 
- z ( i ,  t ,  e )  -v(t) of equation (21) .  After carefully replacing y ( i ,  t ,  e )  with z ( i ,  t ,  e )  by equations 
(21) )  ( 22 ) )  that is, 

y ( i , t , e )  = - z ( i , t , e ) - v ( t ) ,  i E K ,  t = 2 , - - + , r - 1 ,  e 6 E )  

y( i ,  t ,  e )  = - z ( i , t ,  e )  - v ( t )  + a f i ( t ) r f ( i , t )  = 0 ,  i ? K ,  t = r,  - , rn - 1,  e G Â£ 
and putting together equations (25)  and (26)) we have another formulation. There we insert 
a new variable z ( i ,  1,  e )  := - y ( i ,  1, e )  - 4 1 )  which has not been defined in problem (Df ). 

m 
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z ( i ,  1, e )  = 0 ,  i ? K ,  e  ? E - {eo},  

z ( i , l , e )  = 0 ,  i E K -So ,  e  E E ,  
z ( i , t , e ) + v ( t )  < z ( j , t + l , e - p ( i , j ) ) , i e  K , j ? N ( i , t , e ) , t = l , - - - , ~ - 1 , e â ‚ ¬  

z ( i ,  t ,  e )  + ~ ( t )  < ai@(t)n(i,t) + z ( j , t  + 1,  e  - p(i ,  j ) ) ,  
i E K.j  N ( i , t , e ) , t  = ~ , . - - , m  - 1 , e E  E ,  

z( i ,  m, e )  + u(m) = ai@(m)q(i, m) ,  i ? K ,  e  ? E, 
q(i,t) = 1, t = r , - - - , m ,  

if-K 
q ( i , t )  > 0 ,  i ? K ,  t = T , - - - , m .  

Using w ( i ,  t ,  e )  := ~ ( i ,  t ,  e )  + ==,. v ( k )  instead of z ( i ,  t ,  e ) ,  we modify the problem further- 
m 

(4) max A + ~ ( t )  
t=l 

771 

s.t. w ( i ,  1 ,  eo) = A + x v(t) ,  i E So, 
t=l 

(28)  

771 

w ( i , l , e )  = x u ( t ) ,  i E A:, e  E E -  {eo}, 
f =  1 

(29)  

m 

i ,  1 ,e)  = ̂ >(t), i E A: - So,  e  E E,  
t=l 

(30)  

w ( i , t , e )  * ( j , t + l , e - p ( i , j ) ) , i ~  K , j ~ N ( i , t , e ) , t = 1 , - - - , r - 1 , e E  E ,  (31)  

~ ( 2 )  t )  e )  5 ai^(t)v(i, t )  + w ( j ,  t + 1, e  - p( i )  j ) ) ;  
i E K , j ?  N ( i , t , e ) , t = ~ , . - - , m - l , e ~  E ,  (32)  

w ( i ,  m, e )  = ai<I>(m)q(i, m) ,  i  E K )  e  E E,  (33)  
q ( i , t )  = 1, t = T , - - -  ,m, (34)  

iâ‚ 

q( i ,  t )  > 0 ,  i E K ,  t = T ,  - - - , m. (35)  
We can prove that the following formulation gives the same optimal value as problem {D ,̂). 
(4) max ^ 
s.t. w ( i ,  1, eo)  = & i E So,  ( 3 6 )  

w ( i ,  1, e )  = 0,  i K ,  e  E E - {eo},  (37)  

w ( t , 1 ,  e )  = 0,  i G: K - So, e  E E ,  (38)  
w(i,t,e)~w(j7t+1,e-p(i,j)),i~K,j~N(i,t,e),t=1,--~,~-1,eEE, (39)  

w ( i ,  t ,  e )  5 a.@(Oq(i, t )  + w ( j ,  t + 1, e - p ( i , j ) ) ,  
t K , j  E N ( i , t , e ) , t = ~ , - - - , m - 1 , e E  E ,  (40)  

w ( i ,  rn, e )  = a ; @ ( m ) q ( i ,  m) ,  i <S K ,  e E E, (41)  

5 q ( i , t )  = 1,  t = ~ , . - - , r n ,  (42)  
iâ‚ 
~ ( i ,  t )  > 0 ,  i E K ,  t = T ,  - - - , m. (43)  

Since ( D ; )  is given by adding one more condition EFl v( t}  = 0  to ( D l ) ,  the optimal value of 
(D:) is equal to or larger than ( K ) .  At the same time, we can say the value of ( D ; )  is equal 
to or larger than ( D 3  by the following reason. The variable w ( i ,  rn, e )  is nonnegative from 
Eq. (33) .  Since the optimization of the problem is to maximize w( i ,  1, eo) ,  i E So,  variables 
w( i , t ,  e ) , t  = m - 1,  - - - , 1  vary as large as possible while satisfying inequalities (31)  and 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



100 R. Hohzaki, K. lida & T. Komiya 

(32). In the result, the values of expressions (29) and (30) become nonnegative. Given that 
an optimal solution w*(i,t, e), v*(t), A*, q* (i,t} for (Dg), we can obtain the same objective 
value by changing w ( i ,  1, e) = 0 for either of z E K - So or e E E - {eo}, u( t )  = 0 for t E T 
and A = A^ + xi u*(t) but remaining other variables unchanged. Therefore we conclude that 
a feasible solution of equations (36)-(43) gives the optimal value of ( D g .  

We are ready to prove that an optimal strategy y(i, t )  of the searcher is given by the 
optimal solution ^?(t')rj(i, t )  of problem (Dl).  Let w (i, t ,  e) be the minimum payoff given that 
the target starts from state (i, t, e). We have w(i, t,  e) = rnini,yv(i,t,ei{aip(i, t ) +  w(j, t +  1, e- 
,u(i,j))} for t = T, m , rn because the target's existence in cell i yields the payoff a#( i , t )  
and w(j, t + 1, e - ,u(i,j)) if he moves to cell j after then. By definition, w(i, t, e) is given 
by minimizing the ~ i e l d s .  On the contrary, there is no payoff occurred before starting the 
search and then we have w(2, t, e) = minjgN(i,f,e) w(j, t + 1, e - ~ ( i ,  j)) for t = 1, - - - , T - 1. 
Since the target is in cells So and has energy eo at starting time, w(z, 1, e) = 0 holds in either 
case of z So or e # eo. The searcher wants to increase the minimum payoff w(i, 1, eo) as 
large as possible. This explanation gives us the following formulation. 

(Dl) max f 
s- t .  w(i, 1, eo) > & i E So, (44) 

w(i, 1, e) = 0, i E -PC, e E Â£ - {eo}, (45) 
w(i, 1, e) = 0, i E K - So, e E E, (46) 
w(l, t ,  e) < w(j , t  + 1, e - p(z, j ) ) , ~  E J^j  E lV(z,t, e ) , t  = 1, -  - - ,  T - 1, e E Â£1 (47) 

w(i, t, e) < ~ i y ( <  t) + ~ ( j ,  f + 1, e - p(i13))) 

2 E K , ~  E w , t , e ) , t = ~ , - - . , m - l , e e  23, (48) 
w(i, rn, e) = a i y ( i ,  m),  i E K ,  e E E, (49) 

y(i ,  t )  = ̂ ?(t), f = T, - - - ) m, (50) 
E K  
y(i , t )  >0, i E K ,  t = T , - - - , m .  (5 1) 

In the case of $ = w(z, 1, eo) < w(j, 1, eo) for optimal solution, the replacing w(j, 1, eo) = 
never affects the optimality of f .  That is the reason why we can replace inequality (44) by 
w(i, 1, eo) = c. We can easily recognize relation y[i, t )  = $(t)q(i, t )  by comparing (D;) with 
(Q). Summing up the discussion so far, we obtain the following theorem. 
Theorem 2 For the discrete search allocation game, problems (Pa and (D'c) give us the 
optimal strategies of the target's movement and the searcher's distribution of the searching 
effort, respectively. 

5 .  Extended Models and Numerical Examples 
The formulation of (Pf) has a kind of flexibility such that we can apply it to other types 
of models by just a small modification. Here we clarify the properties of optimal solutions 
of our game by some examples. At the same time, we deal with the extension of the 
formulation. Let us keep in mind that some round-error cannot be avoided in output figures 
of the following examples. 
(1) Energy-free model 

To make clear the property of the optimal solution, it is a good way to compare the 
solution with one for energy-free model. Here the target does not have any energy constraint 
like assumptions of ,u(-) and eo, but still have the mobility constraint Nd., t). On the analogy 
of the formulation (Pf), we easily derive the following problem, which is made by dropping 
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energy index e. 

(Pn) min h ( r )  

s.t. h{t) > ai@(t)q(i , t)  + h[t + I),  i â K ,  t = r , - * -  , m  

him) > ai<l>(m)q(i, m),  z ? K ,  

q(i , t)  = v( i , j , t ) ,  i E K, t = 1 , - - - , m -  1, 
J?N(i,t)  

<?(i,t) = v( j , i , t  - I ) ,  2 E A', t = 2 , - - - , m ,  
J E N *  ( i , t )  

i d i ' A  = 1, 
iâ‚¬ 

v(i,j,t) 2 0, i ,  j ? K ,  t = 1 ; - - , m  - 1. 
Let us consider an  example of a search game played in cell space K = { 1, - - , lo}. Two 
cells with consecutive numbers are assumed to be adjacent each other. A time A space is made 
of ten points, m = 10. We set other parameters as r = 3, @(t) = 1 for t â T and a, = 1 
for i â K .  The target starts from the first cell So = {I} and can always move to a cell 
within 3-neighbored cells, which defines N{i, t ) .  An optimal probability distribution of the 
target and an optimal distribution of searching effort are given in Table 1-(a) and 1-(b). It 
is evident that the feature of the optimal solution lies in uniform distribution. That is, the 
target should flatten his probability distribution in his reachable region and the searcher 
should distribute his effort uniformly there. This means that the target must not generate 
any point with dense probability, where the searcher would surely concentrate searching 
effort, and the searcher must not make the target anticipate easily where to avoid or where 
to pass through from the density of searching effort. This characteristic of optimal solution 
is always true. 

Now we add energy constraints of CQ = 9 and p(i ,  j) = (i - j )2 to problem (Pa) and 
generate the original problem (Pf). Optimal solution is shown in Table 2. Although the 
uniformity strategy still looks effective in the interior of the reachable area of the target, we 
can also see randomness on the boundary of the area. The expansion of the reachable area 
is limited by the energy constraint, of course. The target which intends to run fast in the 
early time does not have mobility enough to go far later because he exhausts his energy. 
The energy constraint has such effect that trades off the expansion of reachable area for the 
uniformity of his probability distribution. 

Table 1-(a). Optimal probability distribution of target for energy-free model 
Cells 

10 0 0 0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 
9 0 0  0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 
8 0 0  0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 
7 0 0 1/7 0.1 0.1 0.1 0.1 0.1 0.1 0.1 
6 0 0 1/7 0.1 0.1 0.1 0.1 0.1 0.1 0.1 
5 0 0 1/7 0.1 0.1 0.1 0.1 0.1 0.1 0.1 
4 0 0.25 1/7 0.1 0.1 0.1 0.1 0.1 0.1 0.1 
3 0 0.25 1/7 0.1 0.1 0.1 0.1 0.1 0.1 0.1 
2 0 0.25 1/7 0.1 0.1 0.1 0.1 0.1 0.1 0.1 
1 1 0.25 1/7 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

1 2  3 4 5 6 7 8 9 1 0  
Time 
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Table 1-(b). Optimal distribution of searching effort for energy-free model 

Cells 
10 0 0. 0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 
9 0 0 0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 
8 0 0 0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 
7 0 0 117 0.1 0.1 0.1 0.1 0.1 0.1 0.1 
6 0 0 117 0.1 0.1 0.1 0.1 0.1 0.1 0.1 
5 0 0 117 0.1 0.1 0.1 0.1 0.1 0.1 0.1 
4 0 0 1 /7  0.1 0.1 0.1 0.1 0.1 0.1 0.1 
3 0 0 117 0.1 0.1 0.1 0.1 0.1 0.1 0.1 
2 0 0 117 0.1 0.1 0.1 0.1 0.1 0.1 0.1 
1 0 0 1/7 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

1 2 3  4 5 6 7 8 9 1 0  
Time 

Table 2-(a). Optimal probability distribution of target 
Cells 

10 0 0 0 0 0 0 0 0 0 0.041 
9 0 0  0 0 0 0 0 0 0.055 0.065 
8 0 0  0 0 0 0 0.068 0.125 0.118 0.111 
7 0 0  0 0 0 0.143 0.133 0.125 0.118 0.112 
6 0 0  0 0.085 0.167- 0.143 0.133 0.125 0.118 0.112 
5 0 0 0.2 0.183 0.167 0.143 0.133 0.125 0.118 0.112 
4 0 0.002 0.2 0.183 0.167 0.143 0.133 0.125 0.118 0.112 
3 0 0.341 0.2 0.183 0.167 0.143 0.133 0.125 0.118 0.112 
2 0 0.389 0.2 0.183 0.167 0.143 0.133 0.125 0.118 0.112 
1 1 0.268 0.2 0.183 0.167 0.143 0.133 0.125 0.118 0.112 

1 2  3 4 5 6 7 8 9 10 
Time 

Table 2-(b). Optimal distribution of searching effort 

Cells 
10 0 0 0  0 0 0 0 0 0 0 
9 0 0 0  0 0 0 0 0 0 0 
8 0 0  0 0 0 0 0 0.244 0.136 0.125 
7 0 0  0 0 0 0.109 0.148 0.108 0.123 0.125 
6 0 0 0 0 0.167 0.221 0.236 0.108 0.123 0.125 
5 0 0 0.2 0.2 0.167 0.134 0.123 0.108 0.123 0.125 
4 0 0 0.2 0.2 0.167 0.134 0.123 0.108 0.123, 0.125 
3 0 0 0.2 0.2 0.167 0.134 0.123 0.108 0.123 0.125 
2 0 0 0.2 0.2 0.167 0.134 0.123 0.108 0.123 0.125 
1 0 0 0.2 0.2 0.167 0.134 0.123 0.108 0.123 0.125 

1 2  3 4 5 6 7 8 9 10 
Time 

Table 2-(b) shows that the searcher distributes his searching effort uniformly on almost 
all area except the boundary. He allocates more effort on the boundary cell 8 at times 8 Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.
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and 9 and aims to cover the slow-starter target who saves his energy in the early time and 
goes farther later on. On the other hand. he concentrates his effort a little more on interior 
cell 6 at  times 6 and 7, which covers the target distribution of the quick starter staying 
in the interior area. In this case, the value of the game is 1.1803, which corresponds to 
0.693 in terms of the detection probability of the target. While the value is 0.8429 for the 
previous energy-free case of Table 1. The energy constraint brings the restriction on the 
target motion so that the searching effort is distributed over smaller reachable region of the 
target more efficiently. 
(2) Shelter for target 

We can consider another energy-free model, in which optimal solution does not have 
the uniformity. Now let us think of a datum search game on a one-dimensional search 
space, where a target begins to evade from cell 1, So = {I}, and can move to neighbor 
cells. Time space is made of rn = 10 time points, T = {I, * - , lo}. As a part of a cell space 
K = {I, - - - ,5], the target has shelter cells K c K ,  where he is never detected or captured. 
Let K be a single cell {5}. In this case, we just need to replace conditions (52) and (53) 
with two conditions, - 
h{t} > a;@(t)q(i, t )  + h(t + 1)) i E K / K ,  t = T ,  - , rn - 1, 

h(rn) 2 ai@(m)g(i, m),  i K / K  . 
The search starts from time T = 1 and the amount of searching effort @(t)  = 5 is available 
for the searcher each time. Other parameters are set as Q = 1, p(i ,  j} = (2  - j )2.  An 
optimal solution is given in Table 3, where the optimal searching effort given in Table 3- 
(b) are normalized such that figures indicate the ratios of distributed searching effort to 
available effort @(t )  and they sum up to one. From now on, we will use such normalized 
figures for optimal distribution of search effort. In this case, the value of the game is 13.5, 
which approximately corresponds to detection probability 1.0. 

Table 3-(a). Optimal probability distribution of target 

Cells 
5 0 0  0 0 0.250 0.438 0.578 0.684 0.762 0.822 
4 0 0  0 0.25 0.188 0.141 0.106 0.079 0.059 0.045 
3 0 0 0.333 0.25 0.188 0.141 0.106 0.079 0.059 0.045 
2 0 0.5 0.333 0.25 0.188 0.141 0.106 0.079 0.059 0.045 
1 1 0.5 0.333 0.25 0.188 0.141 0.106 0.079 0.059 0.045 

1 2  3 4 5 6 7 8 9 10 
Time 

Table 3-(b). Optimal distribution of searching effort 

Cells 
0 5 0 0  0 0 0 0 0 0 0 

4 0 0  0 0.8665 0.8220 0.7627 0.6835 0.5781 0.4375 0.25 
3 0 0 0.3333 0.0445 0.0593 0.0791 0.1055 0.1406 0.1875 0.25 
2 0 0.5 0.3333 0.0445 0.0593 0.0791 0.1055 0.1406 0.1875 0.25 
1 1 0.5 0.3333 0.0445 0.0593 0.0791 0.1055 0.1406 0.1875 0.25 

1 2  3 4 5 6 7 8 9 10 
Time 

The target can reach a shelter in cell 5 a t  the earliest time t = 5 but he does not always 
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do that. He takes the uniform distribution strategy and gradually enters the shelter. The 
searcher ambushes the coming target in cell 4, an entrance way for the shelter, after time 
t = 4. The concentration of searching effort into cell 4 decreases as  the probability of the 
target is anticipated to  be getting lower time by time. 

The next case is the same shelter-model but has a slight different parameter of available 
effort @(t)  = {I, 2,3,4,10,10,5,5,5,5}. The searching effort totals 50 as the previous case 
but more effort are assigned for the latter half of time. An optimal solution is shown in 
Table 4 and an optimal value of the game is 8.5317, which yields detection probability 1.0. 
As the available searching effort are less at early time t = 1,2 ,3 ,4 ,  the target chooses a 
strategy of accelerating to get into the shelter more than the strategy of uniform probability 
distribution. The value of the game is less than the previous case because the searcher can 
not use so much effort before the target evacuates in the shelter. 

Table 4-(a). Optimal probability distribution of target 

Cells 
5 0 0  0 0 0.333 0.500 0.625 0.719 0.789 0.842 
4 0 0  0 0.333 0.167 0.125 0.094 0.070 0.053 0.040 
3 0 0 0.333 0.241 0.167 0.125 0.094 0.070 0.053 0.040 
2 0 0.5 0.333 0.237 0.167 0.125 0.094 0.070 0.053 0.040 
1 1 0.5 0.333 0.189 0.167 0.125 0.094 0.070 0.053 0.040 

1 2  3 4 5 6 7 8 9 10 
Time 

Table 4-(b). Optimal distribution of searching effort 

Cells 
5 0 0  0 0 0 0 0 0 0 0 
4 0 0  0 1 0.630 0.506 0.684 0.578 0.438 0.25 
3 0 0 0.844 0 0.123 0.165 0.106 0.141 0.188 0.25 
2 0 0.5 0.078 0 0.123 0.165 0.106 0.141 0.188 0.25 
1 1 0 . 5  0.078 0 0.123 0.165 0.106 0.141 0.188 0.25 

1 2  3 4 5 6 7 8 9 10 
Time 

We take one more similar case, in which less searching effort are assigned in the early half 
part of time such as $(t) = {I,  1,1,1,1,10,10,10, 10,5]. The results are shown in Table 5 
and the value of the game is 3.0 (0.95 in terms of the detection probability). 

Table 5-(a). Optimal probability distribution of target 

Cells 
5 0 0 0 0 0 . 5 1 1 1 1  1 
4 0 0 0 0.5 0 . 5 0 0 0 0  0 
3 0 0 0 . 5 0 . 5  0 0 0 0 0  0 
2 0 0 . 5 0 . 5  0 0 0 0 0 0  0 
1 1 0 . 5  0 0 0 0 0 0 0 0  

1 2  3 4 5 6 7 8 9 1 0  
Time 
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Table 5-(b) . Optimal distribution of searching effort 

Cells 
5 0 0  0 0 0 0  0 0 0 0 
4 0 0  0 0.642 1 0.380 0.344 0.325 0.301 0.273 
3 0 0 0.665 0.358 0 0.221 0.214 0.213 0.213 0.225 
2 0 0.692 0.335 0 0 0.217 0.232 0.240 0.250 0.257 
1 1 0.308 0 0 0 0.182 0.210 0.222 0.236 0.246 

1 2  3 4 5 6  7 8 9 10 
Time 

As shown in the table, the target biases his probability distribution only in two cells 
or less and accelerates to enter the shelter more remarkably than Table 4-(a) before a lot 
of searching effort become available for the searcher at time 6 or later. Corresponding to 
it, searching effort are distributed on two cells in the early time. The value of the game 
decreases further. 
( 3 )  Supply of energy on the way 

Let us consider such a case that the target is supplied with energy e j  at some bases 
on the way of his evasion. The supply bases are located in cells K< and the target wants 
to know the best time i f  to stop by there. Fixing i f ,  we modify problem (P:) as follows. 
Energy states can be represented by E = {0, - - , eo + e / ) .  Let Q ( i ,  e )  be the probability of 
the target who reaches a supply base in cell i and is filled up to energy e. At time t f ,  his 
energy e changes to e + e j  and then we have Q ( i ,  e + e ,t) = q(i ,  e ) ,  out of which the transition 
probability v (i^j, t , e )  flows. The adequate formulation for the model is the following. 

( p f )  min h ( r )  

s.t. h( t)  2 $(t)oi q ( i , t , e )  + h{t + 1 ) ,  i s K ,  t = 7 , - - - , m  - 1, 

v ( i , 3 , t , e )  > 0 ,  i , j  E K ,  t = 1 , - - - , m  - 1,  e ? E. 
In a search space with twelve cells, n = 12, and twelve time points, m = 12, the target 
starts to run away from cell 1 with energy eo = 8 and can move within 3-neighbored cells 

+ 2 anytime. Other parameters are set up as follows: r = 2,  a; = 1, @ ( t )  = 1, / ^ , j )  = (i - 3 )  . 
Two bases are in cells f i  = { I ,  6} and they supply the target with energy e f  = 4. In five 
cases of t f  = 4 ,5 ,6 ,7 ,8 ,  we have obtained the game values 2.868,2.069,2.059,2.135,2.210. 
From the result, the target should visit the bases at time ti = 6.  Table 6-(a) ,  (b) and (c) 
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illustrate optimal probability distributions of target for tf = 4,6 and 8, respectively. In the 
case of early visiting time tj = 4, the target does not have time enough to go to the base on 
cell 6 and he needs to be back to the base 1 after expanding his reachable area. In the case 
of tj = 8, stopping by the base in cell 6 seems to put bounds to the expansion of reachable 
area around times 6,7,8. On the contrary, the setting of if = 6 seems not to disturb the 
natural expansion of reachable area. which is in favor of the target. Anyway, the probability 
of visiting two bases a t  time if is fifty-fifty for both cases of t = 6,8. 
(4) On other models 

In the models stated so far, all we have to do is just a minor modification of the original 
formulation (P:). The reason is that we change only assumptions concerning with the target 
in those models. Considering transformation (10) , the modifications are possible only based 
on the no-change of assumptions on searching effort. We can say that our formulation (Dj) is 
still flexible for the feasibility conditions of searching effort. For example, when we assume a 

total amount constraint of searching effort in the whole search space, say xi y( i ,  t} < M ,  
it would be done by adding the constraint to (Dg). Our formulations ( P f )  and (Dg) have 
such flexibility for the change of assumptions on players' strategy. 

Table 6-(a). Optimal probability distribution of target for tf = 4 
Cells 

12 0 0 0 0 0  0 0 0 - 0  0 0 0 
11 0 0 0 0 0  0 0 0 0 0 0 0 
10 0 0 0 0 0  0 0 0 0 0 0 0.002 
9 0 0  0 0 0  0 0 0 0 0.111 0.111 0.111 
8 0 0  0 0 0  0 0 0 0.125 0.111 0.111 0.111 
7 0 0  0 0 0 0 0.098 0.143 0.125 0.111 0.111 0.111 
6 0 0  0 0 0 0 0.150 0.143 0.125 0.111 0.111 0.111 
5 0 0  0 0 0 0.2 0.150 0.143 0.125 0.111 0.111 0.111 
4 0 0  0 0 0.25 0.2 0.150 0.143 0.125 0.111 0.111 0.111 
3 0 0.333 0.333 0 0.25 0.2 0.150 0.143 0.125 0.111 0.111 0.111 
2 0 0.333 0.333 0 0.25 0.2 0.150 0.143 0.125 0.111 0.111 0.111 
1 1 0.333 0.333 1 0.25 0.2 0.150 0.143 0.125 0.111 0.111 0.111 

1 2  3 4 5  6 7 8 9 10 11 12 
Time 

Table 6-(b). Optimal probability distribution of target for t = 6 
Cells 

12 0 0 0 0 0 0 0 0 0 0 0 0 
11 0 0 0 0 0 0 0 0 0 0.091 0.091 0.091 
10 0 0 0 0 0 0 0 0 0.1 0.091 0.091 0.091 
9 0 0  0 0 0 0 0 0.111 0.1 0.091 0.091 0.091 
8 0 0  0 0 0 0 0.125 0.111 0.1 0.091 0.091 0.091 
7 0 0  0 0 0 0 0.125 0.111 0.1 0.091 0.091 0.091 

1 1 0.333 0.25 0.2 0.167 0.5 0.125 0.111 0.1 0.091 0.091 0.091 
1 2  3 4 5 6 7 8 9 10 11 12 
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Table 6-(c). Optimal probability distribution of target for t j  = 8 

Cells 
12 0 0 0 0 0 0 0 0 0 0 0 0 
11 0 0 0 0 0 0 0 0 0 0 0 0.091 
10 0 0 0 0 0 0 0 0 0 0 0.1 0.091 
9 0 0  0 0 0 0 0 0 0 0.111 0.1 0.091 
8 0 0  0 0 0 0 0 0 0.125 0.111 0.1 0.091 
7 0 0  0 0 0 0 0 0 0.125 0.111 0.1 0.091 
6 0 0  0 0 0.167 0.167 0.167 0.5 0.125 0.111 0.1 0.091 
5 0 0 ,  0 . 0 . 2  0.167 0.167 0.167 0 0.125 0.111 0.1 0.091 
4 0 0 0.25 0.2 0.167 0.167 0.167 0 0.125 0.111 0.1 0.091 
3 0 0.333 0.25 0.2 0.167 0.167 0.167 0 0.125 0.111 0.1 0.091 
2 O 0 . 3 3 3 0 . 2 5  0.2 0.167 0.167 0.167 0 0.125 0.111 0.1 0.091 
1 1 0.333 0.25 0.2 0.167 0,167 0.167 0.5 0.125 0.111 0.1 0.091 

1 2  3 4 5 6 7 8 9 10 11 12 
Time 

6. Conclusions 
This paper deals with a discrete search allocation game which is a two-person zero-sum 
game with two players of a searcher and a target. The target moves around the search 
space to evade the searcher but the moving inevitably consumes some energy. The searcher 
distributes a limited amount of searching effort in the space to detect the target. The 
payoff is the detection probability of the target. The target motion is modeled in two ways. 
One enumerates each route for the target path. In another model, the target motion are 
represented by the flow of transition probability. By both models, the game is formulated 
into a linear programming problem and easy to solve. The former model gives us direct and 
simple image about the target motion, by which we prove the existence of equilibrium point 
for the game. However it needs the enumeration of each target path so that it requires a 
large size of memories. The latter model is formulated by the dynamic programming so that 
we can understand the search process from the point of view of the payoff and additional 
constraints are comparatively easy to be embedded in the formulation. In this paper, the 
problem is dealt with in a discrete search space. Energy states are regarded as integers 
too, but it becomes burden on the extension of the problem and the numerical method for 
optimal solution. That is to be settled in the near future. 
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