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Abstract To achieve the optimal control of material removal rate (MRR) for a machining project, a Dy- 
namic Machining Project Control (DMPC)  Model is proposed under the considerations of order quantity 
and deadline constraints. This paper not only introduces material removal rate into the objective function 
dynamically, but also implements Calculus of Variations to resolve the continuous control problem compre- 
hensively. In addition, the optimal solution to minimize the cost of a machining project with production 
deadline is provided, and the decision criteria for selecting the optimal solution are recommended. More- 
over, the sensitivity analyses of decision variables in the optimal solution as well as the numerical simulation 
of a real industrial problem are fully discussed. This study contributes a significant approach to control a 
machining project for production engineers in today's machining industry with profound insight. 

1. Introduction 
The cutting speed, feed rate and depth of cut were considered as three factors of input 
cutting parameters [14]. To calculate the optimum cutting conditions is the objective for 
production [13]. Rash and Rolstadas [16] used a mathematical model to determine optimum 
feed and speed for turning operations; however, the equations developed are limited to 
typical machines only. Koren et al. [ll] have also described several methods to be used 
under stepwise constant variation in feed, speed, or depth of cut, but none is practically 
applicable when two or more cutting conditions are changed. Therefore, controlling cutting 
conditions with fixed material removal rate has been introduced [I, 31. 

The MRR is used widely in adaptive controllers for optimization of machining opera- 
tions [lo]. With the design of a variable structure system {VSS} controller on commercial 
computer numerical controlled (CNC) turning machines [5], the material removal rate is 
dynamically manageable through overriding the spindle speed. These P C-based controllers 
have also been implemented to on-line override the programmed feedrate on the CNCrnilling 
machines [17] as well as on the machining centers [9]. Therefore, by overriding the feedrate 
and/or spindle speed on various CNCmachines, the material removal rate is surely capable 
of being dynamically controlled for most machining operations. 

In addition, the tool life is also a critical parameter of the machining process [3]. Novak 
and Wiklund [15] proposed a suitable implementation to predict tool life, and Lee e t  al. [12] 
proposed a method of optimal control to ensure maximum tool life. Meng et  al. 1131 also 
provided a modified Taylor tool life equation to minimize tool cost. As a matter of fact, 
the maximum tool life or the minimum tool cost will not guarantee the minimal cost of a 
machining project. Besides, the various tool checking periods for tool change from different 
machine tool operators will decrease the productivity and increase the cost of a. machining 
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project significantly. In order to manage the consumption of tools well, a fixed tool life is 
then practically considered into the machining project in this study. 

Although several time series modeling on the control of machining process are mentioned 
81, none is guaranteed to achieve minimum cost. They are mostly emphasizing on the 
maximal tool usage. Actually, the machining cost and the production deadline are mainly 
concerned problems for a machining project confronting the manufacturing industry. The 
cost to machine each part is a function of the machining time [6]. While the marginal cost 
of production is a linear increasing function of production rate [7] ,  the marginal cost of 
machining operation is also considered to be a linear function of MRR in this study. This 
denotes that the higher machining rate results higher operational cost, such as machine 
maintenance and machine depreciation costs. Besides, Soroush [18] mentioned that meeting 
the production deadline is the most desirable objective of management. It is that an earlier 
completed order will freeze the capital, raise the inventory cost, and indicate the sub-optimal 
resource utilization. On the other hand, an order completed later than the production 
deadline may lose customers. Therefore, meeting the deadline of an order is critical to 
production projects. 

The interest in the minimum-cost production control grows up in modern manufacturing 
systems with the necessity of being more and more flexible to match the order quantity and 
production deadline. As the modern computer numerical controlled ( CNC) machines are 
widely used to perform from job shops to flexible manufacturing systems (FMS) [19], there 
is an economic need to dynamically control the material removal rate with fixed tool life 
during the machining operation of a production project. The material removal rate is an 
important control factor of a machining project, and the control of machining rate is also 
critical for production planners. Hence, it is essential to find the optimum solution of MRR 
control for a machining project to not only reach the minimal cost but also meet the order 
quantity at the production deadline. The DMPC Model proposed in this study provides 
the practical solution to the technique, and contributes the significant approach to control 
a machining project for the industry. 

2. Assumptions and Notations 
Before formulating the problem, several assumptions and notations are to be made. They 
are described as follows: 
2.1. Assumptions 
1. The production project is a single-tool and continuous machining operation on one CNC 

machine. 
2. The order quantity Q is considered as the production assignment to the controlled ma- 

chine. 
3. The upper limit of MRR is generated from the maximum allowable cutting conditions 

suggested in the handbook, and the fixed tool life is derived from the Taylor's expression 
of the tool life [4] with these maximum conditions. Thus, no tool will break before this 
fixed tool life even with the upper MRR limit. 

4. There is no chattering or scrapping of parts occurs during the whole manufacturing 
process. 

5. The time required for a tool change is relatively short to the tool life, and it is neglected. 
6. All chip from cutting and the finished parts are held and stored at the machine until the 

whole machining project is done, and the entire order should be accomplished for the 
customers exactly at the production deadline. 
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7. The marginal cost of operation is considered to be a linear function of the material 
removal rate [7].  

8. The machining speed of a tool is continued and controlled following the final machining 
speed of the previous tool. 

2.2. Notations 
a : average volume of material machined per unit part. 
B : upper limit of material removal rate. - 
B : fixed MRR for traditional machining model. 
bx'{t) : marginal operation cost [7] at the material removal rate x'(t}\ where 6 is a constant. 
bxf2 ( t )  : operational cost [7] at time t .  
c  : overall holding cost per unit chip machined per unit time at the machine; including 

chip holding cost per unit chip machined per unit time, and part holding cost per 
unit chip machined per unit time. 

el : labor cost of a machine per unit time; including production and queuing. 
ct 

cs : tool cost of a tool per unit machining time for DMPC Model, where cS = -. 
- t 1 

CS : tool cost of a tool per unit machining time for traditional machining model, where 
- ct 
c* = z. 

t 1 
Ct  : tool cost per tool, including cost of tool and tool set-up cost. 
0 5  : production cost for DMPC Model. 
Ob : production cost for traditional machining model. 
Q : order quantity of the machining project. 
T : production deadline that is given by the customer. 
t 1 - 

: fixed tool life for DMPC Model. 
t 1 : fixed tool life for traditional machining model. 

2.3. Decision functions 
x ( t )  : cumulative volume of material machined during time interval [tz,  tl, where tZ is the 

queuing time before production. 
x t ( t )  : material removal rate at time t .  

3. Model Formulation 

In this study, x ( t )  is time continuous and differentiated [2,7]. Therefore, jT [bz'\t) + 4 t )  

+c,] dt denotes the operation cost, overall holding cost and tool cost during the time in- 
terval [tZ, TI. Besides, c{T represents the labor cost during the production deadline period 
[O,T]. In addition, it is noted that the upper limit of material removal rate B must satisfy 

aQ B ^> -; otherwise, the machining operation will never meet the order quantity at produc- 
T 
1 

tion deadline. Thus, the objective function and its constraints for the machining project 
with order quantity and deadline constraints are constructed as below. 

[ mtn {jzT[bx12(t) + c x ( t )  + cs1dt + c j ~  

DMPC s.t. x ( T )  = aQ 

x ( t x )  = 0 ,  0 < & < T 
0 5 x t ( t )  5 B for t E [t,,T] 
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y (material removal rate) - 
-I. 

<Ã̂ 

/ '' 
cannot happen 

I t X .  
- 
t 

++ i (time) 

Figure 1: Possible condition of y = a'*"(t) 

4. Optimal Solution 
Set x* to  be the optimal solution of DMPC Model, and set tx* to be the optimal queuing time 
before production. Also, assume that the time interval [tx4, i] is the maximal subinterval of 
[O, TI to satisfy Euler Equation [2, 71. 

There are two possible situations to be discussed in this study. 
1 

4.1. Situation 1: x* ( t )  does not touch B before T 
The optimal solution for Situation 1  is shown as follows: 

The detailed processes are described in Appendix A. 
Here, a Property is proposed and discussed as follows: 

Property: If the line y = x*"( t )  touches the line y = B, two lines should overlap to be 
y = B from the touch point f to the end point 7'. 

Proof. From Eq. ( I ) ,  x * ( t )  is a strictly increasing linear function of t .  And it holds for any 

subinterval satisfying 0 < x * ( t )  < B during [tx4, TI. Therefore, x * ( t )  in the time interval 
[f, T ]  (shown in Figure 1) cannot exist because it contradicts the Euler Equation [2, 71 to 
be a decreasing linear function of t ,  the Property is then verified. 

4.2. Situation 2: x * ( t )  touches upper limit B at time i before T; where k T 
The optimal solution for Situation 2 is shown as follows: 
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The detailed processes for the solutions above are described in Appendix B. 
The algorithm in achieving the optimal solution of the DMPC Model provides a con- 

tinuous function indicating the optimal path to be followed by the variables through time 
or space. Using the properties of the Calculus of Variations for dynamic optimization, the 
completeness and the optirnality of the solution are guaranteed [2, 71. Additionally, the time 
and space complexity of the algorithm are not discussed in the study because the DMPC 
Model concludes the exact solution without search. 
4.3. Decision criteria 
From Eq. (2), the maximum value of x*(t) is found at t = T and ty* = 0. That is, the range 

of x*(t) for Situation 1 is [0, ;T2 + @I. Therefore, the following criteria are made. 
- - 

1. If aQ 5 Ã ‘ ~  + ,/Ã‘T a-'(t) will not reach the upper limit B before T .  
4h - - . - 

2. If aQ > 5~2 + @, x ' ( t )  will reach the upper limit B before T .  
45 - c 

Thus, when aQ 5 -T2 + JFT, x*'(t) will not reach the upper limit B before T; the 
46 - 

c 
optimum solution is Situation 1. When a Q  > -T2 + i/'̂ T, x *  (t)  will reach the upper 

46 b 
limit B at  i before T ;  the optimum solution is Situation 2. 

5. Sensitivity Analyses 
The sensitivity analyses for the two feasible cases are discussed as follows: 
5.1. The sensitivity analysis for Situation 1 

From Eq. ( 3 ) ;  it is claimed that &* is decreasing with 6, a ,  or Q. It shows that increasing 
marginal operation cost, material volume per unit part machined, or order quantity may 
shorten the queuing time before production. Besides, tz* is increasing with the production 
deadline T .  

By Eq. ( I ) ,  (2) and (3) ,  the cumulative volume of material machined x*(t), and material 

removal rate x* (t) is increasing with order quantity Q, material volume per unit part 
machined a ,  or marginal operation constant 6; and decreasing with production deadline T.  
The overall sensitivity analysis for Situation 1 is shown in Table 1. 

Table 1: The sensitivity analysis for Situation 1. 
Parameter b a QT Reference 

z * I  ( t )  + + + - Eq. (1) and (3) 
'+": Decision variable is an increasing function of the parameter. 
- :  Decision variable is a decreasing function of the parameter. 
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5.2. The sensitivity analysis for Situation 2 
From Eq. (4)) it is derived that the time to reach upper limit 5 is increasing with marginal 
operation constant b or production deadline T ;  and is decreasing with tool cost cS, order 
quantity Q,  or material volume per unit part machined a. In addition, it is asserted by 
Eq. (5) that the queuing time before production tzi is increasing with production deadline 
T, and is decreasing with order quantity Q or material volume per unit part machined a. 

Moreover, from Eq. (4)) (5) and (6)) the cumulative volume of material machined x*(t) 
is increasing with the material volume per unit part machined a or order quantity Q; and 
is decreasing with production deadline T .  The overall sensitivity analysis for Situation 2 is 
shown in Table 2. 

Table 2: The sensitivity analysis for Situation 2. 
Parameter C, b a Q T  Reference 

Decision Variables 
- -- - 

t - + -  - + Eq- (4) 
tx* # # -  - + Eq. (5) 
x* (t) # # + + - Eq.(4) , (5)and(6)  

'+": Decision variable is an increasing function of the parameter. 
- : Decision variable is a decreasing function of the parameter. 
"#": Decision variable depends on the changes of other relevant parameters. 

6. Numerical Simulation 
To demonstrate the extensive versatility of the DMPC Model, a numerical case from real- 
world industry is studied. The machining project of a single-tool turning operation for 
specific fixture plates from AirTAC Corporation in Taiwan, R.O.C. is referenced for the 
simulation. The order quantity is assigned to a MIYANO LX-21 CNC lathe. All data 
compiled are transformed into SI units as well as US dollars. They are listed as follows: 

Q = 4000 parts, T = 7000 mini a = 17355 rnm3, b = 1.7 x 10-8(dollars-min)/mm6, 
c = 6.625 x 10-8dollars/(min-mm3), B = 16470mm3/min, 

- 
ci = 0.135dollars/min, ct = 6.523dollars) t\ = 70 min, and tl = 40 min. 

To compare the DMPC and traditional machining models on the aspect of production 
cost, a computer program written in VISUAL BASIC is then developed. The concept of the 
flow chart is described as follows: 

Q, 7, a ,  6, c, B, el, ct, 5; and t\ should be given before the following algorithm 
- aQ ct ct Step1: C o r n p ~ t e B = - , Z , = ~ , a n d c ~ = - ;  

T t 1 t 1 

c B T 2  
then compute the production cost, DÃ = b B 2 T  + - + EST + c ~ T  

z, 

for traditional machining model. 
Go to Step 2. 

Step 2: If aQ > -^T~ + @, go to Step 4; otherwise go to Step 3. 
46 

Step 3: Compute ty;, then compute the production cost for DMPC Model. - 
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Go to Step 5. 

Step 4: Compute f and tx, then compute the production cost for DMPC Model. 

Go to Step 5. 

Step 5: Write tx* and Ob for DMPC Model, and Oh for traditional model. 

From the simulated result shown in Figure 2, it is observable that the production cost 
of DMPC Model is $1467 dollars less costly than the traditional machining model, which 
is considered cost competitive through years of experiences in AirTAC Corporation. In 
addition, the optimal queuing time tP = 10.7288 min can always be used for machine setup, 
machine maintenance, or material handling. The result of this numerical study shows good 
agreement with the DMPCModel in minimizing the production cost of a machining project. 

Figure 2: Cost simulation for DMPC and traditional models 

7. Conclusions 

The fixed tool life, tool cost, operation cost, holding cost, production deadline, order quan- 
tity, volume of material machined per unit part, and upper limit of MRR are considered 
simultaneously to determine the optimal control of material removal rate and the queuing 
time before machining. This is an extremely hard-solving and complicated issue. However, 
the problem becomes concrete and solvable through the DMPC Model. 

In addition, the characteristics of this study are illustrated as follows: First, the optimal 
material removal rate x* (t) is a strictly increasing linear function of t before reaching the 

1 

upper speed limit. Second, by Property described before, if the optimal MRR x* (t) touches 
the upper limit & it will stay to be the upper limit B. Third, from the optimal solution 
proposed in Section 4; the optimal number of tools required for the project can be determined 
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the optimal queuing time before production can be scheduled for 

machine maintenance or small machining projects to promote the efficient time utilization. 
Moreover, the decision criteria in selecting the optimal solution for the control of MRR are 
fully suggested in this paper; and the sensitivity analyses of the optimum solution are also 
provided. Furthermore, the simulated result of a real-world production planning presents 
good reliability of the DMPC Model in cost minimization. With this study, the production 
planning, production cost estimating, and even the contract negotiation can be then further 
approached. 

The material removal rate is an important control factor of a machining project, and the 
control of machining rate is also critical for production planners. This study not only delivers 
the idea of automatic control on material removal rate to the modern machining technology, 
but also leads a machining project towards to  achieve minimum cost. Future researches 
with the dynamic optimization modeling on multi-tool machining processes, multi-order 
machining control and scheduling, as well as the optimum design and implementation of 
PC-based MRR controllers on various types of CNC machines are encouraged. Thus, the 
foreseen future improvement to  the work is definitely extended. In sum, the DMPCModel 
surely provides a better and practical solution to this field, and generates a reliable and 
applicable concept of machining control to the industry. 
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Appendix A: The optimal solution for Situation 1. 
r 

Suppose that the material removal rate x* ( t )  will never reach the upper limit B before time 
T .  Also, let F = 6xJ2(t) + cx(t} + cs. 

d 
From Euler Equation [2, 71) Fx = -FXt, it is derived that 

dt 

d I 

c = -2ba;* ( t ) .  
dt 

There exists a constant ki to  satisfy 

f c 
x* ( t )  = -t + kl 'v't â [t& q. 

2b 

Integrating Eq. ( A l )  with t?  it is obtained that 

With the transversality condition for free tx [2, 71, F - dFXi I t .  = 0, then 

Introducing the boundary condition, x ( t x )  = 0, into Eq. (A3); it is derived that 
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Comparing Eq. (-41) and (Ad) at t = tx*, it is then found 

With Eq. (A2), (A5), and x(tx*) = 0 ;  we have 

Substituting Eq. (A5) and (A6) into Eq. (Al)  and (A2); x*'(t) and x*(t) are then ob- 
tained. 

Using the boundary condition, x*(T) = aQ, ty;* is derived. 

Appendix B: The optimal solution for Situation 2. 
/ 

Before x* (t)  touches the upper limit, Eq. (1) and (2) are satisfied either. In addition, when 
it reaches the upper limit B; the Property is then applied. 

Using the transversality condition for free end point [2, 7L F - x'Fy1 1, = 0;  it is derived 
that 

12 I I 

bx* (t) + cx*(i) + cs - x* (;)2hx* (i) = 0 .  ( B l )  

Introducing x*( t )  = 5 into Eq. (B l )  and then compare with Eq. (2) a t  t = i, we have 

Using the boundary condition, x*(T) = aQ, and Property; it is found that 

By Eq. (B2) and (B3), tx. and f can be determined. 
From Eq. (2), Property and x*(T) = aQ; x*(t) is then obtained. 
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