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Abstract An interesting combinatorial (enumeration) problem arises in the initial phase of the polyhedral 
homotopy continuation method for computing a11 so1utions of a polynomial equation system in complex 
variables. It is formulated as a problem of finding all solutions of a specially structured system of linear 
inequalities with a certain additional combinatorial condition. This paper presents a computational method 
for the problem fully utilizing the duality theory and the simplex method for linear programs] and report 
numerical results on a single cpu implementation and a parallel cpu implementation of the method. 

1. Introduction 
Let f (x) = (fl (x)  f2(x),  . . . , fn  (x)) = 0 be a system of TI polynomial equations in n 
complex unknowns xi E C (i = 1, 27 . .  . , n), where x = (xl, x2, .  . . xn) E Cn. We de- 
note each monomial as xa = x;'xg2.. . x z  E C7 and identify it with a lattice point 
a = (al,  a21 . . . aa)  â Zy = {0, 1 ,2 :  . . . l n .  Denoting each term of the zth equation as 
ci,a xa E C with a coefficient Ci,a C and a G Zy? we then write each polynomial fi(x) as 

Here is a set of lattice points corresponding to the terms of the ith equation, and is called 
the sapport of the polynomial f i ( s )  (z = 1, . . . , n). Throughout the paper we assume that 
&.consists of more than one element. The purpose of this article is to present an efficient 
computational method for a combinatorial linear inequality system ( 2 .  e., a linear inequality 
system with an additional combinatorial condition) which arises as an initial phase of the 
polyhedral homotop y continaation method [ l l ,  121 for computing all isolated solutions of a 
polynomial equation system f (x)  = 0. 

-4 homotopy continuation method constructs an auxiliary starting polynomial system 
g(x) = (gl (z), g2 (x)? . . . , gn(x)) and a homotopy polynomial system, a family of polynomial 
systems h (x ,  t )  with a parameter t E [01 11, which satisfies the following properties: 

(i) The solutions of g(x)  = h(x,O) = 0, say %11x21. .  . ,xt, are known. 

(ii) h (x ,  I) = f (z) for every x E e n .  
(iii) The connected component of the solution set { (x , t) E en x [O, 1) : h (x , t )  = 0 )  forms 

a smooth curve (homotopy path) {(4(t)> t )  : t E [0, I)}. 
(iv) Every isolated solution of h (x ,  1) = 0 can be reached by a homotopy path {(@.(t),t) : 

t [01 1)) originating at  a solution (%jl 0) of h (x ,  t) = 0 with t = 0. 
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Enumerating A11 SoIutions of a Special System 65 

We trace a hornotopy path {(@(t), t) : t E [O, 1)) with a starting point (xi, 0) numerically. 
If the homotopy path is bounded? we obtain an approximate solution of f (x) = 0 when 
the homotopy parameter t attains 1. But the path may be unbounded. In such a case, the 
amount of work which has been done to trace the path turns out to be vain efforts. o n e  
of the key and important issues in homotopy continuation methods is how we create fewer 
homotopy paths including a valid set of homotopy paths, a set of bounded homotopy paths 
that lead to all solutions of f(x) = 0. Ideally, we want to create a minimal valid set of 
homotopy paths; hence the number of homotopy paths in the set coincides with the number 
of isolated solutions of f(x). 

It is known [ll, 121 that the polyhedral homotopy continuation method generates much 
fewer homotopy paths including a valid set of homotopy paths than the classical linear 
homotopy continuation method 11, 4, 8, 9, lo]. In the former method, we construct a finite 
collection of homotopy polynomial systems such that they together induce a valid set of 
homotopy paths. The construction of such a collection of homotopy polynomial systems, 
however, is not an easy task at all. Indeed? it requires to compute all fine mixed ceZZs, 
which will be defined in the next section, of the polynomial equation system f (x) = 0. 
This problem is formulated as computing all solutions of a combinatorial linear inequality 
system. 

This article presents an efficient computational method for the combinatorial linear in- 
equality system mentioned above. Recently Li and Li [13] proposed a computational method 
for the same problem. Both methods rely on the simplex method for linear programs. Main 
differences are: 

Our method fully utilizes the duality theory of linear programs. 
Our method fits parallel implementation quite nicely. 

In addition, our method is explicitly described as a depth-first search over an enumeration 
tree in the framework of the branch-and-bound method, which makes it easier to understand 
a fundamental structure of the problem and its solutions for the researchers in the field of 
mathematical programming. 

In Section 2, we describe our problem of computing all solutions of a combinatorial linear 
inequality system 'in details. Sections 3 and 4 are devoted to some basic materials that are 
necessary to  describe our method. Section 3 introduces a family of linear inequality subsys- 
tems of the combinatorial linear ine.quality system, and we embed them in an enumeration 
tree. We will see there that each feasible leaf node is corresponding to a solution of the 
combinatorial linear inequality system and vice versa, and that if a node is infeasible then 
so are its children nodes. Section 4 provides some tests to  determine whether a node of the 
enumeration tree is feasible with the use of the duality theorem and the simplex method 
for linear programs. We present our method as a depth-first search to the enumeration tree 
and its parallel algorithm in Section 5. And we will show our numerical results on a single 
cpu implementation and a parallel cpu implementation of the method applied to  two types 
of benchmark problems in Section 6. From the numerical results reported there, we will 
see that our method is as e E c i e ~ t  as the state-of-art method &ven by Li and Li [13], and 
that the parallel implementation of our method is really powerful; it could solve a large size 
problem (the cyclic-14 problem), which had not been solved so far, for the first time in less 
than five hours using a PC cluster of 128 Pentium CPUs. 
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2. A ~ornbinatoria~ Linear hequality system 
According to the paper [ll], we distinguish three cases of the polynomial system (1). The 
polynomial system (1) is unmixed when a11 the supports A; (2 = 1, . . . , n) are equal to each 
other; jullg mixed when they are a11 distinct; and semz-mixed otherwise. In Sections 2, 3 
and 41 we will concentrate ourselves on a fully mixed polynomial system in order to make 
our discussion simple. The other types of polynomial systems will be discussed in the last 
section. 

Now we briefly explain how to construct a finite collection of homotopy polynomial sys- 
tems in the polyhedral homotopy continuation method for the given fully mixed polynomial 
system (1). Each homotopy polynomial system in the collection has the following form 

for every (z? t )  E Cn x [O, 11, where pj(a) denotes a nonnegative real number ( a  E Aj, j = 

1,2, - .  . , n). Obviously we have that h j ( ~ ,  1) = EaEAj cjZu za = fj(x) (j = 1 , 2 , , .  . , n) ,  
for every x E Cn, so that h (x ,  t )  = 0 satisfies the property (ii). Thus the essential point 
of the polyhedral continuation method is how we choose nonnegative real numbers pj(a) 
( a  E Aj, j = 1,2, . . . , n )  so that the homotopy polynornial system (2) satisfies the other 
properties (i), (iii) and (iv) imposed on legitimate homotopy functions. 

We denote the inner product of two vecbors a and a in the n-dimensional Euclidean 
space Rn by (a, a ) .  Let wj (a) be a real number chosen generically for every a Aj and 
j = 1,2, . . . , n. We introduce the following problem: 
Problem 2.1. Find all solutions ( a ,  /3) = (al,  a2,. . , , an, Dl, ,B2,. . . , Pn) E R~~ which sat- 
isfy 

/ 3 j - ( a , a ) < u j ( a )  ( a â ‚ ¬ A j j = 1 , Z l - . . , n  (3) 

with exactly two equalities for each j. 
Throughout the paper we assume: 
condition 2.2. At most 2n equalities hold for any solution of the linear inequality sys- 
tem (3). 
The above condition is corresponding to the standard nondegeneracy condition which is 
often assumed in linear programs to make a description of the simplex method simpler and 
easier. The condition ensures that the cardinality of the solution set of Problem 2.1 is 
finite. Note that when we choose the constant scalars uj(a) (a Aj> j = 1,2 , .  . ., n) of (3) 
randomly, the condition holds generically. Also the random choice is necessary to ensure 
property (iii) of homotopy polynomial systems. 

Let A = (Al, A2 . . . , An). Assuming that the number of all solutions of Problem 2.1 is 
q, we denote them as (a1, PI), (a2, p2), . . . , (aq, Pq). For every p = 1,2 , .  . . , q, let 

4 ( ~ )  wj(a) + ( a , a p )  -,B; (U E A j , j  = l , 2  ,..., TL),  

C: F {a E Aj : &(a) = 01 ( j  = ll 2, .  . . ? n), 
cp = (CY, c;, . . . , Cn) C A ,  - 

gy(x) = cjZU xa for every x E Cn ( j  = 1 ,2  ,..., n), 
a~c ;  

g p  (x) (91 (x), 92 (x), . . . , gn (x)) for every x E Cn. 
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We call Cp a fine mzxed cell of A induced from a lzftzng u = (wj(u) : a E Aj, j = 
1,2, . . . , n). Here (wj(a) : u G Aj, j = 1,2 ,  . . . , n) denotes a vector consisting of wj(a) (a E 

.Aj, j = 1 ,2 , ,  . . , n). 
By construction, #Cy = 2, i e . ,  Gy consists of two elements ( j  = 1,2, .  . . ,n,  p = 

1,2, . . . , q). Now we ark ready to definVe the collection of homotopy polynomial systems 
hp(x , t )  = (hy(x,t), h5(x7t), . . . , hE(x,t)) (p = 1 , Z 7 . .  . , q) such that 

= 9; (x) + cj,a xa te (u )  for every x E Cn ( j  = 1 2, . . . , n)  . 

Let p E {I, 2, . . . , q} be fixed. Since each component $ (x)  = h; (x, 0) of gP(x) = hp(x7 0) 
consists of exactly two terms ( j  = 1,2 , .  . . , n), the starting system gP(x) = 0 forms a , 

binomial equation system) which can be solved easily; hence property (ii) holds. When the 
coefficients cjya (a .Aj, j = 1,2> . . . , n) as well as the lifting vector w are chosen randomly, 
the remaining properties (iii) and (iv) hold for the homotopy polynomial system hp(x,  t). 

Thus each solution ( a p )  o p )  of Problem 2.1 induces a different homotopy polynomial 
system hp(x, t )  satisfying properties (i), (ii), (iii) and (iv) ( p  = 1,2, . . . , q).  It  was shown 
that if x is an isolated solution of f (x) = 0 then there exist a p E {I, 2, . . . , q} and a 
solution x of gP(x) = hp(x, 0) = 0 such that the homotopy path of hp(x, t )  = 0 with the 
starting point (x?  0) leads to (x, 1). Therefore) tracing all homotopy paths induced from 
hp(x, t )  = 0 (p = 1,2, . . . , q), we obtain all solutions of f (x)  = 0. 

In the polyhedral homotopy continuation method, it is a key issue how efficiently we 
compute all fine mixed cells of A, ie . ,  how efficiently we solve Problem 2.1, since the 
process of solving Problem 2.1 always occupies the majority of the computation of the 
homotopy continuation algorithm. From the database of polynomial systems maintained 
by Verschelde [18], we see that about a third of total computational time of the polyhedral 
homotopy continuation method is required for solving Problem 2.1 induced from a famous 
benchmark polynomial system; cyclic n-roots problem [3]. On the other hand7 many efficient 
techniques have been already developed in path following procedures. Therefore we focus on 
Problem 2.1 throughout this paper, and propose a efficient algorithm for solving Problem 2.1. 
For mare details on how we use fine mixed cells in the polyhedral homotopy method, see 
the articles [6,  7, ll? 12, 13, 191. In particular, see [13] for the readers interested in the 
geometric meaning of fine mixed cells. 

3. A Family of Linear Inequality Subsystems and an Enumeration Tree 
One easy and primitive method for computing a11 solutions of Problem 2.1 is as follows. 
First, prepare the set of all possible candidates for fine mixed cells: 

Then) for each C E 5, solve the linear equation system 

and check whether the solution E lRZn of (4) is feasible for the remaining linear 
inequalities ,Oj - {a,  a)  < wj (a) ( a  E Aj\Cj, j = 1,2, . . . , n) . If the given polynomial system 
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(1) involves a large number of complex variables and/or a large number of monomials, the 
number of elements of 5 increases rapidly and we are required to perform a huge number 
of feasibility tests, so that the method becomes quite inefficient and impractical. we will 
present a practical enumeration technique to avoid such exhaustive feasibility tests for all 
possible candidate linear systems. 
3.1. A Family of Linear Inequality Subsystems 
Let k be an integer such that k 5 n 7  and let F = (Fl ,  F2, . . . Fk) with Fj Aj. For each 
F ,  we consider a linear inequality subsystem 

Define 

F5(k)  = {F=(Fl,F2 , . . .  $Fk) : F'SAj, # F j < 2 ( j = l , 2  ,..., k)), 

F=(k)  = {F = (F1,F2,.  . . ,Fk) â F5(k)  : flFj = 2 ( j  = 172 , .  , k ) ) ,  
~ & ~ ( k )  = {F = (Fl iF2, . . .7F'k)  E F Z ( k )  : E ( k , F )  is feasible), 

and assume that .F5(0) = F ( 0 )  = F k f ( 0 )  = {0} for convention. By definition, we see 
-&f that F- (k) F (k) .F<(k) for every k 5 n. 

Now, computing all solutions of Problem 2.1 is reduced to computing a solution of 
-& f E(n7 F) for every F E F- (n). In particular, RTe need to avoid brutal exhausting feasibility 

tests of E(n, F) for every F E 3=(n). The lemma below plays an essential role to  reduce 
the number of feasibility tests. 
Lemma 3.1. Let 1 S p 5  q 5 n,  Fp E F < ( ~ ) ,  Fq E F < ( ~ ) ,  a n d F ' c  F'' (j  = 1,2  , . . . ,  p ) .  
If E(p, Fp) zs znfeaszble, then so zs E(q, Fq) . 

Proof: Ail constraints of E(p, Fp) are included in E(q, F q ) .  Therefore7 if E(p, Fp) is 
infeasible, then so is E(q, Fq) . 1 

This lemma implies that if we find that E(p, Fp) with Fp E FZ(p)  is infeasible, we can 
omit feasibility tests for all E(n, F )  with F E F ( n )  satisfying Fj = ( j  = 1 ,2 , .  . . ,p).  
Hence we can considerably save computation required for feasibility tests when p is less 
than n. In the next subsection, we will embed a tree structure in the family of subsets 
F â FE(p) (p = 0,1 ,2 , .  . . ,n).  

Let F E ~ ~ ( k ) .  None of the linear inequalities 

involved in the original linear inequality system (3) are included in E(k, F). Those in- 
equalities never affects the feasibility nor the infeasibility of E(k7 F ) .  That is7 the set of 
linear inequalities in (6) is irrelevant to checking the feasibility - - and/or the infeasibility of 
E(k, F ) .  In fact, if E(k, F )  has a feasible solution ( G ,  PI ,02, . . . , ,gk), then we can define 
j. - min{ (a, 6) + wj (a) : a E Aj} for j = k + I, k + 2> . . . , n so that the extended solution 

2- -  - 
(6, PI, P2, , . . , ,&) satisfies all the inequalities in (6). 
3.2. Embedding a Tree Structure 

In order to  enumerate all F E ~ & ~ ( n ) ,  we build an enumeration tree in the family of 
subsets F E F=(p) (p = 0, 1 ,2 , .  . . , n). We first place the empty set Fz(0) at the root 
node. For each p = 1 , 2 , .  . . , n, we then place the sets F E F ( p )  in the pth level of the 
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tree that we are building. A node F' 7= (p + 1) in the (p + 11th level is a child of a node 
F E 3 =  (p) in the pth level if and only if F' = ( F ,  Specifically, all F E F ( 1 )  are 
child nodes of the root node F ( O ) ,  and the nodes F E {̂n} in the nth level are leaf nodes 
having no child nodes. We call a node F' E F ( q )  in the qth level with q > p a descendant 
of a node F P ( p )  in the pth level if F' = (F, Fp+l, I$+->, . . . , F,). In this case, there is 
a unique sequence {FT E 3'(r) : r = p ,p  + 1,. . . , q }  such that F p  = F ,  Fq = F' and that 
each F r +  E F=(r + 1) is a child node of FT e 3 = ( r ) .  In fact, the sequence is given by 

Now we are ready to describe the basic framework of our method for enumerating all 
the nodes in 3 ~ & ~ ( n ) .  From the root node 0 E F ( 0 ) ,  we apply the depth-first search to 
the enumeration tree that we have built above. We know that E(0,0) associated with the 
root node is feasible, so that we go down to one of its child nodes F E F ( 1 ) .  At each 

-& f node F 6 F=(p) ,  we check whether E(p,F) is feasible, i.e., F E 3- (p), by using the 
simplex method for a linear program related to E(p, F ) .  More technical details of this part 
will be described later. If E(p, F) is infeasible, then all of its descendants are infeasible from 
Lemma 3.1. In this case, we can terminate the node F E 3 ( p )  in the pth level, and we 
backtrack the tree. 

On the other hand, if the problem E(p,F} is feasible, i. e., F E J^^(~),  and p < n, 
we will go down the tree to one of its child node. If E(p, F) is feasible and p = n, then we 
obtain one desired node in F k f ( n ) .  Continuing this enumeration procedure, we eventually 

generate all nodes in u ~ = ~ F = & ~  (p). 
We can easily adapt this framework to parallel computation. Taking some p > 1, we 

-&f consider the family of linear inequality systems E(p, F )  (F E F (p)). Then the number 
-&f of systems in the family amounts to #3- (p). Each linear inequality system E(p, F) in 

-&f the family naturally induces a subtree with a root node F E 70. We allocate all 
such linear inequality systems among multiple processors, and each processor performs the 

-& f depth first search described above to an assigned subtree with a root node F ? 3- (p) to 
compute solutions (a, /3) E IR2" of E(n, F') for all descendant leaf nodes F' 6 Fzkf(n)  of 
F. Summing up all solutions from each processor, we obtain all solutions of Problem 2.1. 
For effective parallel computation, we need to balance the number of processors, the number 
of the linear inequality systems to be allocated and the size of each linear inequality system 
by choosing the depth p of the original enumeration tree appropriately. 

4. Reformulation via Linear Programs 

In this section, we utilize some basic terminologies and duality theory of linear programming. 
They can be found in many standard linear programming textbooks, e.g. [5, 171. 

Corresponding to each linear inequality system E(k, F) with k <, n and F = (F1, f i ,  . . . , Fk) E 
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~ q k ) ,  we consider a primal-dual pair of linear programs: 

P ( k ,  F ) :  minimize 1 wj (a)xj (a)  

subject to a xj(a) = d,  

-a < xj(a)  < +m (a 6 F,, j = 1 ,2 , .  . . , k ) ,  
xj(a)  2 0 (a E A3\Fj1 j = l , 2  , . . . ,  k), 

k 

D(k, F): maximize bj/3j - (4 Q) 
J'=l 

subject to Pj - (a,a} =@,(a) (a 6 5, j = 1 ,2 , . .  .,k), 
/3, - ( a , a )  < wj(a)  (a 6 A,\^, j = 1,2, . . . ,  A). 

The constraint linear inequalities of the dual problem D(k, F) are exactly the same as 
those of E(k, F). Hence, the linear inequality system E(k, F) is feasible if and only if the 
dual problem D(k, F )  is feasible, and each solution of Problem 2.1 is corresponding to a 

solution of D(n, F )  with some F 6 ~ ( n )  and vice versa. It should be also noted that 
the constraint linear inequalities 

Pj - (a, a)  5 #,(a) (a â w F j ,  J = 1 ,2 , .  . . , fc) 

and the constraint linear equalities 

- (a, a)  = #,{a) ( a  6 F,, j = 1,2, . . . , k) 

in the dual problem D(k, F )  are corresponding to the nonnegative variables 

and the free variables 

in the primal problem P(k, F), respectively. 
In the remainder of this paper, we impose the standard nondegeneracy conditions on 

the primal-dual pair of linear programs P(k, F )  and D(k, F ) .  As we will state below, these 
conditions are satisfied in the basic framework of our method. 
Condition 4.1. 

(a) If x = (xj(a) : a ? A,, j = 1,2 , .  . . , k) is a feasible solution of the primal problem 
P(fc, 3') then at least n + k elements of x are nonzero. 

(b) If (a, A, A,. . . ,A) is a feasible solution of the dual problem D(k, F) then at most 
n + k equalities hold in its constraints. 
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Recall that the constant real numbers wj(a) (a 6 A,, j = 1 , 2 , .  . . , n)  were chosen gener- 
ically, so that the condition (b) is justified. In order to apply the duality theory between 
P(k, F) and D(k, F) effectively, we need to make the primal problem feasible by choosing 
d and bj ( j  = 1,2, . . . , k )  appropriately, although we can take any linear function as the 
objective function in D(k, F ) .  We show how to  choose and update such d E Rn and bj E R 
(j  = 1,2, . . . , n)  in a generic way in Section 4.4, so that the condition (a) above will be also 
justified. 

If we apply the (standard) primal simplex method to the dual problem D(k, F), we need 
to convert each of the inequality constraints in D(k, 3') to  the equality form by introducing 
a nonnegative slack variable. Such a transformation increases the number of variables con- 
siderably, and moreover, the size of a basis matrix of the transformed dual problem turns 
out to be ^Aj which is much larger than the size n + k (5  2n) of a basis matrix of 
the primal problem P(k,  F ) .  Therefore it would not be efficient to apply the primal simplex 
method to the transformed dual problem. Instead we had better to apply the primal or dual 
simplex method to the primal problem P(k, F) which requires no additional slack variables 
because it is already an equality standard form with some free variables. 

-& f Let p E {O, 1,2, . . . , n-  1). Suppose that Fp E T- (p). In the remainder of this section, 
we will discuss various tests to check whether some of the child nodes of P, i.e., some of 
the linear inequality systems E(p + 1, F )  with F = (Fp, Fp+l) E F = ( p  + 1) are feasible or 
infeasible. 
4.1. Infeasibility Test Based on Dual Problems 
Let Fp+1 = 0 and F = (P, FP+i}. Also, choose some Gp+1 # 0 such that G = (Fp, Go+l) E 
7Yp + 1). Take arbitrary real numbers for x j  (a) > 0 (a E Gj, j = 1,2, . . . , p + I),  and 
define the coefficients of the objective function in D(p + 1, F) as 

bj = x j ( ~ )  ( j  = 1 , 2  ,... , p +  1) and d = a xj(a) .  

Then P(p + 1, F) is a feasible problem with a feasible solution ( x ~ ( u )  : u E Gj, j = 
1 ,2 , .  . . , p  + I ) ,  and we can apply the duality theory between P(p + 1, F) and D(p + 1, F )  
to check the feasibility of D(p + 1, F ) .  Note that the constant terms bj ( j  = 1,2,  . . . , p + 1) 
and d of P(p + 1, F )  change according to (x,(a) : u E Gj, j = 1 , 2 , .  . . , p  + 1). But the 
feasibility of D(p + 1, F} never change even if the objective function of D (p + 1, F )  changes. 
Thus, these changeable values bj ( j  = 1 ,2 , .  . . , k )  and d provide no obstacle to enumerating 

all F' e ~ ^ ( n ) .  
The objective function of D(p + 1, F) can be rewritten as 

so we see that the objective value is bounded from above because 

Also, D(p + 1, F )  is feasible. In fact, if we define 
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where (a,  Dl, . . . , ,bp) denotes a feasible solution of D (p, Fp) , then (a,  fSi, . . . , &,, turns 
out to be a feasible solution D(p + 1, F ) .  Therefore, the dual problem D(p + 1, F )  has an 
optimal solution (a*, /5:, . . . , 
Lemma 4.2. (Infeasibility test based on dual problems) Assume that 

Then - any linear inequality system E(p + 1,F) with F = ( F P ,  Fp+l) E F ( p  + 1) and 
Fp+l 2 Gp+i is infeasible. 

Proof: Since the problem D(p + l,F) maximizes the objective function of (8), the strict 
inequality in (9) means /?, - (a, a} < ~j (a)  for some a E Gj and j E {I, 2, . . . , p + 1 1, 
i.e., the infeasibility of D(p + 1, G ) .  It also means the infeasibility of D(p + 1, k).  - 

It should be noted that some of the linear inequality systems E(p + 1, F) with F = - 
(Fp ,  FP+l) E F=(p + 1) and 4+i 2 Gp+l can be infeasible even if the test fails. We 
could further impose on G the condition that G ? F = ( p  + 1). In this case, the test would 
completely determine whether a single linear inequality systems E(p + 1, G )  is either feasible 
or infeasible. 
4.2. Feasibility Test Based on ual Problems 
Choose a G E .F5(p+ 1) such that G j  = f ' j  = 1 ,2 , .  . . ,p). We consider the dual problem 
D(p + 1, G )  with an arbitrary 6, E K ( j  = 1,2, . . . , p + 1) and an arbitrary d E Rn. If 
bj E R (j = 1,2, .  . . , p  + 1) and d E Rn are chosen as given in the previous subsection, 
we can perform the infeasibility test of Lemma 4.2 and the feasibility test of Lemma 4.3 
simultaneously. 

Suppose that (a, A, ,&, . . . , A>+i) is a basic feasible solution of the dual problem D(p + 
1 ,G) .  Let 

Lemma 4.3. (Feasibility test based o n  dual problems) If F = (F1, Fy, . . . , FP+^) E f i(p+l) 
satisfies F, 2 @ (j  = 1,2, .  . . , p + l ) ,  then the linear inequality system E[p+l, F )  is feasible. 

Proof: By construction, we see that 

Therefore (a ,  Dl, pi, . . . , is a feasible solution of E(p + 1 3). 1 

If starting from a basic feasible solution of D(p + 1, G) we apply the simplex method 
to D(p + 1, G )  with keeping the feasibility of D(p + 1, G) ,  a sequence of basic feasible 
solutions of the problem D(p+ 1, G) follows. At each basic feasible solution, we can perform 
the feasibility test of Lemma 4.3 to detect the feasibility of some of the child nodes of 

-&f î  â F- (p). 
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4.3. Infeasibility and Feasibility Tests Based on Primal Problems 

Let p  E {O, 1 ,2 ,  . . . , n} and F p  E F = ^ ( ~ ) .  We present a test to  check whether some of 
the child nodes of F p  are feasible or infeasible based on primal problems. Choose some 
Gp+1 # 0 such that G = ( F p ,  Gp+l) E 9 ( p  + 1) .  We assume for the time being that 
bj 6 R ( j  = 1 , 2 ,  . . . , p  + 1 )  and d 6 M" are defined as (7) so that a basic feasible solution 
- 
z = (%(a)  : a e A,, j = 1 , 2 , .  . . , p  + 1 )  of P ( p  + 1 ,  G)  is available. We will discuss how to 
construct such bj E R ( j  = 1 , 2 , .  . . , p  + I ) ,  d 6 Rn and a basic feasible solution later in the 
next subsection. For every j  = 1 , 2 , .  . . , p + 1, let 

B 3 = {u E A, : x j ( u )  is a basic variable a t  x} ,  
N, = { a  E A, : %(a)  is a nonbasic variable at  x } .  ( 1 1 )  

Then we can rewrite the problem P ( p  + 1 ,  G )  as 

minimize x x G, (a )  x (a )  + Co 

subject to xi(a) =zi(ii)+E ijij(a,a) x j ( a )  
j=l a â ‚ ¬  

U E B , ,  i = l , 2  ,..., p + l ) ,  
-a <%(a) < +ca (a  E G,, j =  1 , 2  , . . . ,  p + l ) ,  
~ j ( a )  2 0  a â &\Gj, j  = 1 , 2 , .  . . , p  + I ) ,  

where the coefficients 

( a )  E R (a  â N,, j  = 1 , 2 , .  . . , p +  I ) ,  
P+ 1 

can be obtained from the simplex tableau or the dictionary with the basic feasible solution 
x = ( q ( a )  : a â ‚ ¬ A  j = 1 , 2  ,..., p + 1 ) .  

Lemma 4.4. (Infeasibility test based on primal problems/ 
Let a ?  N j  with some j = 1 ,2  , . . . ,  p + 1 .  

(a)  Assume that &,(a) < 0. Define F' = (F[ ,  F;, . . . , q+l) by 

I / F  = ( F p , F P + l )  6 F ( p  + 1 )  and F: C Fi ( 2  = 1 , 2 , .  . . , p  + I ) ,  then E ( p +  1 , F )  is 
infeasible. 

(b) Assume that *(a} .> 0. Define F' = ( F { ,  F y  , . . . , G) by 

I f  F = (J^ ,Fp+i)  E F ( p  + 1) and F: C Fi (i  = 1 , 2 , .  . . , p  + I ) ,  then E ( p +  1 ,  F )  is  
infeasible. 
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Proof: (a) If we pivot the nonbasic variable xj(&) into a basis by increasing its value 
from xj(&) = 0 and keeping the other nonbasic variables zero, the variable xj(&) can 
increase to +ca and the objective value can decrease to -cm. Since we can always choose 
6, 6 R ( j  = 1 ,2 , .  . . , p +  1) and d 6 Rn which appear in the right hand side of the equality 
and inequality constraints of P(p  + 1, F') so that the problem P(p  + 1, F') is feasible, 
when the problem P(p+  1, F1) is unbounded we find that the corresponding dual problem 
D(p + 1, F1) is infeasible. Since F'i C Fi for every z = 1,2, . . . , p + 1, we conclude that 
D(p + 1, F) is infeasible. 

(b) By decreasing the nonbasic variable x@) from its value ~ j ( & )  = 0, we can 
similarly prove that the problem P(p+ 1, F1) is unbounded, and the desired result follows. 

Starting from 5 = ( ~ ~ ( a )  : a 6 dj7 j = 1 ,2 , .  . . , p +  1) of P ( p + l , G ) ,  apply the simplex 
method to the problem P (p + 1, G) to generate a sequence of basic feasible solutions of 
P(p + 1, G ) .  At each basic solution of P(p + 1, G) , we can perform the infeasibility test 
given in Lemma 4.4. After a finite number of pivots, either 

(i) we detect that the problem P (p + 1, G )  is unbounded, 
or 

(ii) we have an optimal basic solution x* = (x^.{a) : a E dj, j = 1 ,2 , .  . . , p  + 1) of the 
problem P(p + 1, G ) .  

Assume that the case (i) occurs. Then we can apply Lemma 4.4 to check the infeasibility 
of some of the linear inequality systems E(p + 1, F) with F = (Fp, Fp+i) G F ( p  + 1). In 
particular, we know that the linear inequality system E(p + 1, F) with F = (Fp, E 
F ( p  + 1) and Gp+i C Fp+1 is infeasible. 

Now assume that the case (ii) occurs. In this case, we obtain an optimal basic solution 
(a*, f3[, fl; , . . . , K+l)  of the corresponding dual problem D (p + 1, G )  . Hence we can perform 
the feasibility test given in Lemma 4.3. In particular, if in addition G G F ( p  + l), we 
know the child node G of Fp is feasible. 
4.4. Updating Basic Feasible Solutions 
We discuss how to update the basis information when we proceed from the pth level of the 

-&f enumeration tree to the (p+l)st level. Let p E {I, 2, . . . , n- 1). Suppose that -F̂  E F- (p), 
i.e., the linear inequality system E(p, Fp)  is feasible. We may assume that the feasibility of 
E(p, P) has been detected either when we find a basic feasible solution of D(p, P) by the 
feasibility test on dual problems given in Lemma 4.3 or when we obtain an optimal basic 
solution of P(p, Fp) as mentioned in the last paragraph of Section 4.3. In both cases, we 
obtain a basic feasible solution (a,  01, P2, . . . ,A) of D(p, Fp) , which satisfies the relations 

,Bj - (a,&) < uj(a) (a G Nj, j = l , 2  ,..., p ) ,  
ft, - ( a , ~ Â ¥  =",(a) (a E B j , j =  l , 2  ,..., p), 
Fj C w  Aj, N j c d j ,  B j n N j = O ,  Bj(JN,=dj  ( j = 1 , 2  ,..., p), 

P 

(Recall Condition 4.1). We will construct an optimal basic solution of D(p + 1, G) and an 
optimal basic solution of P(p  + 1, G )  for some d E R", some 6, E R ( j  = 1,2, . . . , p + 1)) 
and some G = (Fp7 Gp+1 ) E Pfp+ 1). Let 
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= ( G , G ) + ~ ^ ~ + ~ ( G )  forsome E E A ~ + ~ ,  

G, = F? 3 ( j = l  2 , . , P), Gp+i = 8 or {5}, G = (F", Gp+i) E fl(p + I), 

Bp+l = {a}, Np+l = {a e A,+l : a # S}, 
a generic positive number if a E 4 and j = 1 ,2 , .  . . , p + 1, x ~ ( u )  = I if a E Nj and j = 1 ,2  ,... , p +  1, 

By construction and Condition 4.1, we know that 
(6, f t ,  $2, . . . , /3,,+i) is a basic feasible solution of D(p + 1, G ) ,  
x = (%(a) : a E Aj, j = 1 , 2 , .  . . , p + 1) is a basic feasible solution of P(p + 1, G ) ,  

0 the above pair of solutions satisfies the strict complementarity condition 

%,(a) = 0 if and only if uj(a) + (a ,&)  - F j  > 0 (a E A,, j = 1 ,2 , .  . . , p +  1). 

Thus the two basic solutions constructed are optimal basic solutions of D(p + 1, G} and 
P (p + 1, G) ,  respectively. 

Since the new primal basic feasible solution 3 = (3, (a )  : a E A,, j = 1,2, . . . , p + 1) 
of P(p  + 1, G )  shares its basic variables with the basic solution of P(p, Fp) corresponding 
to the previous basic feasible solution (a ,  Dl, p2, . . , 6) of its dual D(p, Fp) except one 
new variable xp+i(ii), we can easily recover the optimal simplex tableau or dictionary of 
P(p + 1, G) and its dual D(p + 1, G ) .  It should be also noted that all basic variables of 
the primal optimal solution x = (zj(a)  : a E Aj, j = 1,2, . . . , p + 1) of P(p + 1, G )  are 
positive. This implies that 3 = (%,(a) : a E Ah j = l , 2 , .  . . , p  + 1) serves as a basic 
feasible solution of P(p + 1, F )  with any F = (f', Fp+l) E 7^(p + 1). Therefore, for 
any F = (Fp,  E F ~ ( ~  + I ) ,  we can perform the infeasibility test based on primal 
problems, which we have presented in Section 4.3, by applying the primal simplex pivot 
from x = (xj(a) : a E A,, ] = 1 , 2  ,... , p +  1). 

On the other hand, the dual optimal basic solution ( 6 ,  Dl, p2,. . . , ,8p+i) remains a basic 
feasible solution of D(p + 1, G) even if we replace its objective function. Therefore we 
can also start the infeasibility and feasibility tests based on dual problems, which we have 
presented in Sections 4.1 and 4.2, respectively. 

5. Implement at ion 
In this section, we discuss implementation of our computational method using the infeasi- 
bility and feasibility tests based on primal problems. We provide two algorithms: a serial 
algorithm on a single computer and a parallel algorithm on a client-server based parallel 
computing system. 
5.1. A Serial Enumeration Algorithm on a Single CPU 
We fix some ordering among the elements of A, ( j  = 1,2 , .  . . , n) and denote them as 

where 9 = #A, { j = 1,2, . . . , n). We consider all possible distinct pairs {aj(p), a.j{q)} of 
Aj with 1 5 p < q < m j  and arrange them in the lexicographic order, i.e., 
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For every Fj = {aj (p), aj ( q ) }  in the list L(A,), we define 

if Fj is the last element in the list L(Aj), 
succ(Fj, L(A , ) )  = 

the element succeeding to -F, in the list L(Ay), otherwise, 

and let succ(0, L(^tj)) = the first element in the list L(Aj). For the convenience of the suc- 
ceeding discussions on the parallel algorithm in the next subsection, we introduce two input 
parameters r E {O, 1,2, . . . , n} and F" E F"(r).  In this subsection, we fix r = 0 and 
FO = 0 e .?== (0) = {0}. 

Algorithm 5.1. (Serial enumeration algorithm) 
Step 0: If E(r,  F) is infeasible, then terminate. Let p = r. 
Step 1: Letting f^' = (Fp ,  a), compute a pair of optimal basic solutions of P(p+l ,  Fp+') 

and D(p+ 1, FP+') (as we have described in the previous section if p > 1). Let p = p+ 1 
and = 4. If p = 1 then go to Step 2 (because the rest of Step 1 is not effective 
a t  all usually). Otherwise check whether pivoting each nonbasic variable zp(ti) with 
a E & into the basic variables leads to the unbounded objective value as described 
in Lemma 4.4; if so, let A, = &\{a\. Go to Step 2. 

Step 2: Solve the linear program P(p, {a})) for every a E by applying the primal 
simplex method to P (p, (FP" , {a})). If P(p, (FP"', {a})) is unbounded for some 
a 6 &, delete such a from &, i e . ,  A, = &\{a}. Let = 0 and Fp = (FP"', F'; 
and go to Step 3. 

Step 3: If p = r then terminate. Otherwise, let Fp = (P-l, succ(Fp, ~(z))). 
Step 4: If Ff = 0, then let p = p - 1 and go to Step 3. Otherwise, go to Step 5. 
Step 5: Solve the linear program Pip, F p )  and its dual Dip, F p )  by applying the primal 

simplex method to P(p, F p ) .  If P(p, F p )  is unbounded, go to Step 3. Otherwise go to 
Step 6. 

Step 6: If p = n, then output the optimal solution of D(p, Fp)  and go to Step 3. Otherwise 
go to Step 1. - 

The latter half of Step 1 tries to detect elements a E 4 such that primal problems. - - 
P(p, (P1, {a})) with a E An are unbounded. By eliminating such a from Ap, the number 
of elements in the list h(Tp) decreases considerably and thus, the number of linear programs 
to be solved at Steps 2 - and 5 decreases. At Step 2, we - further make unboundedness checks 
for the remaining a E A,. Although we need to  solve (A, additional linear programs, Step 2 
leads to a significant reduction in the number of linear programs to  be solved at Step 5. 
Remark 5.2. We can effectively apply the parametric simplex method to linear programs 
P(p, (F"-' , {a})) with a E 3 at  Step 2, and also to a linear program P (p, F p )  at Step 5. 
5.2. A Parallel Enumeration Algorithm on a Client-Server Based Parallel Corn- 

put ing System 
Now suppose that we have a client-server based computer system consisting of N processors. 

1 

We first choose r ? {l, 2 , .  . . , n}, and partition Problem 2.1 into # F ( r )  = ~ I ' I ~ - i m ~ m ~  - 1) 
2 

subproblems, i.e., Problem(r, F) with F E F"(r). 

Problem(r, F )  : Find all solutions (a, /3) E Et2" satisfying 
/3, - ( a , a )  = wj(a) (a E F,, ] = 1,2 , .  . . , r ) ,  
,Oj - (a ,  a) <: w j ( a )  (a E A,, j = 1 ,2 , .  . . , n )  

with exactly 2 equalities for each j .  
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In this subproblem, 2 equalities pi - (a, a)  = w j ( a )  (a ? F') for j = 1,2, . . . , r are specified, 
so that each solution of the subproblem must satisfy pj - (a, a) < ̂ (a )  (a ? A,-\Fj) for 
j === l , 2 ,  . . . , r under Condition 2.2. We can apply Algorithm 5.1 with the input r and 
F" = F E F"(r) to each Problem(r, F) in parallel. It is reasonable to choose such an 
r E {I, 2, . . . , n} that the number #F"(r) of subproblems generated is not less than the 
number N of server machines. As we have pointed out a t  the end of Section 3, we also need 
to take the size of each subproblem into account for effective parallel computation. 

Algorithm 5.3. (Parallel enumeration algorithm) 
Step 0: Choose an r E {I,  2 , .  . . , n) such that N 5 # F ( r ) .  Let Ĵ  F Z ( r ) .  

Step 1: The client machine assigns each subproblem Problemfr, F )  with F E F to  an idle 
server machine, and delete F from ?. This assignment continues until ? becomes 
empty. 

Step 2: Each server machine to which the client machine has assigned Problem(r, F) with 
Fey executes Algorithm 5.1 with the input r and Fr = F .  

6. Numerical Results 
We consider two types of fully-mixed benchmark polynomial equation systems; cyclic n-roots 
problem [3]: 

X l  + X 2  + . . . + X n  = O 
~ 1 x 2  + ~ 2 x 3  + + - - + x n x 1  = O 
X l x 2 ~ 3  + . . + X ~ X I X ~  = O 

and n-dimensional economics problem [14]: 

Corresponding to these benchmark polynomial equation systems, we construct Problem 2.1 
with real numbers wj(a) ( V a  E A,, j = 1,2 , .  . . , n) randomly generated in the interval (0, 
50). 

To compare our method with some existing methods (MVLP [6]  and Li&Li [13]) for 
mixed cell computation, we solved the above benchmark problems using a standard serial 
code based on Algorithm 5.1. The program was coded in C++ language and was ran on 
a DEC Alpha Workstation (CPU 21164 600MHz with 1GB memory). Table 1 shows the 
computational CPU time and the amount of memory required for cyclic n-roots problems 
(abbreviated by cyclic-n) and n-dimensional economics problems (abbreviated by eco-n), 
comparing Algorithm 5.1 with two existing software packages, MVLP [6] and Li&Li [13]. 
Note that Algorithm 5.1 outperforms MVLP algorithm in terms of CPU time and also 
required memory storage. However, no significant difference between Algorithm 5.1 and the 
Li&Li algorithm is observed in CPU time and used memory: Algorithm 5.1 is about two 
times slower than the Li&Li algorithm in cyclic n-roots problems, while it is slightly faster 
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Table 1: Computational CPU Time 

problem 

cyclic-8 
cyclic-9 
cyclic- 10 
cyclic-1 1 
eco-9 
eco- 10 
eco-11 
eco- 12 

Algorithm 5.1 
CPU time memory 

1.8s 2520KB 
20.4s 2688KB 

3m 07.8s 2744KB 
36m 40.3s 2856KB 

7.7s 2512KB 
48.3s 2672KB 

5m 03.9s 2792KB 
31m 27.3s 2936KB 

in n-dimensional economic problems. We also observe that Algorithm 5.1 requires more 
memory storage than the Li&Li algorithm. This is because Algorithm 5.1 stores inverses of 
basis matrices of some linear programs to save the computation related to the inversion of 
basis matrices. 

We implemented our parallel algorithm (Algorithm 5.3) on a Ninf (Network based Infor- 
mation Library for high performance computing) system, a global network-wide computing 
infrastructure which has been developed for high-performance numerical computation ser- 
vices. The Ninf system supports client-server based computing, as Figure 1 shows. It 
intends not only to exploit high performance in global network parallel computing, but also 
to provide a simple programming interface similar to conventional function calls in exist- 
ing languages. The computational resources are available as remote libraries at  a remote 
computation host, which can be called through the global network from a programmer's 
client program. For further details on Ninf system, the reader should refer to the articles 
[15, 161. We ran Algorithm 5.3 on a PC cluster, which consists of 64 server machines with 
128 processors. Each server machine on the PC cluster has 2 CPUs of Intel Pentium I11 
824MHz with 640MB of memory. On the numerical experiments, we varied the number of 
processors N from 1 through 128 stepping by powers of 2. 

Corresponding to the benchmark polynomial equation systems, Tables 2 and 3 show 
computational time on N parallel processors. In these tables, the empty entries show that 
the parallel algorithm requires more than 5 hours to obtain all solutions of Problem 2.1 and 
also, the "*" entries show that it requires less than 1 minute to obtain them. Recently, 
T.Y. Li and X. Li [13] solved cyclic 13-roots problem, which has been the largest cyclic n- 
roots problem solved so far, in 28h 3m 5s of computational time on a 400MHz Intel Pentium 
II CPU with 256 MB of memory. Algorithm 5.3 has renewed this record to cyclic 14-roots 
problem using 128 CPUs in less than 5 hours. 

Figure 2 depicts how the computational real time decreases as the number of processors 
N increases for solving cyclic 12-roots problem. The horizontal line indicates the number 
of processors, and the vertical line the computational time in second, both in the log scale 
to the base two. The parallel codes could solve cyclic 12-roots problem almost N times 
faster on N processors than on single processor. This result implies that the computational 
tasks required by our serial algorithm (Algorithm 5.1) are split to IV processors in a highly 
parallel manner, with a little overhead. 

MVLP 
CPU time memory 

41.1s 21MB 
7m 03.7s 21MB 

l h  00m 23.0s 21MB 
9h 43m 54.0s 21MB 

25.0s 21MB 
2m 04.3s 21MB 

10m 12.7s 21MB 
l h  06m 23.3s 21MB 

Li&Li 
CPU time memory 

1.8s 1040KB 
11.7s 1072KB 

1m 42.9s 1096KB 
18m 06.0s 1136KB 

9.2s 2352KB 
53.4s 2352KB 

6m 28.3s 2408KB 
41m 34.5s 2408KB 
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Client 
Machine 

I 
I 

1 Server Machine N 
Network 

Figure 1: Client-Sever Based Computing System 

Table 2: Computational Real Time for Cyclic-n Problems 

Cyclic-n Problems 
cyclic 11 
27m 27s 
13m 52s 
6m 54s 
3m 34s 
1m 47s 
1m 07s 

* 
* 

cyclic 13 

Table 3: Computational Real Time for Eco-n Problems 

Eco-n Problems 

22m 59s 
l l m  26s 
5m 44s 
3m 01s 
1m 37s 
1m 06s 

* 
* 
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2 4 8 16 32 64 128 

# processors (N) 

Figure 2: Effect on Computational Time by Increasing N 

7. Concluding Remarks 
In this paper, we have presented a computational method for allocating fine mixed cells of 
a polynomial equation system. Those cells play a crucial role in constructing polyhedral 
homotopies h(x, t )  = 0 for computing all solutions of a polynomial system. Our method 
effectively utilizes the duality theory and the simplex method for linear programs. A single 
machine implementation (Algorithm 5.1) of our method works as efficiently as the state-of- 
art method given by Li-Li [13], and a parallel implementation solved a large scale problem, 
cyclic 14-roots problem using 128 CPUs in less than 5 hours for the first time. 

Assuming that the given polynomial system (1) is fully mixed, we provided Problem 2.1 
and Algorithm 5.1 . Here we extend Problem 2.1 for a semi-mixed polynomial system; 
mixed and unmixed polynomial systems are treated as its special cases. In a semi-mixed 
polynomial system, some supports are equal to each other. Thus, we may assume without 
loss of generality that the first m supports A{ (z = 1,2, . . . , m) differ from each other, and 
that any of the last n - m supports (z = m + 1, .  . . , n)  coincides with some of the 
first m supports. Here m is a positive integer not greater than n. For j = l , 2 , .  . . , m, 
let sj denote the number of the supports among J& (i = 1, .  . . , n) which coincide with Aj7 
including Aj itself. Then sj ( j  = 1 , .  . . , m) are positive integers such that sj = n. 
To construct polyhedral homotopies for a semi-mixed polynomial system, we consider the 
following problem and condition instead of Problem 2.1 and Condition 2.2 , respectively. 

Problem 7.1. Find all solutions (a, f l )  = (a1, a 2 , .  . . , a,, 02 , .  . . , &Ã£ 6 Rn+"' which 
satisfy 

,Oj - @,a) <#,(a)  (a â‚¬ j = 1 , 2  ,..., m), (15) 

with exactly (sj + 1) equalities for each j .  

Condition 7.2. At most n + m equalities hold for any solution of the linear inequality 
system (15). 
We can extend Algorithm 5.1 to  the general semi-mixed case. But we need some modification 
in the definition (14) of L(Aj). we take all possible combinations choosing (sj + 1) elements 
from A, for j = 1,2, . . . , m and arrange them in L(A,)  with the lexicographic order. Then 
Algorithms 5.1 and 5.3 remain valid for a semi-mixed polynomial system . 
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