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Abstract Given a simple graph G with a vertex set V and a set of "requirements" {rvw \ v ,  w E V}, we 
consider a problem to find a Hamilton cycle minimizing an objective function similar to  that  in the optimum 
requirement spanning tree (ORST) problem studied by Hu. And we show that  a particular Hamilton cycle 
C" which is explicitly definable is a solution to the problem when G is complete and { r v w }  satisfies inverse 
Supnick property closely related to Monge property. It is of great interest that C* is also a solution to  the 
symmetric traveling salesman problem with (not inverse) Supnick property. The result in this paper can be 
applied to the construction of ring networks with high reliability in case where the inverse Supnick property 
is naturally assumed. 

1. Introduction 

The  optimum requirement spanning tree problem (ORST problem) studied by Hu [5] is often 
discussed as a problem of finding a communication network of tree type with the minimum 
average cost. However, from the viewpoint of reliability, k-connected spanning subgraph 
( k  > 2) should be considered than spanning trees. Hence, we take up in this paper 2- 
connected graphs with the minimum size, i.e. Hamilton cycles, and consider a problem of 
finding one which minimizes an objective function similar t o  that in the ORST problem. 

Before detailed discussion, let us define some basic notations and review the ORST 
problem. Suppose that a simple graph G = (V, E )  is given, where V = {O, 1, .  . . , n - l} is 
the set of vertices and E is the set of edges. Throughout this paper, we assume that G is 
a complete graph. An edge connecting two vertices v and w is denoted by an unordered 
pair (v, w). Let (;) be the set of all pairs of distinct vertices in V. We define the length 
of a path as the number of edges forming the path. For a subgraph G' of G,  let d(v, w; G') 
be the distance (the length of the shortest path(s)) between two vertices v and w of G'. 
Assume that a nonnegative value rvw (called requirement, representing the frequency of 
communication between v and w) is given to each pair {v, w} 6 ( y ) ,  where rm = rwu holds. 
Hu [5] defined an ORST as a spanning tree T of G which minimizes 

and showed that an ORST is obtained by the Gomory-Hu algorithm [4] when the degrees of 
vertices are not restricted. On the other hand, Anazawa [I] considered a problem of finding 
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a spanning tree T of G to  

minimize fg(T) = g(d(v, w;T))rvw, 

P J I e  (1) 
subject to deg(v; T) < l y  (v E V), 

lo > 11 2 --â 2 2 1, ~~~ 4, 2(n - 1)) 

where g(x) is an arbitrary real-valued function of real variable x such that it is monotone . 

noridecreasing on [O, n -  I], deg(v; T )  denotes the degree of v in T ,  and lv is a positive integer 
given to  each v E V. And he showed that if {ryw} satisfies 

and 

then a particular spanning tree T* of G which is explicitly definable is a solution to the 
problem. Roughly speaking, the tree T* is constructed by the following "greedy algorithm": 
First, to vertex 0, connect the remaining vertices by ascending order of vertex number as 
many as possible; secondly, to  vertex 1, connect the remaining vertices by the same order 
as many as possible; and continue to  connect the remaining vertices in the same manner 
until all n vertices are connected. For rigid definition of T*,  see [I]. Condition (2) is called 
inverse Supnick property, since we can obtain so-called Supnick property by reversing the 
inequality sign of the first inequality in (2) (cf. [3]). Supnick and inverse Supnick properties 
are known to  make the symmetric traveling salesman problem explicitly solvable, which is 
discovered by Supnick [7] (see also [3D. Also, they are closely related to Monge property 
which is known to make some NP-hard problems polynomially solvable (see e.g. [6] and 
[3]). Although condition (2) seems a little tight, there is a case where the condition reflects 
a practical situation, which is shown in the last section (see also [I]). 

Here, we define the problem to be considered in this paper. For a Hamilton cycle C in 
G and two vertices u and w on C, there exist two paths between v and w, say Pi and P2. 
Suppose that  the length of Pi is shorter than or equal to that of Py. Then the length of PI 
equals d(v, w; C) and that of P2 equals n - d(v) w; C). Let pvw (0 < pvw < 1) be the relative 
frequency of using Pi and fiw that of using P2 where pvw +& = 1 holds. Then the average 
distance between v and w on C is defined by 

We assume in this paper that,  for any {v, w} E (3, p w  and p w  are expressed by p(d{v, w; C ) )  
and p in  - d(v, w; C))  respectively, where p(d) is a monotone nonincreasing function of d de- 
fined on [O, n]. Then it follows from p(d) + p(n - d) = 1 that p(d) > ?j holds for d e [O, s). 
For example, 
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Figure 1: C* for n = 9. In this figure, the subgraph drawn by bold lines coincides with T* 
for n =  9 and Zv = 2 (v E V). 

satisfy the condition stated above. The problem we want to solve is to find a Hamilton cycle 
C in G which minimizes a function 

and we call a Hamilton cycle minimizing this function an optimum requirement Hamilton 
cycle (ORHC). 

The main result of this paper is the following 

Main Theorem Let 

for z = 1 
f o r i = 2 , 3  , . . . ,  n - 1  , 

and C* = (V, Ec*) where Ec- = {e; ,  e;, . . . , e i }  . If {rvw} satisfies condition (21, then C* is 
an ORHC. 

Remark Here, {rm} does not need to satisfy (1). Also, C* is obtained by the "greedy 
algorithm" stated above. In fact, construct T* by the "greedy algorithm" with lÃ = 2 (v ? 
V), and add an edge (n - 2, n - 1) to T*. Then we obtain the Hamilton cycle C* (see 
Figure 1). Further, it is of great interest that C* is expressed by a cycle permutation 
< 0 ,2 ,4 , .  . . , n - 1 , .  . . , 5 , 3 , 1  > which is an explicit solution to  the symmetric traveling 
salesman problem with the Supnick property (see e.g. [7] ,  [2] and [3]). 

In this paper, after giving mathematical preliminaries in Section 2, we will show a 
property of connected subgraphs of C* in Section 3. The proof of Main Theorem will be 
given in Section 4. In the last section, we will show an application of the ORHC problem to 
the construction of ring networks with high reliability, and a case where the inverse Supnick 
property is naturally assumed. 
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2. Preliminaries 
Lemma 1 For any Hamilton cycle C i n  G and any vertices v, w, v' and w' on C ,  if 
d(u, w; C )  < d(v', w'; C ) ,  then dAvG(v, w; C )  5 dmG(v',w'; C )  h.olds. 

Proof. From the assumptions of pvw and pvwi we can express d̂ o (v ,  w; C )  by dAvG ( d ( u ,  w; C ) )  
for any {v, w}  E (v) , where 

Then we find from the assumption of p ( - )  that 

holds for any d E [ O ,  - I]. 

For a Hamilton cycle C = (V, Ec) in G = (V, E )  (Ec c E )  and a path P = (u l ,  . . . , uk )  
( k  = 2 or 3) of C ,  let 

where [x\ is the maximum integer not exceeding x ,  and let P(u l )  = ( V ( u l ) ,  E{u^) and 
P(uk) = (V(uk) ,  E(uk))7 where V ( u i )  U V(uk)  C V ,  V(u1) n V(uk)  = 0, 

V ( U ~ )  = {ti(= uk), t 2 ,  . . . , tm}, E(uk) = {(ti ,  & + I )  E Eclz = 1 , 2 ,  . . . , m - l }  

are satisfied. For the path P = ( u l , .  . . , N), we define an isomorphism a-p : V ( u l )  -+ V ( u k )  
by  op (5,) = ti ( z  = 1 , 2 ,  . . . , m). Also, we consider the following transformation of C which 
may reduce the /AVG value: Let VGT = {v E V(ul) lv  > op (v ) } ,  and exchange v and op (v )  
for all v E V&. We call such a transformation biasing with respect to  a-p. Further, let C f  
be a Hamilton cycle obtained from C by biasing with respect to o p  (see Figure 2). 

Lemma 2 I/ {rvw} satisfies condition (21, then //wG(Cr) < fAvG(C) holds. 

Proof. Note that if k = 2 and n is odd, or k = 3 and n is even, then C has a vertex c adja- 
cent to both sm and tm. Let VGT = V(ul)\VGT and Dvw = {dAvG(v, w; C') -&(v, w; C)}rvw . 
First, we consider the case where k = 2 and n is even. Then f^ciC') - /AvG(C) is expressed 

by. 

where op(S)  = {op (v )  E V ( u k ) / v  E S c V ( u l ) } .  However, noting that the first six 
summations are all equal to zero, we have 
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Figure 2: In the above cycle, if we set P = ( 0 , l )  where U I  = 0 and a k  = 1 ( k  = 2), then ap 

is denoted by a set of dotted arrows. Then, for each pair of vertices {6,4} and {8,7}, two 
vertices of the pair are exchanged by biasing with respect to ap .  

For two vertices v E VGT and w E VGT, let Svw = dwa(v,w, C )  and Am = dAvG(v, w; c l ) .  
Then we obtain Svw < L&. 111 fact) 

d(v, w; C') = min{d(v, w, C) + d(v, ~ ( v ) ;  C), d(ap(v), ap(w); C) + d(w, ap(w); C)} 
> d(v, w; C) 

holds because d(v ,  w; C) = d(ap ('u) , ap (w) ; C) , and hvw <: & comes from Lemma 1. Also, 
noting that 

and 

we obtain 

Due to  the assumption of {rvw}, the second factor of the summand in (4) is always nonneg- 
ative, which means that fAVG(Cf) - fAVG(C) < 0 holds. 

In case where k = 2 and n is odd, we have 

However, the first summation is equal to  zero. Hence, fAvc(C1) - fwc-(C) < 0 is similarly 
obtained. 

When k = 3 and n is odd, we have 
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Since the first summation is equal to zero, we find that fAVG(Cr) - fAVG(C) < 0 holds. 
In case where k = 3 and n is even, we have 

Since the first term and the next summation are equal to zero, we find that  /AvG(C1) - 
fmG(C) < 0 holds. 

3. A Property of Connected Subgraphs of C* 
Let Vv = {O, 1, . . . , v - 1) (1 < v 5 n) and Pz = (Vv, {e;, e;, . . . , e;-,}) where e' (i 2 1) are 
defined in Main Theorem. Then P* is a connected subgraph of C* for each v G {I ,  2 , .  . . , n}. 
Note that C* is obtained by adding e* = (n - 2, n - 1) to P*. 
Lemma 3 Suppose that a Hamilton cycle C = (V, &) in G contains a subgraph Pfil < - 
v < n),  that is, e,* ? Ec holds for i = 1,2,  . . . , v - 1. f i r  an  arbitrarily-selected path 
P = ( u l , .  . . , u k )  (k = 2 or 3) of C ,  let Cr = (V, Ec'} be another Hamilton cycle obtained 
from C by biasing with respect to ap. Then C' also contains Pi. 

Proof. Since the case of v = 1 is trivial, suppose that v > 2 holds. We define P ( u l )  = 
(V(ul),  E(ul)) and P(uk) = (V(%), E(uk)) as those in the previous section. Before showing 
the proof in detail, let us enumerate the cases to be considered. When k = 2 and n is 
even, 0 G V(ul) can be assumed without loss of generality. Then either fl V(uk) = 0 or 
Vv f l  v ( u k )  # 0 holds. When k = 3 or n is odd, we can assume without loss of generality that 
either 0 ? V(ul)  or 0 ? V \ (V(ul) U If(%)) holds. If 0 E V(ul), then either Vy n V(uk) = 0 
or Vv n V(uk) # 0 holds. If 0 G V \ (V(ul) U V(uk)) ,  further assume 1 ? V(ul)  without loss 
of generality. Then we have Vu f l  V(uk) = 0 if v = 2, and Vv n V(uk) # 0 if r > 2. To sum 
up, we have only to consider the following three cases: 

(i) n V(uk) = 0, 
(ii) Vu n V(uk) # 0 and 0 E V(ul),  

(iii) V, n V(uk) # 0, 0 G V \ (V(ul) U V(uk)) and 1 E V(ul).  
In case (i), if v G Vu n V(ul) ,  then v < v <, ap(v)  holds. Hence, we have Vv n V(u1) C 
vGT, which implies that C' contains c. In case (ii), assume that si > t2 holds for some 
si G Vu (1 < z < m). Then ti E Vv is obvious. If si = 2 j  holds for some integer j ( j  2 l ) ,  
then tz < 2 j  - 1 holds and d(st, 0; C )  = j and d ( t m )  < j are satisfied, which means 
that 0 V(ul) holds (contradiction). If st = 2 j  + 1 holds for some integer j ( j  >, O), then 
ti < 2 j  holds and d(si, 0; C) = j + 1 and d(ti, 0; C) < j are satisfied, which also leads to 
contradiction. Hence, si < t2 holds for all sz E Vv, which implies that Vv n V(u1) C VGT 
holds. Also, we find that if ti E Vu then si E Vy holds. In fact, if P* has si and t i ,  then we 
easily find that  a t  least I vertices sl ,  32,. . . , si belong to Vv; if PJ has sm and tm,  then a t  least 
m - l +  1 vertices sm, s ~ - ~ ,  . . . , a belong to Vu. Hence, we have VynV(uk} C ap(Vvn V(ul)), 
which implies that Vu n V (uk) c op(VGT) holds. Therefore, C1 also contains PJ. In case 
(iii), we find that  

s1 = 1 , s 2  = 3,. . . and tl = 2, t2 = 4, . . .  

or 
sm = 1,sm-1 = 3 , .  . . and tm = 2,tm_1 = 4, .  . . 

hold, which means that  Vy n V ( w )  C VGT and Vy n V(uk) c op(vGT) hold. Hence, Cf also 
contains Pz. U 
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4. Proof of Main Theorem 
Let C* = (V, Ec*) be the Hamilton cycle in G defined in Main Theorem. For a Hamilton 
cycle C = (V, Ec) in G, let 

We will show that any ORHC- can be transformed into C* with the jAVG value unchanged. 
Let C = (V, Ec) be an ORHC with vc < n - 1. Note that C contains a subgraph P*,. 

Also, let v* be a vertex with e :  = (v*, vc), and v** a vertex with w** > wc and (v*, v**) E EC 
(such v** obviously exists). We can consider a path P' = (v**, v*, . . . , 0 , .  . . , vc) of C, and 
let vl be a vertex on P' adjacent t o  w. Then it  is obvious that v* < vl holds. Let 
P = (u l , .  . . , N) ( k  = 2 or 3) be a subpath of P' satisfying 

d(%, v*; C) = d(uk, v&) and P' = (v**, v*, . . . , ul ,  . . . , w,. . . , V I ,  vc}. 

Defining ap for the path P  in the same way with that in Section 2, we find that (7p(v*) = vl 
and op(v**) = vc  hold. Also, let C' be a Hamilton cycle in G obtained from C by biasing 
with respect to  a p .  Then we find from Lemmas 2 and 3 that C' is also an ORHC and 
contains P ;  . Also, C ' h a s  an edge e& = (v*, we), which implies that vc- > vc holds. 

By continuing this process, we find that C* is an ORHC. 

5.  Application to the Construction of Ring Networks 
We can apply the result in this paper to the construction of ring networks with high relia- 
bility. When a certain pair of hosts (vertices) communicate each other by using one of two 
paths between the hosts, let L be the length of the chosen path. To keep the damage by 
unauthorized access a t  the minimum, we should design networks to minimize the expecta- 
tion of L, denoted by E(L). Let C be a ring network (Hamilton cycle) and rvw the relative 
frequency of communication between v and w. Suppose that any ring network C is designed 
to  choose a path between v and w so that the average distance between v and w, denoted 
by dAVG(v, w ;  a is calculated by 

where p ( d )  is a monotone nonincreasing function of d on [O, 4. Then we have E(L)  = 
jAVG(C), which means that ring networks with the minimum fAVG value are optimum in the 
sense stated above. 

When {rvw} is not completely known, it is natural for us t o  assume that each rvw is 
proportional to the product of the number of users a t  v (say Nu) and that of users a t  w (say 
P&,), that is, 

rw = c& Nu, (c is a positive constant). 

If all hosts are labeled so that No > N1 > > Nn-l holds, then we can easily verify that 
r w }  satisfies inequality (2) (inverse Supnick property). Therefore, in this case, C* defined 
in Main Theorem is the optimum ring network. 
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