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A b s t r a c t  In this paper, we consider a new compet itive hub location model called Stackelbere, hub location 
problem where a big firm competes with several medium firms to maximize its own profit. We assume that 
the medium firms' service sets are mutually disjomt arid there is no competition among them. The big firm 
first locates a new hub on a plane as a leader on the condition that the other firms locate their new hubs 
after that.  We forrnulat,e the leader's problem as a bilevel programming problem with follower^' problem as 
lower level problems, and solve it using, SQP method Computational results show the sie,~~ifi(-ance of the 
proposed compet itive hub location model 

1. Introduction 
Hubs play an important role in designing a transportation network as well as an airline 
network. Because of this fact. many researchers have focused on hub location problems 
in the past decade. They liave proposed several types of huh location models along with 
solution methods for those problems. We may classify imb location models into several 
classes according to three different criteria. In terms of the type of space in which hubs are 
located, they are classified into two classes. One is the discrete location model in which a 
hub can be located only at  one of a finite number of candidate points, while the other is the 
continuous location model in which a huh can he located arbitrarily in a region on a plane. 
In terms of the assignment rule between 1mb and non-hub nodes, they are classified into 
single allocation model and multiple allo~at~ion model. In the former model, each demand 
node can connect to a single hub only, while the latter model allows each demand node 
to connect to more than one hub. In terms of the number of intermediate hubs, they are 
classified into 1-stop model and 2-stop model. They restrict the number of intermediate 
hubs in a trip to be no greater than one and two, respectively. 

CTKelly [15] first formulated a 2-stop discret,e hub location problem with single allocation 
rule as a quadratic integer programming problem. This type of hub location problems were 
mainly studied in the 80's. In the 907s, multiple allocation models have become the main 
subject of research instead of single allocation models [2, 3, 9, 10, 211. 

In 2-stop models, the number of variables and constraints drastically grows with the size 
of models and hence we can expect to solve problems of practical size only approximately. 
Sasaki et al. [18, 191 considered a 1-stop hub location model in which every trip uses a t  
most one hub other than origin and destination. Since the number of variables of 1-stop 
models is relatively small compared with 2-stop models, we can expect to obtain their exact 
optjimal solutions. Recently, developing new formulations of 2-stop models has received 
much attention. Specifically, Skorin-Kapov et al. [22] propose new formulat,ions of the 2-st,op 
model and show that their models may yield tight linear programming relaxat ions. O'Kelly 
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et al. [17] further reduce the size of the problem and show that the linear programming 
relaxation often results in integer solutions. Ernst et al. [ 5 ,  6 ,  71 formulate tlie 2-stop model 
as a mult,i-com~~iodity flow problem to reduce the number of variables and constraints, and 
propose a practical heuristic method as well as an exact method that utilize lower bounds 
obtained by the shortest path calculations. 

Continuous hub location problems have not been studied as extensively as discrete mod- 
els. O'Kelly [14] first forni~lat~ed a continuous model in which hubs could be located any- 
where on a plane. O'KelIy [16] applied a clustering approach to a cont,inuous model so as 
to minimize the sum of squared distances. Aykin [l] studied t,he same type of model both 
on a plane and on a sphere. These models assume that demands are distributed discretely. 
On the other hand, Suzuki et al. [23] formulated a continuous model in which demands are 
evenly spread in a given area and proposed a solution method using Voronoi diagram. Note 
that the complexity of discrete models grows drastically as the number of hub candidates 
increases. Continuous models do not suffer from such a difficulty, which is an advantage of 
those models. 

As mentioned above, a variety of hub location models have been studied in tlhe last 
decade. However, studies on competitive hub location problems are scarce. In the real 
situation, several firms usually exist in a market and compete with each other t80 capt,ure 
market share. We can easily imagine that hub locat ions are affected by competing with rival 
firms. Recently, Marianov et al. [ll] formulated a competitive hub location problem on a 
network, which seems to be the first hub location model that takes into account competition. 
In their model, the sum of captured flows is maximized under some passengers allocation 
rules. Sasaki et al. 1201 considered a continuous hub location model in which two firms 
of similar size locate their own new hubs in an arbitrary order, and formulated a leader's 
problem as a bilevel programming problem. The numerical experiments reported in [20] 
show that the leader firm may suffer heavy losses if it neglects t,o consider the competitos's 
strategies. 

1x1 this paper, we consider a 1-stop continuous hub locattion problem involving a number 
of firms as a natural ext,ension of the model introduced in [20]. More precisely, we focus on 
a hub location problem with the following situation. Suppose that there are a big firm and 
several medium firms who intend to take part in a market. We assume that the medium 
firms' service sets are mutually disjoint and there is no cornpetit'ion among them. After the 
big firm locates its own hub, the other firms also locate their own hubs, simultaneously. We 
formulate the model as a bilevel programming problem and solve it using SQP method. We 
call this model Stackelberg hub location model because its situation is similar to Stackelberg 
game [13]. We also compare the solution of t,his model with that of the non-c~mpetit~ive 
model and discuss the effect of taking into account the competition among the rival firms. 

This paper is organized as follows. In Section 2, we explain a background of the Stack- 
elberg hub location model. In Section 3, we formulate the model as a bilevel programming 
problem. In Section 4, we show comp~t~ational  results using real airlines' data. In Section 
5, we give concluding remarks and mention some future work. 

2. Stackelberg Hub Location Model 
As mentioned in the previous section, much effort has recently been made to formulate 
various types of hub location problems. One assumption common to those hub location 
problems is that the firm is always a monopolist in a market. In other words, it is implicitly 
assumed that a firm can capture all of the demands in the market regardless of its hub 
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locations. Under this premise, passengers are forced to use the service provided by t<he firm, 
even if it is inconvenient, because of the absence of alternatives. As a result, hub locations 
would tend to be determined by the firm's convenience with no regard to passengers' conve- 
nience or preferences. In practice, however, passengers are supposed to choose which service 
to use according to their own preferences. In order to reflect such situations, it is important 
to consider a hub location problem in a competitive environment. 

By taking a cornpetitfive factor into consideration, a new problem comes up to us. That 
is, we need to specify how to reflect passengers' preferences in tlie model. This can be 
done by using an assignment rule or an assignment function. which determines the level of 
captured passengers in terms of the disutilities of available services. An example of such a 
rule is the all-or-nothing assignment rule. Under this rule, the firm who provides tlie most 
convenient service captxres all passengers and others capture nothing'. Marianov et al. [ll] 
use the all-or-nothing assignment rule in which the level of capture is predetermined based 
on cost differences among competitors. In this paper, we assume that the level of 'aptured 
passengers is determined by a logit function [12]. Since services are. in general, not equally 
attractive to passengers, all of the passengers who travel between an OD pair (origin and 
destination pair) do not necessarily select the same service. The logit function is often used 
to det,ermine the assignment of passengers to available services so as to reflect their various 
preferences. Specifically, we assume that there are k services available for an OD pair and 
let Ã§, i = 1, . , k ,  be the disutility of the i-th service. Then the level of capture for the 
i-th service is determined by 

where a > 0 is a parameter. The assignment given by (1) may represent various types of 
passenger preferences by adjusting the value of parameter cv appropriately. In particular, 
it approaches the all-or-nothing assignment as a becomes large. In our model, we use the 
ratio of tlie actual travel distance to tlie direct distance between an OD pair as a service 
disutility. 

In general, there are various types of firms in a real market. On one hand, some big 
firms may provide their services in the whole market: on tlie other hand, some medium size 
firms may provide their servk-es in a confined area. In order to reflect such a circumstance 
in a real market, we consider the situation in which one big firm and several medium firms 
exist in a market. Suppose that they are planning to locate their own new hubs so as to 
maximize their own profit that, consist of the total airfare revenues. A big firm usually has a 
dominating power in a market and medium firms often subordinate to the big firm's decision 
or strategy. So we assume that the bis, firm is the leader and the other firms are the followers. 
Namely, after the leader locates its huh, the followers locate their hubs simultaneously. In 
addition, we assume that the followers' service sets are subsets of the leader's service set 
and the followers' service sets are mutually disjoint, i.e.. there is no competition among the 
followers. Here, the service set of a firm is the set of OD pairs for which tlie firm provides 
its service. Usually medium firms are not strong enough to compete with the big firm. 
Therefore they may tend to concentrate their service effort in a relatively small area so 
that they can capture market share more efficiently. Taking into account such a situation, 
we assume that the followers' service sets are mutually disjoint. Moreover, we assume the 
following conditions: (i) The trip demands among all OD pairs are assumed to be known 
and symmetric. (ii) Each hub can be located anywhere on tlie plane (cont'inuous location 
model) and there is no capacity limit on the passengers who use it. (iii) Hubs are only for 
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tthe use of a facilit,y for transfer and they have no trip demand of their own. Under these 
assumptions, each firm determines tlie location of its new hub. Tlie leader firm knows that 
the follower firms are going to locate their new hubs after knowing the leader's decision. 
So the leader firm lias to locate its new hub, given that tlie follower firms make optimal 
decisions. 

Another type of competitive locat ion problem was proposed by Hakimi [8]. He consid- 
ered the problem where the leader locates p facilities am1 the follower locates q facilities 
on a weighted network to maximize the captured market share. He assumed t,hat tlie con- 
sinners patronize the closest facilities and, in case of equal distance, the leader captures the 
consumer. All-or-nothing assignment rule was employed in tlie model. Tlie leader's and the 
follower's problems were called the centoroid problem and the medianoid problem, respec- 
tively. We can regard Stackelberg hub location model as an extension of Hakimi's model 
where the number of followers is not necessarily one. Here we employ a continuous location 
model since it is generally more tractable than a discrete model. In the next section, we 
formulate Stackelberg hub location problem as a bilevel programming problem. 

3. Formulation 
Let Firm A denote the leader firm and Firms Bi,  , B,,, denot,e ni follower firms. The 
decision variables of the firms are as follows: 

.r: the location of Firm A's new hub, .r E 'R2. 

yi: the location of Firm Bl's new hub, y; E ?R2, l = 1, .  . , r r ~ , .  

In addition, tjhe following notat ions are employed: 

N :  the set of demand nodes. \N\ = n,  

(Ii: the locat,ion of demand node i 6 N, d,  6 'R2, 

M :  the set of follower firms. A/ = {I,  - .  - , rn} ,  

11: the set of OD pairs, 11 C \ x N, 

UA: the set of OD pairs for which Firm A provides its services, IIA 2 II, 

U.B,: the set of OD pairs for which Firm Bi provides its services. Tig & HA, 

H>: the trip demand (the number of passengers) for OD pair TT C II, 

F-: the airfare for OD pair TT E II, 

DT ( ( 1 1 ) :  the travel distance between OD pair TT via a hub locatled at, Ã§ 6 ?R2. 

Throughout we assume t,hat the distance is Euclidean, and for each OD pair TT = ( i ,  j ) ,  
the travel d i~t~ance  DT(w)  is given by 

where 11 - [I denotes the Euclidean norm. Each firm provides its service using itx own hub. 
For OD pairs for which more than one services are provided, passengers liave to choose one 
of the available services according t,o tlieir preferences. As mentioned earlier, we suppose 
that the passengers of each OD pair are distributed among available services according to 
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the logit functlion given by ( I ) ,  which is a function of those services' disutility. The service 
dis~t~i l i ty  v r ( w )  between OD pair TT = (4 j) using a hub locat'ed at w 'R2 is defined as 
the ratio of the actual travel distance to t3he direct distance between the pair ( i .  j), i.e., 
rj,(w) = D,(w)/ 11 di - ( I j  11. If a firm provides no service on a particular OD pair, the 
service disutility between the OD pair is defined to be infinity. Therefore, the disutilities of 
the firms are given by 

Let Firm A and Firms Bl ( l  = 1, - - - ,  rn) locate their hubs a t  x ? ^R2 and y; E P(Z = 
1. - a . , m) ,  respectively. Then the number of passengers of OD pair TT who use Firm A's lnib 
is given by 

with a constant n > 0. From trhe assumption IIs, CI b,, = 9(1 # 1'), for each n E II. there 
is a t  most one 2 such t,hat TT 6 lIB. which we denote ~ ( T T ) .  Thus. using /(TI"). we can simplify 
t,he representation of %(.r,  y\ , - - , yÃ£ ) as 

In a similar manner, the number of passengers of OD pair TT who use Firm B/'s hub is given 

by 

Con~equent~ly, t,he total revenues of Firm A and Firms Bl(l  = 1, . , 111 )  are given by 

and 

respectively. 
Now we proceed to formulating the problem. First we consider Firm B['s problem. C" ~ iven  

that Firm A locates a hub at J,  E $%?, Firm B; will locate a hub so as to maximize its total 
revenue. So Firm Bl's problem, which is called SHLP-B/, is written as follows: 
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[SH LP- Bl] 

maximize,/, g{-v, yi) 

subject to yi e 1( C W2 , 

where denotes the feasible region for locating Firm B['s hub. Assuming Firm Bl always 
finds an optimal location y E by solving SHLP-Bl for any hub location ,r E X of Firm 
A, Firm A solves its own problem subject to  the condition that i)i is tlie optimal solution 
of SHLP-B;. More precisely, y; arg niax{g;(x, yl)lyi â Yi C 'R2} should be a coustraiiit i ~ i  
Firm A's problem. Hence, Firm A's problem is stated as the following bilevel programming 
problem: 

maximize f ( :c,  yi , - - - , ym) 

subject to x ? 8' 

yi 6 arpax{gi(x,yi)Iyi  6 1; C K2} , 1 = l ; . - , n i ,  
where X denotes the feasible region for locating Finn A's hub. Hereafter we assume that 
SHLP-B; has a unique opt8imal solution for any given ,r E W, which is denoted by f i ( . r ) ,  
That is, 

tl(-i') = argmaxy,^;gl(-v, ~ i ) .  

Consequently, by defining the function Q{.r) as O(J)  = / ( . i ' ,  ti (.r), , b, ( . r ) ) ,  Finn A's 
problem can be reformulated simply as follows: 

[Stackelberg hub location problem: SHLP] 

maximize O(x} 

When A' = 3t2, this problem is an unconstrained optimization problem. If is a proper 
subset of "R2, the optimal solution of SHLP-Bi. i.e., & ( x ) ,  is not necessarily smooth with 
respect to x, As a result, O(J- )  may not be smooth with respect to J'. However, if SHLP-B; 
is an unconstrained problem or & ( x )  is an interior point of V/, then we may expect that &(.r) 
is smooth with respect to ,r. In t,his case, 8( . r )  also becomes smooth with respect to .r, and 
we can apply some gradient-based met,hods to solve SHLP. Follower's optimal huh locat,ion 
is usually inside the convex hull of all demand nodes regardless of leader's hub location. 
Therefore, we may assume that &(Â¥r  is an interior point of l"/llen I/ is a region containing 
the convex hull of all demand nodes. 

In general, there is no guarantee tliat SHLP-B; has a unique optimal solution for any given 
x 6 ̂R2. However, our computational experience suggests that there is a great likelihood 
for the assumption to hold. We illustrate it with a simple example containing 4 demand 
nodes: A(0,0), B(100,0), C(100,100) and D(OJO0). We assume that the demands for OD 
pairs arc all equal. Suppose that OD pairs (A,B), (A,C) and (A.D) comprise Firm Bils  
service set,, while OD pairs (B,C), (C,D) and (D,A) comprise Firm Bgs service set. Figure 
l ( a )  and Figure l ( h )  show contours of Firm Bi's cost function when Firm A locates its 
hub on (57.3,57.8) and (20,80), respectively. Similarly, Figure 2(a) and Figure 2(b)  show 
contours of Firm B-/s cost function when Firm A locates its hub on (57.3,57.8) and (20,80), 
respectively. Figure 3 displays contours of Firm A's cost function and the white circle 
 represent,^ the optimal solution. whose coordinate is (57.3,57.8). Tliese figures indicate tAhat 
the follower firms" problems often have a unique optimal solution, although t,he shape of 
their cost functions changes depending on tlie Firm A's hub location. 
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(a)  Finn A's hub is located at (57.3.57.8) (b) Firm A's hub is located at (20,80) 

Figure 1: Contours of Firm Bi's cost function 

(a) Firm A's hub is located at (57.3,57.8) (b)  Firm A's hub is located at (20,80) 

Figure 2: Contours of Firm Bi's cost function 

Figure 3: Cont,ours of Firm A"s cost f~nc t~ ion  for a simple example 
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Stuckclberif Hub Location Problem 

Table 1: Test Data No.1 - No.7 

No. Firm Bi7s services market scale 

1 Top 150 OD pail's in terms of demand 82.06% 
-- -- - 

2 Top 150 OD pairs in terms of revenue 85.00% 

3 Randomly selected 150 OD pairs 48.87% 

4 All OD pairs originated a t  the top 6 cities 

in terms of demand (129 pairs) 73.67% 
- 

5 All OD pairs originated at  the top 2 cities 

in terms of demand (47 pairs) 45.84% 

6 All OD pairs originatd a t  t,he cit,y 

with the greatest demand (24 pairs) 33.77% 

7 All OD pairs originated a t  8 cities locatled 

in Middle West (164 pairs) 47.57% 

4. Computational Results 
I n  this section, we report some computational results for the proposed model SHLP and 
examine the differences between optimal s~lu t~ions  of SHLP and the non-competitive model. 
Computer programs were coded in MatlahRl2 with optimization toolbox [4]. We used 
function fmincon included in the optimization toolbox, which finds a constrained minimum 
of a nonlinear multivariable function. It uses SQP (Sequential Quadratic Programming) 
method that updates the Hessian at  each iteration according to the BFGS formula. Each 
inner iteration which solves SHLP-B; uses five different initial points. All programs were 
run on a Sun Ultra10 computer operated under SunOS Release 5.6 with 256 Ml) memory. 
We prepared the demand data based on the well-known U.S. 25 cities data evaluated in 
1970 by CAB (Civil Aeronautics Board). For airfare data, we used the data supplied by 
http://www.airfare.com. We assume that the leader Firm A provides its services on all OD 
pairs among 25 cities, i.e., 300 pairs. We solved SHLP with t ~ o  follower firms, i.e.. 1=2. 
The feasible region is the rectangle that ranges from 20 " N to  50 " N and from 70" W t o  
130 " W. The execut,ion time of SHLP largely depends on the choice of an initial point, and 
it ranged from 450 CPU seconds to 3200 CPU seconds in our examples. 

A firm is able to capture all passengers regardless of its hub location if there is no 
competitor. In this case, it is natural to suppose t,hat the firm may locatx its hub on the 
unweiglited median of the demand nodes. Therefore, we compare the results for SHLP with 
those for the problem in which Firm A locates its hub 011 t,he unweight,ed median. 

Follower firms may provide their services in a particular area or for a limit,ed number of 
cities. Taking into account these circumstances, we prepared seven service set data (No.1 - No.7) as shown in Table 1. Top 6 cities with large demand are New York, Chicago, 
Los Angeles, Boston, Washington D.C. and Miami, in descending order. Middle West 8 
cities are Seattle, San Francisco, Los Angeles, Phoenix, Denver, Dallas, Kansas City and 
Minneapolis. Market scale means the ratio of the total revenue yielded in each service set 
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to  those in the whole market. Firm B17s service set is displayed in the table and Firm B'/s 
service set is its complement. The results for these test examples are displayed in Table 2. 
For each test example, the first row shows the results for SHLP and the second row shows the 
results obtained by locating Firm A's hub 011 the unweighted median of the nodes. Finn A's 
market share is given by the ratio of its revenue to the total revenue of all three firms. The 
numbers in the parentheses show the decrease in the market share of Firm A. Follower's 
market share is estimated in two ways. The column labeled "Bi area1' shows Firm Bi's 
share in its service set. Namely, it is the ratio of Firm B1's revenue to tlie total revenue 
of Firm A and Firm Bi in Firm Bi7s  service set. On the other hand. the column labeled 
"whole area" shows Firm B<s share in the whole market. Firm B2's share is estimated in a 
similar manner. Figures 4, 5 and 6 show the results for test examples No.5, No.6 and No.?, 
respectively. In t,hese figures, white circles represent 25 cities and other white marks indicate 
the hub locations obtained from SHLP, while black marks show the results when Firm A 
locates its own hub on the unweighted median of the nodes. Moreover, a square shows Finn 
A's hub location, a triangle shows Finn Bi's hub location, and a diamond shows Firm B'/s 
hub location. Figure 7 also shows the results for example No.: together with contours of 
the cost function of Firm A. The white circle indicates the optimal location. 

These results indicatje that,  in all tests, Finn A increases its market share by taking 
advantage of the leadership in the market. We may also observe that hub locations are 
affected by competition substantially. However, we cannot extract clear relationship between 
Firm A's share and the difference of two followers' market scale. Although the difference 
of two followers' market scale is relatively small in No.3, No.5 and No.7. Firm A's share 
decrease ranges from below 9.68% to 15.40%. In case of No.?, Firm B/s market share is 
almost 70% in Bl area in spite of tlie fact that Firm A takes int,o account the competition 
with the followers. It is interesting to observe that a follower often captures a great deal of 
demand by rest'ricting its services to a limited area. For example, in No.6, Firm Bi provides 
services on only those OD pairs which contain New York as shown in Figure 4, where black 
and white triangles overlap at  New York. Then it turns out that Firm Bi's optimal hub 
location is a t  New York regardless of Firm A's huh location and indeed provides non-st,op 
services for all OD pairs containing New York. Firm A provides 1-stop services on those 
OD pairs. Figure 4 shows that Firm A provides services originated from New York with 
relatively short t'ravel distance except for some services whose destinations are near New 
York or in tlie Sout,h. This is the reason why more than 35% market share is captured 
by Firni A, because the disutility of services depends only on the act,ual travel dist,ance 
without taking into account transfer. If non-stop services are allowed in the model, Firni 
Bi may capture more market share. In fact, medium firms often provide non-stop services 
in a particular area a t  a bargain price. It is an interesting future work to study a model 
that takes into account non-stop services. 

5 .  Conclusions 
In this paper, we have considered a hub location problem in a competitive environment and 
forrn~lat~ed Stackelberg hub location problem as a bilevel programming problem. We also 
made some cornputat ional experiments using actual data. We examined how the optimal 
hub locations of the firms are affected if the major firm takes advantage of its leadership. 
Although the model adopts the simple assumption that there is no competition among fol- 
lowers, it is still new to incorporate the situation where several firms of different size are 
competing each other. Further extensions of the model, e.g., considering the conipetition 
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Table 2: Market sliare('X): Competitive model versus noii competitive model 

No. Firm A's share Firm Bi's share Firm B2's share 

whole area Bi area whole area By area 

1 48.25 41.36 50.41 10.38 57.87 

Figure 4: The result's for test, example No.5 
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Figure 5 :  The results for t8est example No.6 

Y 
(Bla,ck and white triangles overlap.) 

Figure 6: The results for test example 80 .7  
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Figure 7: Contours of Firms A's cost function in test example No.7 

among followers and incorporating non-stop services, are important subjects of future re- 
search. Moreover, it may be worthwhile to consider a hub location problem where medium 
firms cooperate to compete against the big firm, which is also an interesting future research 
topic. 
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