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Abstract This paper is mainly to extend the MMCF (multi-commodity minimum cost flow) problemn
from deterministic flow networks to stochastic cases. Under the transportation budget constraint, this
paper proposes an approach to calculate the probability that the required amount of multi-commodity can
be transmitted successfully through a stochastic flow network. Such a probability is called transportation
reliability. An algorithm is proposed first to find out all lower boundary points for the requirement in terms
of minimal paths. The transportation reliability can then be calculated in terms of such lower boundary
points. A numerical example, in which two types of commodities are shipped in container under two
container-loading policies, is presented to illustrate the application of such a reliability model.

1. Introduction and Problem Description

The minimum cost flow (MCF) problem [1] to determine the least cost shipment or trans-
portation of commodities of the same type through a flow network to satisfy the given
demands at destinations from available supplies at sources is one most fundamental of all
network flow problems. This problem is studied under the assumption that such a flow
network 1s deterministic (i.e., the capacity of each arc being an integer-valued constant).
The MCF problem whenever generalized to commodities of multiple different types is called
a multi-commodity minimuin cost flow (MMCF) problem [5, 6, 9, 10, 12, 17, 18] in which
each type commodity can be transmitted from several sources to several destinations. Such
a MMCF problem can be applied to solve the optimal energy policy, optimal resource al-
location, etc. [2]. However, in the real situation, the flow network is stochastic (i.e.. the
capacity of each arc is stochastic) due to that the are may be in failure, maintenance, con-
sumed or pre-occupied by another agency, etc. Hence, the need to genecralize MCFEF and
MMCF problems to stochastic cases arises.

For simplicity of our purpose, the flow network concerned here is assumed to have the
unique source s and destination ¢. Lin ef al[l4] and Xue [19] had proposed a reliability
model in single-commodity case which calculates the probability that a desired amount d' of
the same type commodity can be transported from s to ¢ without budget constraint. Lin [13]
mmproved the above reliability model to include the budget requirement. In this article, we
will further extend it to the multi-commodity reliability model. Our presentation will first
restrict to two-conunodity case. Similar studies can be easily extended to the general multi-
commodity case. The approach is briefly described as follows. Given the system demand
(d',d?) at sink ¢ and the budget L', an algorithm is proposed to generate all lower boundary
points for (d',d*; K') in terms of minimal paths (MPs). An MP is a path whose proper
subsets cannot be paths. The transportation reliability can then be calculated in terms
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of such lower boundary points for (d',d*; K). We will apply this model to an example to
evaluate the transportation reliability that desired amounts of Ist and 2nd types commodity
are shipped in containers from s to ¢

1.1. Nomenclature and notation

G

Ci

z;

mpj
(F'F?)

Y <X
Y <X

G = (N, A) is a stochastic flow network with the unique source s and sink ¢
where V and A = {q¢; | 1 <i < n} denote the sets of nodes and arcs, respectively.
number of arcs in G; number of minimal paths of G from s to ¢

(integer) the maximum capacity (or resource) of a; (1 = 1,2, ,n)

(integer) the current capacity of a; (1 = 1,2,---,n)

minimal path j (7 = 1,2,---,m)

system flow vector where F' = (f!, f3, -+, fL) and F? = (f%, f7,---, f2) with
f} and f} denoting the current flow (integer value) of st and 2nd types
commodity on mp;, respectively.

(real number) the amount of capacity of a; consumed per [st type commodity
[2]. For instance, if a container loads 10 commodities exactly, then a commodity
consumes 1/10 amount of the container. If the capacity in counted in terms of
the number of containers, then w! = 1/10.

(real number) the amount of capacity of a; consumed per 2nd type commodity.
the transportation cost of each 1st type commodity through «;

the transportation cost of each 2nd type commodity through a;

the system demand to mean that both d' amount of st type commodity and
d* amount of 2nd type commodity are required at t.

transportation budget

transportation reliability

the greatest integer such that |z] <z

the smallest integer such that [2] > «

(Y1, y2, -y Un) < (21,29, -+, 2,) if and only if y; < a; for each v = 1,2,---,n
(Ys,y2, 3 Yn) < (x),@9, -+, 2,) if and only if Y < X and y; < x; for at least
one i

1.2. Assumptions

1. Each node is perfectly reliable (i.e., the reliability of each node is 1).

2. Two types commodity can be transported from s to t.

3. The capacity of arc a; takes values in {0,1,2,---,(;} with a given probability distribu-

tion.

4. The capacities of different arcs are statistically independent.

5. Flow of each type commodity must satisfy the so-called flow conservation [7].

2. Model Formulation

2.1. Reliability model building

The two-commodity flow model for G is described in terms of two vectors: the system
capacity vector X = (21, Ty, -+, 2,) and the system flow vector (F, F'*). Such an (F', F?)
is feasible under X if

Z (wllfjl%—wfff) <, foreach :=1,2,---,n. (1)

a,iEmpJ

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.
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The value Z ( f + w f Z fl + u) Z f 1s the total amount of ca-

a, €mpy @ Emp, a;Emp,
pacity of a; consumed by (F!, F'?). For convenience, let Ux denote the set of such (F"', F%)s
which are feasible under X, and W« the set of systemn flow vectors where ' = (€', Cy, -+, C,).
That is, (F', F?) € W if and only if (F', F*) satisfies constraint (2),

l’ Z (w] - ]‘Jl + wi- ff)‘l < (Y foreach 1 =1,2,---,n. (2)

nEmp,

The network (& satisfies the given demand (d',d*) at ¢ under the budget A" if and only
if there exists an (F', F'?) such that

m

Z f]] =d"  and Z = (3)
J=1 =1

and

z{ SIS .f’f}éls'. 0

1==1 a, EMP, a, Emp,

=1
(FU %), Let Qg pge = {X | there exists an (F', F?) € Wy which satisfies (3) and
(4)}. The transportation reliability Ry .5 is thus

The value Z{ Z 1 +¢f Z )‘f} is thus the total transportation cost under

w EMmp, a, €Emp,

I{dl‘dz:]\' = P“{Sldl,d’-’-';]\'} - Z PI‘{'X'}‘

X E“(li d2 R

where Pr{X} = Puz;xPa2y,x---xPx, by Assumption 4. (Note that Pz, is the probability that
the capacity of a; 1s x;.) Each minimal vector X in Qg 2 1s called a lower boundary point
for (d',d* '), i.e., X is a lower boundary point for (d*,d*; A) if and only if i) X € Qu px
and i) Y ¢ Qp ey for any system capacity vector Y such that ¥ < X. However, the
necessary and sufficient condition for Y & Qg 42, can be restated as follows.

Lemma 1. For any system capacity vector Y, Y ¢ Qu p.p if and only if for each
(F', F?*) € Wy, at least one of the lollowing statements holds;

m

iy D1 <d.

i=1
m

() 3 fE<d
(iif) Z{(' S Y fjf}>1\

=1 aEmp, ay Cmp;
It is easy to find that Ry g = Pr( U{) | Y > X}) over all lower boundary points Xs
for (d',d*; K') and so By g2, can be rcduccd to be evaluated in term of all lower boundary
points for (dl, d*; ). Hence, we may calculate it by applying the inclusion-exclusion method

[8. 11, 15, 16]. state-space decomposition [13, 14] or disjoint subsets [19]. The problem
remains is how to generate all such points for (db, d*; k).
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2.2. Generate all lower boundary points for (d',d*; i)
Let @p e = {(F' F*) | (F', F?) satisfies constraints (2)-(4)}, i.e., @1 2. 15 the set of
system flow vectors satisfying the system demand (d',d*) and whose transportation cost
does not exceed the budget K.

We can generate @41 42, by applying the implicit enumeration method (e.g., branch-
and-bound or backtracking), which is always denoted by a search tree composed nodes and
arcs. The arcs from level j to level j 4+ 1 nodes are labeled with possible values of f;. A

I
search tree for Zf/-l = d' is illustrated in Figure | [13], where constraints (2) and (4) are
=1
used to be bounding constraints.
Given each (Fy, Fy) € g g2k, generate the vector Zpi p2 = (21, 22.-- . z,) where

*1 2 WA L ¢ , (
7; = Z (w) - I +w; -jf) for each v = 1,2, -+, n. (H)
a, Emp,
Zf/\ = dl
=l
vi=min{d',u*}
£'=0 fl‘=] fl=vi
if,"dl if/l’dl‘l ifllgdl_v‘
gt 7=l s gt
v2=min{d',uz| vo=min{d'-1,u,} v3=min{dl-v|,ug)
le.-.-.O fll=1 N :
if,‘-d‘—l if}-d‘wz if}w'—l—vz
il jet e =l
vy=min{d'-1,u,} vy=min{d'-2,u,) vi=min(d'-1-vq,us}

* u; is bounded by constraints (2) and (4)
Figure 1: A search tree for implicit enumeration method

In fact, such obtained Zp1 2 is a systemn capacity vector as z; € {0,1,2,---,Ci} Vi (ac-
cording to Equation (2)) and (#7, F?) € Yz, . from Equation (5). A necessary condition
for a lower boundary point for (d', d*; k') is shown in the following lemma.

Lemma 2. If X is a lower boundary point for (d',d*; K'). Then X = Zpi ;2 for cach
(F',F?*) € Uy satisfying constraints (2)-(4).

Proof: From Equation (1), Zpi e < X V(I Fy)) € Uy N @y . Suppose Zpn pz < X,
Then Zp1 g2 ¢ Qi 2 as X is minimal in Qg g2, This is a contradiction. Ience, X =
Zpt g2 Q.E.D.

For convenience, let p = {Zpi = | (F', F?) € &y p.n}. Lemma 2 implies that p
contains all lower boundary points for (d*, d%; \'). The following lemma further proves that
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pmin = {X | X is minimal w.r.t. < in p} is the set of all lower boundary points for

(d', d* K).

Lemma 3. {X | X is a lower boundary point for (d',d*; K)} = puin-

Proof: Firstly, suppose X is a lower boundary point for (d',d*; K) (note that X € p by

Lemma 2) but X ¢ pun, i.c., there exist a Y € p such that Y < X. Then Y € Qg p2.x.

This contradicts to that X is a lower boundary point for (d',d*; 1'). Hence X € pn.
Conversely, suppose X € puin (note that X € Qg p.) but it is not a lower boundary

point for (d',d*; k). Then there exists a lower boundary point Y for (d',d*; A') such that

Y < X. By Lemmnma 2, Y € p. This contradicts to that X € pyin. Hence, X is a lower

boundary point for (d',d*; k). Q.E.D.

3. Algorithm

Given the system demand (d',d?) and the budget K, an algorithin to generate all lower
boundary points for (d',d?%; K') in terms of MPs is shown in the following steps;

Step 1. Obtain all feasible solutions (F',F?) with F' = (fL, f},---.[}) and F? =

(f&, f3,-++, f*) of the following constraints by applying the implicit enumeration:

{ > (w}-ff+wf-ff)] < foreach i=1.2.---.n, (6)
4, €Emp,

Srl=d and Y fi=d (7)
J=1 j=1

Z{ IR RS f’f}SK- (8)

1=1 a, Empy a, Emp;

Step 2. Transform all feasible solutions (F', F?) into X = (2,2, -, 2,) according to

T = { Z (wgl . fi,‘l + wf . ff)] foreach 1=1,2,---,n. (9)

aj;empy

Step 3. Suppose the result of Step 2 is: X, X5, -+, Xix. Remove those non-minimal ones
in {X1, Xy, -, Xy} to obtain all lower boundary points for (d',d*; ') as follows.
31) =10
3.2) Fori=1tok with: ¢/
33) Forg=i+1tokwith ¢/
3.4) If X; < X;, X, is not a lower boundary points for (d',d* K'). I = [U{i} and goto
Step 3.7)
elseif X; > X;, X, is not a lower boundary points for (d',d*; K'). [ = 1U {j}

35) j=j+1

3.6) X, is a lower boundary point for (d',d?*; K)
3.7 1=141

3.8) END.

4. Application to A Container-Loading Transportation Problem

The supplier likes to have its d' amount of Ist type commodity and d* amount of 2nd
type commodity transmitted in containers of a same type from s to t responsible by one
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specific transportation company. Such commodities will be packaged and then loaded into
containers. The supplier’s budget for this transportation is A'. Each route from s in general
might need to pass through other intermediate nodes (transfer stations) to finally arrive
at t. The capacity of each arc is stochastic due to that either containers or traffic tools
(e.g., cargo airplane, cargo ship, etc.) through each arc may be in maintenance, reserved
by other suppliers or in other conditions. Hence, the supplier needs to know the reliability
that desired amounts of commodities of two different tyvpes can be transported successfully
from s to ¢ under the budget K. The transportation reliability will depend on the chosen
policy from two different container-loading policies as follows;

Policy I: The container is rented as a whole (i.c., the supplier is not allowed to share
each container with another supplier) and commodities of different types should be
loaded into different containers. The transportation cost per container through arc
a; is C;.

Policy II: The container is divided into ¢ unit-spaces. The container can be rented either as
a whole in cost ¢; through a; or in unit-space in cost b; through a; where ¢-b; > ¢;.
Suppose the supplier needs (zq + ¢') unit-spaces to transport the total amount
of commodities where r is the number of whole containers and ¢’ < ¢. Then the
supplier will rent 2 containers plus ¢’ extra unit-spaces with cost (x¢; +¢'b;) through
a;. Also, commodities of different types can be loaded into a same container but
different space-units.

4.1. The proposed reliability model under Policy 1

Under Policy I, :ri,(,’i,j"} and /f are all counted in terms of number of containers. The

system demand (d', d*) is thus transformed into (D', D?) where D' (resp. D?) is the number

of containers needed to load d' (resp. d*) commodities of Ist (resp. 2nd) type. Let ¢; be
the transport cost of each container through a;. Hence, the constraints (6)(8) are modified
correspondingly into (10)-(12) (i.e., (F, F?) satisfies (D!, D*; K') if it satisfies constraints

(10)=(12)) as follows:

Yo U+ ) < (10)
a, EMpy

S fl=D' and 3 fP= DY (11)
j=1 j=1

> { Y+ ff)} < K. (12)
=1 a, €mp,

The equation (9) is also modified to Equation (13) as follows:

x; = Z (fjl + sz) foreach 1 =1,2,--- n. (13)

a;emp,
Hence, the proposed reliability model with w! = w? =1 and ¢! = ¢? = ¢; Vi can be applied
to Policy 1 case.
4.2. The proposed reliability model under Policy II
C; and z; are both counted in terms of number of unit-spaces but in F' = (F!, F?), f/l and

ff are both counted in terms of amount of commodity for all j. One unit of Ist (resp. 2nd)
type commodity consumes o, (resp. ay) unit-spaces for all arcs. That is, w! = ) and
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372 Y.-K. Lin & J. Yuan
w? = ay Vi. Hence, (F!, F?) satisfies (d',d?; K) if it satisfies the following constraints:

[ Y. (o fl+ay- [ <O, (14)

cL,Emp]

m m

Zf]vl =d' and ij = d*, (15)
i=1 J

Z{ H > <a1-f;+a2-ff>]/q +bi~({ > (al.f;m-f;)]
1=1 a; Emp, a;EMp,

“|{Z (al'fj'l'{'a?'f}z)"/Q"Q>}§I\’a (16)

where 2 = { ‘V Z (o f} + - f?) /q is the number of whole containers rented by the

a;Empy

supplier and ¢ = [ Z (o ~j’j1 + ay - ]‘f)] - IJ Z (e f/l + ay - ff)‘l/q} g which is
a2 €EMp, ;i EMP,

less than ¢ is the number of unit-spaces rented for the surplus by the supplier. Then
transform all feasible (F*, F?) into X = (2,2, -+, ,) according to

xr; =
a;empy

Z (ay - fj-1 + oy - ff)] for each 2 =1,2,---,n. (17)

Hence, the proposed reliability model can be applied to Policy II case after modifying
constraints (6)—(9) to (14)-(17), respectively.
4.3. A numerical example
According to the law of Taiwan, no direct route from s (Taichung, Taiwan) to ¢ (Shanghai,
Mainland China) is permitted. Hence, each route from s should pass either Hongkong or
Tokyo before arriving ¢t. The routes through each arc are all by ship. Each container has
3 unit-spaces (i.e., ¢ = 3) and one unit of commodity means 60 commodities of a same
type. The supplier wants to have its 6 units of 15-inches monitors and 3 units of 17-
inches monitors (i.e., d' = 6 and d* = 3) to be transported from s to { under the budget
K = 70 x 100 US dollars. The sizes of each container, 15-inches monitor and 17-inches
monitor are 591 x230x220 (length x breadth x high) cm?®, 48 x 45 x 52 ¢cm® and 56 x
56 x 57 cm?®, respectively. Hence, each container can load 3 units (i.e., 180) of 15-inches
monitors or 2 units (i.e., 120) of 17-inches monitors completely. Thus, one unit of Ist
(resp. 2nd) type commodity consumes 1 (resp. 1.5) unit-space, i.e., a; = 1 (resp. ay = 1.5).
There are four MPs from s to ¢ in Figure 2, mp, = {ay, as}, mpy = {a1, a3, a5}, mps =
{as, a4, a2}, mpy = {as,a6}. In advance, the transportation cost through each arc and the
arc data under Policy | and I are given in Tables 1-3, respectively.
4.3.1. Transportation reliability evaluation under Policy I
Under Policy I, the supplier needs 2 whole containers for each type comunodity, i.e., D! =
D? = 2. The transportation reliability is denoted by Ry470 and thus can be derived as
follows:

Step 1. Find all feasible solutions (F', F?) of the following constraints

4+ <3, flefR+f+f2<2 i+ <2,
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HongKong
ai a
s: Taichung as t: Shanghai
as de
Tokyo

Figure 2: A transportation network from Taichung to Shanghai

Table 1: The transportation costs through ares (unit: 100 US dollars)

Ci b,
Arc The transportation cost The transportation cost per
per container (Policy I & 1I) unit-space of the container (Policy II)
23] 4 2
a; 11 5
as 7 3
(14 7 3
as 9 4
ag 9 4

Table 2: Arc data under Policy |
Arc  z; (number of  Probability Arc  z; (number of  Probability

whole container) whole container)
ay 0 .05 a4 0 15
1 .10 1 15
2 A5 2 .70
3 70 as 0 05
as 0 .10 1 10
1 .10 2 15
2 R0 3 70
as 0 10 ag 0 10
1 A5 1 .10
2 ) 2 .80
5+ <2 B+HR+B+E<3 L+hi+BE+0<2, (18)
N+H+R+=2 and ff+f7+5+1H=2 (19)
A+ HR+R+E) AR+ S+ R+ +T00+ )+
Tfs + F) 903 + fa + F3 + 1) +90f2 + fa + fo + f3) < 70, (20)

We obtain 7 feasible (F!, F%)s: (2,0,0,0,0.1,0,1), (1.1,0,0,1,0,0,1), (1,0,0,1,1,1.0,0), (0,1,0,1,2,
0,0,0), (2,0,0,0,0,0,0,2), (1,0,0,1,1,0,0,1), (0,0,0,2,2,0,0,0).
Step 2. Transform each feasible (F*, F?) to X = (zy, 22, -+, 2¢) via

n=f+ LA+ f wa=N+ B+ =+ 1

wi= [ s =B+ B we = i+ S (21)
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Table 3: Arc data under Policy 11

Arc  z; (number of Probability Arc ; (number of Probability

unit space) unit space)
a 0 .01 a4 0 .03
1 .02 1 .03
2 02 2 .04
3 .03 3 05
4 .03 4 .05
b .04 5 05
6 .05 6 75
7 .05 as 0 01
] 05 1 02
9 .70 2 .02
a9 0 .03 3 .03
l .03 4 .03
2 .04 5 .04
3 03 ] .05
4 .03 T 05
5 .04 8 05
6 .80 9 70
as 0 .03 (g 0 .03
1 .03 1 03
2 .04 2 .04
3 .05 3 .03
4 .05 4 03
5 05 5 04
6 75 6 .80

We obtain two Xs: X; = (3,2,1,0,1,2) and X, = (2,2,0,0,2,2).
Step 3. Delete those non-minimal ones in {X,, X,} to obtain all lower boundary points for

(2,2;70).

3.0) I=0

3.9) i=1

3.3) j=2

3.4) Xy =(2,2,0,0,2,2) £ X; = (3,2,1,0,1,2) and X, # X,.I = 0.
3.6) X, is a lower boundary point for (2,2;70).

3.2) =2

3.6) X, is a lower boundary point for (2,2;70).
We find that (3,2,1,0,1,2) and (2,2,0,0,2,2) are the lower boundary points for (2,2;70). To
calculate the transportation reliability Ry, 70, firstly let By = {X | X > (3,2,1,0,1,2)} and
By ={X | X >(2,2,0,0,2,2)}. Then by applying the inclusion-exclusion method,

Ryszo = Pr{B;U B}
= Pr{B,}+ Pr{By} — Pr{B, N B,}
= Pe{X|X>(3,2,1,0,1,2)} + Pr{X | X >(2,2,0,0,2,2)}
~Pr{X | X >(3,2,1,0,2,2)}
= (0.7 x0.8x0.9x1x0.95 x 0.8) + (0.85 x 0.8 x 1 x 1 x0.85 x 0.8)
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—(0.7 x 0.8 x 0.9 % 1 x 0.85 x 0.8)
= 0.38304 + 0.4624 — 0.34272
= 0.50272.

Hence, the transportation reliability under Policy I is 0.50272.
4.3.2. Transportation reliability evaluation under Policy II

Similar to the solution procedure under Policy I, the result of each step is briefly described
in the third column of Table 4. We can see that the transportation reliability is higher than
that under Policy L.

Table 4: Comparison between Ry 2. under Policies I & 11

d' = 6,d* = 3 units of Policy 1 Policy 11
commodities, K =70 x 100 (D', D* K) = (2,2;70) (d',d% K) = (6,3;70)
US dollars
Elements in @1 4.5 7 feasible solutions 63 feasible solutions
Flements in p (3,2,1,0,1,2), (22,0.0.2.2)  (9,6,3.0.2,5), (9,5,4,0,2,6),(9,6,4,0,2,5),
(36:20.3.5), (86.3,135), (863035,
(8,5,3.0,3,6). (8.5:4,0,3,6), (7.5:2.0.4,6),
(7,6,1,0,4,5), ((6201‘3), (7,5,3,0,4,6),
(6600 5), (6,5,1,0,5,6), (6,6,1,1,5,5),
(6,5,2,0,5,6), (5,6,0,1,6.5), (5,5,0,0,6.6),
(4,5,0,1,7,6)
Elements in pmin (3,2,1,0,1,2), (2,2,0,0,2,2) (9,6,3,0,2,5), (9,5,4,0,2,6), (8,6,2,0,3,5),
(8,5,3,0,3.6), (7,6,1,0,4,5), (7,5.2,0,4.,6),
5)

(4,5,0,1,7.6), (6,6,0,0,5.5), (6,5.1,0,5,6),
(5.6,0,1,6,5), (5,5,0,0.6.6)
Ry o 0.50272 0.694029376

5. Discussions and Summary
It is known that the problem to search all lower boundary points for (d', d*; K’) is NP-hard

d' — d* -1
[4]. The number of feasible solutions of Equation (7) is (m + l) . (m + > Let

d! d?

f__(m—kdlml) m 4+ d? — 1

T d' d?

(8) is bounded by &. Similarly, the number of X's transformed according to Equation (9) is
bounded by €. Each solution of Equation (7) needs O(m) time to test whether it satisfies
constraint (6) for each arc a;, O(m - n) time for all arcs and O(m -n) time to test constraint
(8). Hence, it takes O(m «n - £) time for Step 1 in the worst case. Then each solution
needs O(m - n) time to be transformed into X via Equation (9). In the worst case, it takes
O(m - n - &) time for Step 2. It further takes O(n : £) time to test each solution of Step 2
whether it is a lower boundary points for (d*,d* K) and O(n - £*) time for all solutions of
Step 2 in the worst case. Hence, the computationdl time complexity of the algorithm in the
worst case is O(n - €2) = O(m -n - €) 4+ O(m -n-€) + O(n - £*). (Note that m is less than
(m +db -]

!

most O(n - £) storage space to store all X's.

>. Hence, the number of solutions of constraints (6) and

in the first two summands). As each X in Step 2 is a n-tuple, it needs at
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For single-commodity case, the proposed algorithm reduces the number of constraints
when comparing to the best existing method of [13]. The method [13] includes an extra flow
constraint:

fjl < al(lél#})] C; foreach j=1,2,---,m. (22)
In fact, constraint (6) implies such a constraint. In addition, the proposed algorithm con-
siders the weight factor w! for two-commodity case because different commodity competes
the same capacity. However, this weight factor is not considered in the single-commodity
case.

This article is basically to extend the so-called MMCF problem to a multi-commodity
reliability model in the way that the flow networks concerned are from deterministic cases
to stochastic cases. We apply this model to solve the transportation reliability that the
desired amounts of two types commodity are transported from s to ¢ via a stochastic flow
network. The numerical example indicates that different container-loading policies result in
different reliability models and also the reliabilities. Policy I1 is more flexible than Policy 1
in container-loading, and it can reduce the transportation cost. The cost for vector (£, F*?)
under Policy I equals that under Policy II. But the cost for (F!, £*) under Policy 11 is larger
than that under Policy I if ¢ > 0. For instance, ¢ = 1 under Policy Il implies that it will
cost an extra ¢; under Policy I. Hence, the number of feasible (', F'*) under Policy II is
always more than that under Policy I. Similarly, the number of X under Policy I1 is always
more than that under Policy 1. That is why the reliability under Policy H is always higher
than that under Policy I.

Moreover, the proposed algorithm can be easily extended to r-commodity (r > 2) case
after modlfymg constraints (6)-(9) to (23)-(26), respectively.

[ Z (Z wzk : ff)" < (; foreach i=1,2,---.n, (23)
a,€mpy k=1

7

Yoff=dt k=12, (24)
J=1

k=1 i= a; Emp,

(*" >, f") <K, (25)
1

{ wh e fF)

a; Emp, A 1

for each 1 =1,2,---.,n. (26)
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