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Abstract This paper is mainly t o  extend the  MMCF (multi-commodity minimum cost flow) problem 
from deterministic flow nettworks to  ~ t~ochas t i c  cases. Under t,he t ran~por t~at~ion budget c ~ n s t ~ r a i n t ~ ,  this 
paper proposes an  approach to  calculat,e the probabil i t ,~ t,hat t,he required amount of multi-commodity can 
be transmitted successfully through a ~tochas t~ic  flow nettwork. Such a proba,bility is called t,ransportJat8ion 
reliability. An algorithm is proposed first t,o find out  all lower boundary point,s for t,he requirement in  t,erms 
of minimal pat,hs. The  t r an~por t a t~ ion  reliability can t,hen be calculat,ed in t,errns of such lower boundary 
points. A numerical example, in which t,wo t-ypes of comrnodit,ies are shipped in cont,ainer under t>wo 
container-loading policies, is presentfed t,o illust,rat,e the a,pplicat,ion of such a re1iabilit)y model. 

1. Introduction and Problem Description 
The minimum cost flow (MC:F) problem [I]  to determine tlie least cost shipment or trans- 
portation of commodities of the same type through a flow network to satisfy tlie given 
demands a t  destinat,ions from available supplies a t  sources is one most fundamental of all 
network flow problems. This problem is studied under the assumption that such a flow 
network is deterministic (i.e., the  capacity of each arc being an integer-valued constant). 
The  MCF problem whenever generalized to  commodities of multiple different types is called 
a multi-commodity minimum cost flow (MMCF) problem [ 5 ,  6, 9, 10, 12, 17, 181 in which 
each type commodity can be transmitted from several sources to  several dest illations. Such 
a MMCF problem can be applied to  solve the optimal energy policy, optimal resource al- 

location, etc. [2]. However, in the real situation, the flow network is stochast,ic (i.e., the 
capacity of each arc is stochastic) due t,o that the arc may be in failure, maintenance. con- 
sumed or pre-occupied by another agency, etc. Hence, tlie need to  generalize MCF and 
MMCF problems to stochastic cases arises. 

For simplicity of our purpose, the flow network concerned here is assumed to have the 
unique source s and destination t .  1,in f t  o/.[14] and Xue [19] had proposed a reliability 
model in single-commodity case which calculates the probability t h a t  a desired amount d1 of 
the same type commodity can be transported from .G to  t without budget constraint. Lin [l3] 
improved the above reliability model to include the budget requirement. In this article, we 
will further extend it to  the  multi-commodity reliability model. Our present,at ion will first 
restrict to  two-commodity case. Similar studies can be easily extended to  the general multi- 
commodity case. The approach is briefly described as follows. Given tlie bystem demand 
(8, d 2 )  at  sink t and the budget I<, an algorithm is proposed to  generate all lower boundary 
points for (dl,#$\} in terms of minimal paths (MPs).  An MP is a path whose proper 
subsets cannot be paths. The  transportation reliability can then be calculated in terms 

© 2001 The Operations Research Society of Japan



Multicommodit J Reliabilit J and Applications 367 

of such lower boundary points for {^  ̂d2;  14. We will apply this model t o  an example to  
evaluate the transportation reliability that  desired  amount,^ of 1st and 2nd types commodity 
are shipped in containers from .s to  t 
1.1. Nomenclature and notation 
G G = ( N ,  .4) is a stochastic flow network with the unique source ,s and sink t 

where N and A = {a, 1 1 < i <, n }  denote tlie sets of nodes and arcs, respectively. 

n; m number of arcs in G\ number of minimal palths of G from -s to  t 
(integer) the maximum capacity (or resource) of a; ( i  = 1 ,2 ,  . - , n,) 

X Z  (integer) the current capacity of a, ( i  = 1 ,2 ,  . , n )  

m P ~  minimal path j ( j  = 1,2 ,  - - .  , r n )  

(F1, F 2 )  system flow vector where F' = ( f : ,  f . + , /A) and F'" = ( f? ,  f i ,  . + - , f,') with 
f' and f f  denoting the current flow (integer value) of 1st axid '2nd types 
commodity on mp,, , respectively 

4 (rea,l number) the amount of capacity of a;  consumed per 1st type commodity 
[2]. For instance, if a container loads 10 commodities exactly, then a commodity 
consumes 1/10 amount of the container. If the capacity in counted in terms of 
the number of containers, then uJ1 = 1/10. 

l.4 (real number) the  amount of capacity of a ,  consumed per 2nd type commodity. 

! the  transportation cost of each 1st type commodity through at 

6: the transportation cost of each 2nd type commodity through a ;  

(6 d 2 )  the system detiiancl to  mean that both d1 atriount of' 1st type coiini~idity aiul 
d2 amount of 2nd type commodity arc reciuirei.1 at  t .  

I< t>ransportation budget 
Ed1 d 2 . K  transportation reliability 

1.c J the greatest integer such that  1x1 < .T 
bl the smallest integer such that [.rl >_ x 

Y <: ^{y^ y2i-.+ ,,yJ 5 ( x i 7 x 2 ,  --â , .rn) if and only if y, < i\ for each i = 1,2;+.,7;  
< X ( y i ,  (/2, . . - , fjn) < (xi, J^, . . , x,^} if and only if Y <: X and ,yt < .r, for at  least 

1.2. Assumptions 

1 Each node is perfectly reliable (i.e., the reliability of each node is 1 ) .  
2. Two types commodity can be transported from s to t .  
3. The capacity of arc a;  takes values in { O .  1,2 ,  - - , C\} with a given probability distribu- 

t ion. 

4. The capacities of different arcs are statistically independent,. 

5. Flow of each type commodity must satisfy the so-called flow conservation [7].  

2. Model Formulation 
2.1. Reliability model building 
The two-commodity flow model for G is described i n  terms of two vectors: the system 
capacity vector .Y = ( x i ,  x 2 ,  - , .cÃ£ and the system flow vect,or (F1, F2). Such an ( F 1 ,  F 2 )  
is feasible under X if 
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The value X (4 f ;  + w'f f2) = W :  - X /' + ni? p 
X f ;  is the  total  anionnt of ca- 

l l ,  â ‚ ¬ 7 1 1 ,  n ,  E r n p ,  'l â‚¬771, 

pacity of U ,  coiisuined by ( F 1 ,  P 2 ) .  For convenience, let Qv denote the  set of such ( F 1 ,  /^)S 

which are feasible under X, and @c' t,he set Â¡^syste flow vectors where C = (C\, C\̂ . a . , G). 
T h a t  is, (F1. F2) C !Pc' if and only if (F ' ,  F2) satisfies constraint (2), 

T h e  network d ~at~isf ies  the  given demand ( d l ,  P )  a t  / under the  budget I< if and only 
if there exists a n  (F1, P) such tliat 

and 

( F ' .  /'̂  j .  Let $2, , i  = {,l' 1 there exists a n  ( F :  F2) E h which satisfies ( 3 )  and 
(4)}. T h e  transportat ion reliability Rfli ,fi:Ii is thus 

where Pr{-V} = P.rl  x P.r2 X -  a - X  P.]vTL by Assumption 4. (Note tha t  PT, is the  probability that  
t,he capacity of (1 ,  is X , . )  E a d i  minimal vector X in S!,li,,p,l< is called a lower bouinlary point 
for ( d l ,  d2;  A'), i.e.. A' is a lower boundary point for (d l .  (I"; 1<) if and only if i )  .V E ( I d ~ , P , I , -  

a n d  i i )  V $' $ $ , 1 , , ~ 2 : ~ ,  for any system capacity vector Y such that  1 < X. However, the  
necessary aiicl sulficient colidit ion for 1 4. i 1 d 1 . ( 1 2 T l \  can be restated as follows. 

Lemma 1. For any system capacity vector Y. Y 4. f 2 , / 1 , ~ 2 ; ~ ;  if and only if for each 
(F', P) E Q y  , a t  least one of the  following statements holds; 

111 

( i i )  < (l2. 

It is easy to  f i i u l  t ha t  K d ~ , , , z : I c  = Pr( J{17 1 Y > A'}) over all lower boundary points X s  
X 

for ( d l ,  (1'; K )  and so l?,/i,,,~:I; call be  reduced to  be  evaluated in term of all lower boundary 
points for (cl1, (l2: l\). Hence, we may calculate it by applying the  inclusion-exclusion inethod 
[S. I I , 1.5. 161. s t : i t e - s ~ t ~ ' c  dwort i~osi t ion [l 3, 141 or  dissjoint subsets [19]. The problem 
a is l o w  t o  ;>riit~:itv all sin-11 points for ((l1, (l2: l<). 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



2.2. Generate all lower boundary points for (d\ d 2 ;  K )  
Let Q d i f i 1 ;  = { ( F 1 .  p) I (F\F2) satisfies coiistraints ( 2 ) - ( 4 1 1 ,  i.e., Q,,1.,,2,1, is tile set of 
system flow vectors satisfying the system demand ( d l ,  d 2 )  and whose transports t ion cost 
does not exceed the budget I<. 

We can generate (^I ,& ;K  by applying the implicit enumeration met hod (e.g., brancli- 
and-bound or backtracking), which is always denoted by a search tree composed nodes and 
arcs. The arcs from level j to level j + 1 nodes are labeled with possible values of 11,. A 

r n  

search tree fur /' = (1' is illustrated in Figure 1 [13], w h e w  coiist~raints ( 2 )  and ( 4 )  are 
.I = 1  

used to  be bounding constraints. 
Given each (bT1, K z )  ? @ d l , d 2 ; A ' ,  generate the vector Z p 7 w  = (zl. 2 2 , .  . - ,  G )  where 

* ti, is bounded by constraints ( 2 )  and (4) 

Figure 1: A search tree for implicit e i iu~~~era . t ion  method 

In fact, such obtained i^pljF-1 is a system capacity vector as z, G {O,  1 ,2 .  - .  , C,} Vi  (ac- 
cording to Equation ( 2 ) )  and ( / + ' I ,  IF2)  e f z T 1  f i  froin Equation ( 5 ) .  A in-ciJssary rendition 
for a lower boundary point for ( d l ,  d 2 ;  A') is shown in the following lemma. 

Lemma 2. If X is a lower boundary point for ( d l ,  (I2; A'). Then ,V = Z p P  for eacli 
(F1, F 2 )  â r x  satisfying coiistraints ( 2 ) - ( 4 ) .  

Proof: From Equation ( I ) ,  ZFi.^ < ,Y 'd(4. F̂ } E qlY n iDfl~.#:l, . Supposv Zf,-i,p < A". 
Then ZF1,p2 $ i&fi,G;K as dY is inininial in & 1 , , ~ 2 ; ~ , - .  Tiiis is a coiitradictioii. IIenee, -V = 
ZFt ~ 2 .  Q.E.D. 

For convenience, let p = { Z f l  qps 1 ( F '  , bJ2)  @,,I , , i 2 ; h } .  I,eir1111a 2 implies tliitt 
contains all lower boundary points for ( r f <  (l$ 11'). The following lemma f u r t l n ~ r  provrs t,liat 
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piinn = {X 1 X is minimal w.r.1. < 111 Q} is the  set of all lower boundary points for 
(d l ,  d2; I<). 

Lemma 3. {A" 1 X is a lower boundary point for ( d l ,  d2; I<)}  = pm. 

Proof: Firstly, suppose X is a lower boundary point for (d l ,  (I2; A') (note that A E p by 
Lemma 2) bill A" 6 ptilil,, i.e., there exist a Y c p such that Y < X. Tlies~ V G f 2 ~ / i , c / ~ , 7 i .  
This contradicts to that .V is a lower houndary point for ( d l ,  d 2 ;  A'). Hei~ce .V E pnmr 

Conversely, suppose .Y (E pniin (note that A" c & i , 1 / 2 ; A - )  but it is not a lower boundary 
point for (d l ,  d2; I<). Then there exists a lower boundary point Y for (d1,d2;  I\') such that 
Y < X.  By Lemma 2. 1' G p.  This contradicts to that .Y E piIl,,,. Hence, .Y is a lower 
boundary point for ( d l ,  d 2 ;  A) .  Q.E.D. 

3. Algorithm 
Given the system demand (d l ,  d2) and the budget A', a n  algorit,hm to gcnerate a1 
xniiidary points for ( d l ,  d2; I<) in terisis of MPs is shown in the following steps; 

Step 1. 0l)tain all feasible solutions (F1, F 2 )  with F1 = (.f,', f i ,  + a + . ./A,) and 
(/:, f i ,  a . - , f f L )  of the following constraints by applyiiig t.he implicit enuinc~ratii111: 

1 lower 

p-1 ^ 

Step 2. Traiisforni all feasible solutions ( F ' ,  F 2 )  into ,Y = (xi. x2, - - , .c,;) according to  

Step 3. Suppose the result of Step 2 is: &, A), + + , &. Remove those non-minimal ones 
in -Y2, + - .  , -Yk}  to  obtain all lower boundary points for ( d l ,  d2; K )  as follows. 

3.1) / = @  
3.2) For 1 = 1 to k with i $ I 
3.3) For J = / + 1 to  A,- wit,h j f I 
3.4) If A, < A',, A', is riot a lower boundary points for (dl ,  d 2 :  I<). I = I U { I }  and goto 

Step 3.7) 
elseif . Y  2 A',, A; is not a lower boundary points for (dl ,  d2;  A'). I = I U {j} 

3 .5 )  j = j +  1 
3.6) .YL is a lower boundary point for (dl,  d 2 ;  I<) 
3.7) i = 1 + 1 
1 8 )  END. 

4. Application to  A Container-Loading Transportation Problem 
The supplier likes to  have its d1 amount of 1st type commodity and d2 amount of 2nd 
type commodity transmit t ed in containers of a same type from s to t responsible by one 
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specific transportation company. Such commodities will be packaged and then loaded into 
containers. The  supplier's budget for this transport,ation is I{. Each route from ,s In general 
might need to  pass through other intermediate nodes (transfer stations) to finally arrive 
at  t .  The capacity of each arc is stochastic due t,o that  either containers or traffic tools 
(e.g., cargo airplane, cargo ship, etc.) through each arc may be in maintenance, reserved 
by other suppliers or in other conditions. Hence, t,he supplier needs t,o know the reliability 
that desired amounts of commodities of two different types can be transported successfully 
from s to  t uuder the budget K .  The transportation reliability will depend 011 the chosen 
policy from two different container-loading policies as follows; 

Policy 

Policy 

I: The  container is rented as a whole (i.e., the supplier is not allowed to  share 
each container with another supplier) and commodities of different types should be 
loaded into different containers. The transportation cost per container through arc 
a, 1s c,. 

11: The container is divided into q unit-spaces. Tlie container can be rented either as 
a whole in cost c; through ( 1 ,  or in unit-space in cost &, through a;  where q . 6, > cL .  
Suppose the supplier needs (.rq + q') unit,-spaces t o  t,ransport the total amount 
of commodities where J" is the number of whole containers and q' < q. Then the 
supplier will rent J" containers plus q' extra unit-spaces with cost (.rc2 + qlbt) through 
a .  Also, commodities of different types can be loaded into a same container but 
different space-uni t s. 

4.1. 

Under 

The proposed reliability model under Policy I 
Policy I,  .r,. (',, /' and f2 are all counted in terms of number of containers. The 

system demand ( d l ,  d1} is thus transformed into ( D L ,  D 2 )  wlierc D1 (resp. D ^ )  is the number 
of containers needed t o  load d1 (resp. d2)  commodities of 1,qt (resp. 271d) type. Let c, be 
the tra,nsport cost of each container through a,.  Hence, the constraints (6) (8) are modified 
correspondingly into (1  0)-(12) (i.e.. (F1, F 2 )  satisfies ( D l ,  11'; I<) if it satislies constraints 
(10)-(12)) a,s follows: 

The equation (9) is also modified to Ecjuation (13) as follows: 

Hence, the proposed reliability model with wi = wf = 1 and ci = cf = c, Vi  can be applied 
to  Policy I case. 

4.2. The proposed reliability model under Policy I1 
C, and -r, are both counted in terms of number of unit-spaces but in F = ( F 1 ,  F2), f1 and 
f'f are both counted in ternis of amount of commodity for all j .  One unit of 1st (resp. 2nd) 
type commodity consumes a1 (resp. o2) unit-spaces for all alrcs. Tha t  is, w: = o'i and 
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W: = a2 Vz. Hence, (F1, F2) satisfies (dl ,  d 2 ;  A') if it satisfies the following constraints: 

= dl and Vf! = d2, 
J 

Ã If is the number of whole containers rented by the 
a , â ‚ ¬ 7  p, 

supplier mÃ£ qt = [ (a, /; + a, . 
- \\ lq . + .ir / J q w h c f i s  

a ,  Ernp, a, G m p ,  

less than q is the number of unit-spaces rented for the surplus by the supplier. Then 
transform all feasible ( P I ,  F2 j into A' = ( r , ,  x2,  . - - , .T,~) according to  

Hence, the proposed re1ia)bility model can be applied to  Policy I1 case after modifying 
constraints (6)-(9) to  (14)-(171, respectively. 

4.3. A numerical example 
According to  the law of Taiwan, 110 direct route from ,-s (Taicliimg. Taiwan) to t (Shanghai, 
Mainland China) is permitted. Hence, each route from s should pass either Hongkong or 
Tokyo before arriving t .  The routes through each arc are all by ship. Each container has 
3 unit-spaces (i.e., q = 3)  a,nd one unit of commodity means 60 commodities of a same 
type. The supplier wants to have its 6 units of 15-inches monitors and 3 units of 17- 
inches monitors (i.e., d1 = 6 and d 2  = 3) to he trarisportecl froin ,s to t u n d c - ~  the budget 
A' = 70 x 100 IJS dollars. The sizes of each container, 15-inches monitor and 17-inches 
monitor are 591 ~ 2 3 0 x 2 2 0  (length x  breadth x high) cm3, 48 x 4 5  x 52 cm3 and 56 x 
56 x 57 cm", respectively. Hence, each container can load 3 units (i.e., 180) of 15-inches 
monitors or 2  units (i.e., 120) of 1'7-inches monitors completely. Thus, one unit of 1.st 
(resp. 2nd) type commodity constirr~es 1 (resp. 1.5) unit-space, i.e.. 0, = 1 (resp. ci2 = 1.5). 

There are four Ml's from s to  t in Figure 2 ,  mp, = {a l ,  a ^ } ,  rnm = {ai ,  ( i3.  Q}, riip^ = 
{a r i ,  a4, a2}, rnp4 = {a5, a G } .  In advance, the transportation cost through each arc and the 
arc data  under Policy I and I I  are given in Tables 1-3, respectively. 

4.3.1. Transportation reliability evaluation under Policy I 
Under Policy I,  the supplier needs 2  whole containers for each type commodity, i.e., D1 = 
D 2  = 2. The transportation reliability is denoted by R;,2,7u and t h s  can be derived as 
follows: 

Step 1. Find all feasible solutions (P, F2) of the following constraints 
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s: Taichung t: Shanghai 

Tokyo 

Figure 2: A transportation network from Taichung to  Shanghai 

Table 1 : The transportation costs through arcs (unit,: 100 ITS dollars) 
Cz bi 

Arc The  transportation cost The transportation cost per 
per cont,ainer (Policy I & 11) unit-space of the container (Policy 11) 

a 1 4 2 
a 2  11 5 
as 7 :\ 

rn 

0 4  ;^ 
a5 9 4 
a h  9 4 

Table 2: Arc data  under Policy I 
Arc  numberof of Probability Arc  numberof of Probability 

whole container) whole container) 
a\ 0 .05 a/i 0 .15 

1 . lo  1 . I5  
2 .15 2 .70 
3 .70 Or, 0 .05 

0 2  0 .10 1 . L O  
1 .10 2 .15 
2 $80 ;3 .70 

a :i 0 . l o  fl ti 0 .10 
1 .15 1 .10 
2 .75 2 .so 
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Table 3: Arc da ta  under Policy I1 
Arc a: ,  (number of Probability Arc 3:; (number of P r ~ b a ~ b i l i t y  

uni t  spa,ce) u n i t  space) 

ff 1 0 . O 1  (U 0 .03 

We obtain two Xs: \\ = (3 ,2 ,  1 , 0 , 1 , 2 )  and  = ( 2 , 2 , 0 , 0 , 2 , 2 ) .  

Step 3. Delete tliose iion-iiiininicil ones in {.TI, &} t o  obtain all lower boundary points for 
(2,2;70). 

3.1)  /==(!I 
3.2) i = 1 
3 .3 )  j = 2 
3.4) & =  ( 2 , 2 . 0 , 0 , 2 , 2 )  < ; X i =  ( 3 , 2 , 1 , 0 , 1 , 2 )  amiA'2 t X , . I = f J .  
3.8) -\'I is a lower boundary point for (2,2;70). 
3.2) i = 2  
3.6)  X2 is a lower boundary point for (2,2;70). 

We find tha t  (3,2,1,0,1,2) and (2,2,0,0,2,2) are  t h e  lower boundary points for (2,2;70). TO 
c a r u h i t c  tin- transportat ion reliability f?J,2,71,, firstly let f?, = {X \ X > (3 ,2 ,  1 , 0 ,  1 ,2)}  a'nd 
B2 = {X 1 A' 2 (2 ,2 ,0 ,0 ,2 ,2 )} .  Tlien by applying the  i~iclusion-exclusiosi ulethod, 
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Hence, the transportation reliability under Policy I is 0.50272. 

4.3.2. Transportation reliability evaluation under Policy I1 
Similar to  the solution procedure under Policy I, the result of each step is briefly described 
in the third column of Table 4. We can see that the transportation reliat~ilit~y is higher than 
that under Policy I. 

Table 4: Comparison between R M i K  under Policies I & I1 

d1 = 6 ,  d2 = 3 units of Policy I Policy I1 
commodities, I< = 7 0  x 100 ( D l ,  D2;  A') = ( 2 , 2 ;  7 0 )  (dl,  d 2 ;  I<) = ( 6 , 3 ;  7 0 )  

US dollars 
Elements i n  < & , , I ~ ~ , Q ; ~ ~ -  7 feasible solutions 63 feasible solutions 

Elements in  p (3 ,2 ,1 ,0 ,1 ,2) ,  (2 ,2 ,0 ,0 ,2 ,2)  (9 ,6 ,3 ,0 ,2 ,5 ) ,  (9,.5,4,0,2,6),(9,6,4,0,2,5), 
(8 ,6 ,2 ,0 ,3 ,5) ,  (8,6,3,1,:3,5), (8 ,6 ,3 ,0 ,3 .5) ,  
(8,5,3,0,3,6).  (8 ,5 ,4 ,0 ,3 ,6) ,  (7,5,2,0,4,6),  
(7 ,6 ,1 ,0 ,4 ,5 ) ,  (7 ,6 ,2 ,0 ,4 ,5) ,  (7 ,5 ,3 ,0 ,4 ,6) ,  
(6 ,6 ,0 ,0 ,5 ,5) ,  (6 ,5 ,1 ,0 ,5 ,6) ,  (6 ,6 ,1 ,1 ,5 ,5) ,  
(6 ,5 ,2 ,0 ,5 ,6 ) ,  (5 ,6 ,0 ,1 ,6 ,5) ,  (5,5,0,0,6,6),  

(4 ,5 ,0 ,1 ,7 ,6)  
Elements in pmin (3 ,2 ,1 ,0 ,1 ,2 ) ,  (2,2,0,0,2,2) (9 ,6 ,3 ,0 ,2 ,5) ,  (9,5,4,0,2.6),  (8 ,6 ,2 ,0 ,3 ,5) ,  

(8 ,5 ,3 ,0 ,3 ,6) ,  (7 ,6 ,1 ,0 ,4 ,5) ,  (7,5,2,0,4,6),  
(4 ,5 ,0 ,1 ,7 ,6 ) ,  (6 ,6 ,0 ,0 ,5 ,5 ) ,  (6 ,5 ,1 ,0 ,5 ,6) ,  

(5 ,6 ,0 ,1 ,6 ,5) ,  (5,5,0,0,6.6) 
,rj2 ;I< 0.50272 0.694029376 

5.  Discussions and Summary 

It is known that the problem to search all lower boundary points for ( d l ,  d 2 ;  K) is NP-hard 

[4]. The number of feasible solutions of Equation ( 7 )  is 

m + & - 1  r n + d 2 - 1  

f ( ) . ( d 2  
) . Hrilcc, the nu~nber  of' solutions of constra,ints (6 )  and 

(8) is bounded by [. Similarly, the number of X s  transformed according to  Equation (9) is 
bounded by (. Each solution of Equation (7) needs 0 ( m )  time to  test whether it satisfies 
constraint (6) for each arc a ; ,  0(m . n )  time for all arcs and O ( m  - n )  time to  test cori~t~raint 
(8). Hence, it takes O(m n [) time for Step 1 in the worst case. Then each solution 
needs 0 ( m  - T I )  time to  be transformed into .V via Equation (9). In the worst case, it takes 
0 ( m  n . i f )  time for Step 2. It further takes 0 ( r ~  [) time to  test each solution of Step 2 
whether it is a lower boundary points for ( d l ,  d 2 ;  Ii") and 0 ( n  i f 2 )  time for all solutions of 
Step 2 in the worst case. Hence. the computational time complexity of the algorithm in the 
worst case is 0(n . t2 )  = 0(n; a Ã 0 + O(7-n + n + f )  + 0 ( n  . t 2 ) .  (Note that  7 7 ~  is less than 

( m + : - l )  in the first two summands). As each X in Step 2 is a n-tuple, it needs at  

most 0 ( n  . [ )  storage space to  store all Xs .  
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For single-commodity case, the proposed algorithm reduces the number of constraints 
when comparing to the best existing method of [13]. The method [13] includes an extra How 
constraint: 

f 1  < min C., for each j = 1 , 2 , - . .  ,771. . .I - a,  â‚¬77i 

In fact, constraint (6) implies such a constraint. In addition, the proposed algorithm con- 
siders the weight factor :̂ for two-commodity case because different commodity competes 
the same capacity. However, this weight factor is not considered in the single-commodity 
case. 

This article is ba,sically to extend the so-called MMCF problem to a multi-commodity 
reliability model in the way that  the flow networks concerned are from deterministic cases 
to stochastic cases. We apply this model to solve the transport ation reliability that t lie 
desired amounts of two types commodity are transported from s to  t via a stochastic flow 
network. The numerical example indicates that different container-loading policies result in 
different reliability models and also the reliabilities. Policy I1 is more flexible than Policy I 
in c~nta~iner-loading, and it can reduce the t r~ ispor ta t io i i  cost. The cost for vrctor ( F 1 ,  F )  
under Policy I equals that  under Policy 11. But the cost for (F1. P) under Policy I1 is larger 
than that under Policy I if q' > 0. Vor instance, a' = 1 under Policy I1 implies that it will 
cost an  extra c, under Policy I. Hence, the number of feasible (F1, F 2 )  under Policy IT is 
always more than tha t  under Policy 1. Similarly, the number of A" under Policy I1 is always 
more than that  under Policy I. That is why the reliability under Policy I1 is always higher 
than that under Policy 1. 

Moreover, the proposed algorithm can be easily extended t,o I--coinmodity ( 1 ,  > 2)  case 
after modifying constraints (6)-(9) t o  (23)-(26), respectively. 

25 (.: E r). I., 
/.-=I t=l ( 5 ,  e " ~ P J  
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