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Abstract In the conventional Markov modulated fluid queue, the buffer content process has a continuous 
sample path.  This  paper concerns a Markov modulated fluid queue whose buffer content process may have 
jumps. This  model extends not only the conventional fluid queue but also tlie MAP/G'/l model We give a 
procedure to get a Laplare-Stieltjes transform of t,lie stationary joint distribution of tlie buffer content and 
barkground state.  Some numerical example;-! are prosetit t d  a^i well 

1. Introduction 
H i e  conventional fluid queue is an input-output system of fluid with a buffer. Suppose that 
input and output rates change according to  a continuous-time Markov chain with a finite 
s ta te  space. This model is referred t o  as a Markov modulated fluzd queue, and the Markov 
chain is called a background process. There are many applications for Markov modulated 
fluid queues. For instance, they are successfully applied to  modern ATM systems, where 
the fluicl flow is interpreted as a packet da ta  stream which is processed by ATM switches 

Fluid queues liave been studied in the much literature for more than twenty years. 
For example, see Anick, Mitra and Sondhi [ I ] ,  Uaver and Lehoczky 151, Mitra [7j. Klwalid 
iind Stern [ I ] ,  Kogers [9] and Asiniisseii [3]. In particular, Rogers [9] and Astiiiissen [;i] 
r ~ n s i d e r  the first, passage time of the hnffer content to  obtain the empty probability and the  
stationary joint distribution of the buffer cont,ent and the background state.  They show that 
I he stationary joint distribution has the matrix-exponential form, which is determined by a 
( * m a i n  mat rix equation. In Rogers [9], the matrix equation is determined by Wiener-I Iopf 
factorization. Asmussen [3] directly derives the matrix equation, then solves it by i t  eration. 
Furt~hermore, he considers the case that  the fluid flow is sub.ject to  Brownian motion 

In this paper, we are interested in the ~ i t~ua t i on  thai a fluid model has an  extra input 
in addition to  the conventional fluid flow. For example, such an input describes very liipli 
rate arrivals in short periods, e . g ,  big file transfers from a liigli speed source in i\ telei-oin- 
tiiiinieation network. If they infrequently occur, it is natural t o  process them together with 
the conventional fluid to  gain better performance per cost. It may be also natural to have 
separate buffers for different types of sources. However it would further c~mpl ica t~es  an 
analysis. As the first step, we here concentrate on the t,otal buffer contents, which can be 
also considered for the  separate buffer model. Thus, we extend the Markov modulated fluid 
queue in such a way tha t  its input flow may have upward jumps which is determined hy 
the background Markov chain. We assume that  amounts of jumps are independent and 
identically distributed under given state transitions. We refer to  such jumps as bntch , f l?/?d 
arrf p a l s .  
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Since our model has a piecewise linear sample path and the background process is Marko- 
vian, t.he model includes the workload process of the MAP/G'/\ queue, in which services 
may depend on its arrival process. Here, the workload and the arrival process can lie inter- 
pret,ed as the buffer content and the background process, respectively, in which t,here are no 
input flow except for jumps and the output flow rates are always 1 .  Hasegawa and Takine 
[12] and Asmussen [2] use iteration approaches with respect t o  tlie first passage time to  t1he 
idle state tn  get, the LST (Laplace-Stieltjes transform) of the stationary joint distribution 
of the workload and the background st ate. Similar approaches can be found for the fluid 
queue in Asmussen [3] and fur the G I / P H / l  queue in Sengputa [Ill. 

The purpose of this paper is to  get the LST of the stationary joint distribution for the 
buffer content and the background state. Using the rote cotiservation law (e.g., ser [.^g. \vi> 
see tliat tlie problem to  get the LST reduces to  the problem to  obtain the empty buffer 
probabilities jointly wit,h the background states. We show t,hat the empty probabilit,ies are 
given by the stationary vector of a rate matrix determined by certain matrix equations. We 
then introduce a matrix iteration to  solve the matrix equations, and prove that i t  converges 
to tlie rate matrix. 

This paper is organized by six sections. In Section 2,  we introduce the Markov rnod~ilat~ed 
fluid queue wit8h the batch fluid arrivals, and get tlie LIST which includes the empty ~ I I R ~ I .  
probabilities as unknown terms. We tlien consider a random time change for simplifying 
 argument,^ in Section 3, 4 and 5. In Section 3, we consider the  first passage time to  the 
empty state. In Section 4 ,  we introduce a matrix it,eration, and we show tlie main result. 
In Section 5, we compute the empty probabilities. In Section 6, we give a11 algorithm to  
compute moments of the buffer content. Numerical examples are also given. In Appendix, 
we derive the LST using the rate conservation law. 

2. Background Markov Chain and Buffer Process 
Let us describe the fluid system by a stochastic process. We first introduce a background 
Markov chain. To define a transition rat,e matrix of the Markov chain, we introduce some 
auxiliary notation. Let S be a state space of the Markov chain. We assume that S is a 
finite set, and denote the number of elements in >S' by . S .  Let C be a S x .S'I-matrix whose 
diagonal and off-diagonal elements are negative and nonnegative, respectively. Let !)(x) be 
a 1.5'1 Y I.S'l-inat,rix whose ( 2 ,  j ) t h  element [ D ( X ) ] ~ ,  is nonnegative and noit-decn'asiiig finu'Lio11 
of ,r > 0 for all i,j c 5'. Define IS\ x liS'l-matrix 1) as 

where tlie integration is performed in component-wise. We assume t,hat 

where e is the  15'1-clirnensional column vector whose all components are I .  We define Mtj} 
to  be a Markov chain with transition rate matrix Cv+D. We assume tha t  C+ D is irreducible. 
Since S is finite, there exists a stationary distribution for C + D, which is denoted by \S\- 
dimensional row vector TT i.e 

A transition of the background process due t90 C is called C-type, while the one due t o  Z) 
( l ) ( , r ) )  is called D-type (D(x)-type, respectively). 
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To describe the buffer content mathematically, we next define function 71 : S -+ ~ ( S ' ) ( C  
7?, - {O}). v does not take value 0, but t,he other struct,ure of 71 is not assumed. Function v 
specifies increasing or decreasing rates of the buffer content when it is not empty. That is, 
if M(t) = i ? S and v ( i )  = -2, then the buffer content decrease with rate 2 a t  time t. Let 
Y(t)  be the accumulated fluids and batch fluids received up to  time t .  Tha t  is, 

where Bu(i,jl is the amount of the batch fluids when background process M ( t )  jumps from 
i to  j a t  time u, and Â  is a counting process of D-type transitions which include transit ions 
from any state t o  itself. Note tha t  j) is subject to  the distribution [/^( .r)] , , /[ /?], , .  
Thus, a jump of {Y(t)} only occur by D-type transition of the background process. l?(.r)- 
type transition is a D-type with a jump amount of {^(it)} which is less than or equal .r. 
Y(t) may be negative. Then, buffer content process X ( t )  starting with A'(0) is defined by 

X(f)  = Y ( t )  + 1nax{X[0), - inf Y (u)}. 
O < l l < f  

We define 15'1 x IS1 matrices: 

V = diag(v(i); i E S), l:,,,, --- diag(v(z) 1 ;  i E 5) , 

where diag(-) denotes a diagonal matrix. 
Define sets S+ and > 5 '  as 

I x IS/-matrix A and 16'1-dimensional row vector x are partitioned into S+ and S' sections 
in tlie following way. 

For convenience, we also define S ' 1 x 51-matrix A *̂ and IS\ x S^ 1-mat,rix A*+ as 

respectively. A *  and A *  are similarly defined as \SA 1 x \S\- and \ S  x 1,s-[-matrices, 
respectively. For the AdAP/(7/1 queue, we put 5'+ = 0, S = S ' ,  ,4 -= L~ 4 - .r -=- i ~ - )  

V - - I ,  while, for the conventional fluid queue, we put D ( x )  = 0 and D -== 0. 
For an increasing and bounded function f ,  its IJST (Laplace-St,ieltjes transform) is de- 

noted by f *(0), and its LT (Laplace transform) is denoted by f ** (0) .  That  is, 

Note that  f *(0) - 0 f**(0) - f (0-). 
Since we are concerned with the ~ t~a t i ona ry  distribution of { (M( t ) ,  A'(() )}, we can assume 

without loss of generality tha t  {Y{t}} has stationary increments. By the well-known result 
due to  Loynes [6], X ( t )  has a stationary distribution, i.e. X ( t )  is stable, if 

roc 
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FIII~CY' Queues with Batch Inputs 34 7 

We assume that E( lF( l ) )  < 0  throughout this paper, and we denote (A ' ( t ) ,  ; ! / ( t ) )  in tlie 
steady st,ate by (X, M). 

We calculate the LST of stationary joint distribution P(X < x, M = i). For i E S and 
t  > 0 ,  define 16'1-dimensional vector F ( x )  as 

[ F ( x ) I i  = lim P ( X ( t )  <, x ,  M ( t )  = i )  -- P ( X  < x, M = i ) .  
t-+m 

Proposition 2.1 For 0 > 0 ,  

Hence, F * ( Q  is given by 

This proposition is proved in Appendix. Note that [F{0)\, = 0  for i  E .S" and [F(O)], = 
P(,Y =- 0 ,  A4 = i) is unknown yet for i Â S- .  This will be considered in Section 5. 

Iii Section 3, 4 and 5, we assume that function v only takes either 1 or -1. This is 
sufficient for our analysis since we can always reduce the general case to this simpler case 
by a random time change. In fact, let 

and consider the joint process { ( X { t ) ,  M { t ) ) }  defined by these matrices and the rate f'unc- 
lion. Let TT be the stationary distribution of C + 6. Since a sojourn time in statjc i 6 AS is 
unchanged in distribution by this modification, the buffer content process is stochastically - 
unchanged as well. Since TT(l<ii ,5)  ' (C.' + 0) = i+(C + D )  = 0 ,  TT is proportional t,o 7rl;,1,5. 
In a similar way, we get 

where [F ( 0 ) ] ,  = P(%(o)  = 0 ,  G ( 0 )  = i). Thus, our problem is reduced to compute ' F  (0). 

3. The First Passage Time to The Empty State 
As we discussed in Section 2, we could assume that u ( S )  = { - I ,  l } .  This assumption will 
be used in Sections 3, 4 and 5. As we shall see, the first passage time to the empty st,ate 
is a key to get the empty probabilities jointly with the background states. We consider the 
L S T  of the first passage time to the empty state in this section. 

Lot r be the first passage time to the empty state measured from time 0, i.e., 

T = i n f { u  > OIX(u)  = O}. 

Note that ,  if X ( 0 )  = 0  and M ( 0 )  E .S-, then r -- 0. Define S x \S- [-matrix H( t \ x )  as 
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time s 

Figure 1: No jump a t  time y for El-- 

X (s) 

Figure 2: A jump a t  tAme y for H "- 

Clearly, we have / / + (O ld )  = O t -  and H -  (Old) = I .  For convenience, we introduce the 
following matrix functions. 

'raking the LST of these formulas, we have 

Lemma 3.1 The following equations hold for 6 > 0  and x > 0. 

Prooaf. To derive (3.3) ,  we first observe the following fact. Given X ( 0 )  = x > 0 ,  there is no 
possibility to attain the  empty state in time interval [O, x). Given X ( 0 )  = 0, i f  A'/ ( 0 )  c S 
then T = 0 <, 1. Note tha t  the (i,j)tli element of matrix e c T  is a conditional joint 
probability t h t ,  in time interval (0, x ] ,  the buffer content process has no jumps and the 
liackground process stays in S with M{.r) Â¥ j ,  given Af(0) = 2.  If either the buffer content 
process has a jump or the background process enters S+ in time interval (0, x] , we decompose 
time interval [0, r]  into three parts. See Figures 1 and 2. Let y be the first time when tlie 
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I time s 

Figure 3: No jump a t  time y  for H+-- 

I time s 

Figure 4: A jump a t  time y  for H^- 

buffer content increases due to either a jump or a state change of the background process 
into S+. Let u  be the first return time for the buffer content being to  the level a t  time y- 
measured from time if. Thus, time interval (0, r]  is partitioned into three sections, the first 
section is [O, y),  the second section is [y ,  y  + u ) ,  and the remaining section is [y + u ,  T ] .  These 
observations yield 

f - x  
W-(du\u) )H- ' " ( t  - y - u \ x  - y ) }  

(Changing variable y  to x - y) 

= l ( x  = O ) I -  + l ( 0  < x < t )  {ec--' 

t - x  
- - 1 1  dy $- - (du)HL-( t  - ( X  - y) - ul i , )} ,  

where I ( - )  denotes the indicator function of statement '.'. For x > 0, multiplying e o t  to  
both sides of (3.5) and integrating from 0 to  oo, we have 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



Multiplying 0 t o  both sides of i t ,  applying ff"*((Hx) = OH --"(O\x) t,o it, we obtain (3.3) 
for x > 0. This is also valid for x = 0 since 

For 77 * , we decompose time interval [O, r] into two or three parts. Let y be the first 
time when either the buffer content has a jump or the background state change into S"-. In 
the latter case, the time interval is divided into intervals \0, y) and [y, r]( see Fip,ure 2). In 
the former case, it is divided into intervals [O, y) ,  [y, y 4- u)  and [y + u, r], wliere u is the first 
return time to  level X(y - )  measured from time y (see Figiire 4). From these observations. 
we have 

(Changing variable y t o  y -- x) 

Then its LT is calcula,ted as 
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Figure 5: The another observation for H ^ -  

*t+J--29 / < "I@^--  (du)  
. ll-=o 

x e 8 ( t  - ( y -  J;} - - 1 1 )  11 " ( t  -- ( y  - x) -- u\y)dydt 
X) 

/ 
af+a'-2y 

e - ( G I + + - W ) ( y - - . r )  r -  '"@+- (du)  
1 0  

Multiplying 0 t o  both sides of it), we obtain (3.4). D 

From Lemma 3.1, we shall derive a matrix exponential form for the LST of 11. To this 
end, define 

Lemma 3.2 

Proof. Differentiating both sides of (3.3) with respect to  x yields 

a solution of this differential equation is given by (3.6). For (3.7), we need another obser- 
vation different from Lemma 3.1. We decompose time interval [O, r]  into two parts. Let y 
he the first return time to  level .r measured from time 0. The  first part  is interval (0, y) and 
the second part is interval [y, r]  (see Figure 5 ) .  From these, we have 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



Multiplying e Ot to  both sides of i t  and integrating it from 0 t o  oo with respert to t ,  we got 

From this equation and (3.6), we obta,in (3.7). 
Matrices Q ( 0 )  and / / + * ( 0 [ 0 )  are unknown yet,. We need these matrices at 0 = 0+ to 

calculate the empty probabilities F(O) later. We so define matrices Q and R^ - by 

To compute these matrices, we first note the following facts. 
Lemma 3.3 For 0 > 0, t,he following equations hold. 

Proof. From (3.1) and Lemma 3.2, we have 

Substituting t,his equation into the definit,ion of Q ( Q ) ,  we obtain (3.9). 
On the other hand, differentiating bot,h sides of (3.4) and (3.7), we have 

r~spec t i v~ ly .  (3.2) and Lemma 3.2 imply t,hat,, 

From t>his equation, (3.11) and (3.12), we obtain (3.10). D 
Faking the limit as 0 + 0+ for (3.9) and (3.10), we have for any J ] ,  
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Remark 3.1 1. Equations (3.13) and (3.14) can be writdm as: 

Recall tha t  we have assumed the case of v ( S )  = {-I, I}. We now rewrite the above 
equation by the original notation in Section 2. Let, 

and change C and D ( x )  t o  and D ( x )  in (3.15). Since 6 = Ki,,C.', D ( x )  -- D ( x )  
and V = & / , , s ~ ,  we have the following expression. 

This generalizes a part of the Wiener-Hopf 
[9], which is the  case tha t  0 = 0, i.e, 

fa,ctorization of a Markov chain in Rogers 

2. When D = 0, (3.13) and (3.14) are similar to  the corresponding equations in Asmussen 
3 .  However, they are not the same. The reason is tha t  the  first passage time of {Y ( t ) }  
t o  level 0 starting with Y ( 0 )  = 0 is considered for u(A'/(O)) < 0 in Asniussen [3], while 
v ( M { 0 ) )  > 0 in this paper, respectively. 

3. In the case of the MAP/G/l queue, since u(z)  = - 1  for all z E 5, we can omit (3.14) 
and terms concerning S+. From (3.13),  we have 

This is the equation obtained in Hasegawa and Takine [12].  A similar equation is also 
obtained in Asmussen [2] .  

Definition 3.1 When a matrix has negative diagonal elements and nonnegat,ive 
non-diagonal elements, the matrix is called an Mli-matm. (see Seneta [10]). If ML-inatrix 
A satisfies Ae <  ̂ 0, then matrix A is called a subrate matrix. In particular, when .4e = 0, 
A is called a rate matrix. 

Lemma 3.4 QL- is a rate matrix, i.e. 

where e is the 5'1-dimensional column vector all of whose elements are 1, and 0 ' is the 
S --dimensional column zero vector. Furthermore, R+ is a nonnegative matrix. 
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Proof. By t,he definition of R^ ,  R^- i s obviously a nonnegative matrix. Since Y ( t )  goes 
to -oo as t tends to  +oo by the stability condition (2.3), r is finite with probability one. 
Thus, H is the proper joint distribution of r and M ( r ) .  Hence, 

roo 

lim f f ( e \ w ) e  = 1 H(dt \w)e- -  = e .  
(? +0+ 

I'hus, from (2.1) and (3.13), we have 

lini Q ( 0 ) e -  = ( 7 - e -  + C'-'e+ + D ' ( d w )  lim 11' *(01ii;)e 
0 >m 0-̂ ) { 

Since C is a subra,te matrix and other matrices are nonnegative in the  right side of (3.13), 
Q also is the ML-matrix. These imply that  Q-- is a rate matrix. 0 

4. Iteration Algorithm and Its Verification 
To compute matrices Q and R^-, we use iteration. 
inax{IC.',,]; 8 6 S}. Define matrices Q r  and A' for 11 2 

We choose an q such t h t  q > 
0 by 

Note tha t  ( i )  qI++ + C'.+'+' is nonnegative, (ii) it can be shown by induction tha t  Q ;  and 
Hd - are subrate matrix and substochastic matrix, respectively, and (iii) it is well known 
from Perron-Frobenius theorem (for example, see Chapter 2 of Senet,a [lo]) tha t  i ) / - -  --- Q,, 
is invertible and the inverse matrix is nonnegative. Properties (i), (ii), and (iii) are used 
later. 

The next theorem is a key for our co~r~puta t~ ion ,  which verifies tha t  the it,erations (4.1) 
and (4.2) indeed converge t o  the right values. 
Theorem 4.1 For each i )  > max{]Ci,1; i e S}, Q;' and R :  are increasing for n and f17; 
is nonnegative, and 

lim Qi - = Q ,  lini H,! = R+-. 
n+m n+TO 

(4.3) 

Proof. We show the monotonicity of Q ;  and R :  by induction. Since matrices D and 
(,c-- are n~nnegat~ive,  we have, from (4. I ) ,  

Obviously Q [  is an ML-matrix. So, e ^ i  and ( r 1 I  - Q , ) '  are nonnegative. We then 
have, from (4.2), 
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We now assume the m~notonic i t~y  of Q i  and R :  for k = 0 ,1 ,  ..., n. Then, we get 

-- 
D++ (&W,^" If' - c ;̂ - l'") > 0 - .  > r  

Since Q,̂  > Q n ,  we obtain 

( q I - -  - Q., )--l < - (r)I - - 

On the other hand, (r]I++ + C ^ + )  is a nonnegative matrix. I t  follows from these facts tha t  

Thus, we obtain the monotonicity of Q .  and . By the rnonotonicity of R\ - and 
definition R :  = O + ,  we also have the nonnegativity of R^,-. 

We next show tha t  Q r ;  and h': are bounded by Q-- and R ' ,  respect,ively. Since 
Qi - Ã‘ C - and Q - = C + (nonnegative terms), we have Q , i  < Q .  The fact,s that, 
R,-t - = 07- and R +  is nonnegative matrix yield Ri} < R + .  Hence, WC have 

In a similar way, wo have R:- < R1' . If Qr;' < Q-- and R:- < R+-, t,llen replacing 
subscripts 0 and 1 by n and n + 1 in above equations, respectively, we also have < Q-- 
and R:+~ < R + .  Hence, the inequalities hold true for all n. Thus we have 

lirn < R+-, lim Q,- < Q--.  
1tÃ‘>O M + - O  

To complete the proof, we show tha t  

Clearly, (4.4) and (4.5) conclude (4.3). To prove (4.5), we use the uniformization of a Markov 
chain. Let {m} be a uniformized Markov chain obtained from {M(t)} with respect t o  
infol-m rate r ) ,  let and N be a counting process tha t  counts all transition instants of { N t ) } .  
Define IS1 X IS-l-matrix m t \ x )  by 
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Obviously, we have 

H n ( t \ x )  < H ( t \ x ) ,  lim H M \ x )  = H(t\x), 
rt+m 

G(o\x) < W ( 0 \ x ) ,  lim e ( f f \ x )  = H'(01x). 
r t+oc  

Define ISt 1 x IS- I-matrix @- and IS- 1 x IS-1-matrix I?;- (x) by 

I?:- = lirn /^-*(010), ft;-(x) = lirn H , Ã ‘ ( 0 \ x )  0 ->0 + 0 > Q {  

respective1 y. We then have 

We shall prove tha t  

R^-g+- Â¥II ' f l ~ ( x ) < c ' - ' - - ~ ,  - 

for all n >. 0 and all x > 0. If (4.6) holds, then 

R t  <^R[-, el '-- .r < (,G-T 
- 

These inequalities imply 

We have (4.5). In what follows, we prove (4.6) by induction on n. 7' ,. ince 

from the definitions for n = 0, both inequalities of (4.6) hold for 7~ = 0. We assume that  
these inequalities hold up t o  n. We first consider m x ) .  Recall that  we partition off T into 
three sections for H""(t1x) in Section 3. Similarly to  I I ( t \ x ) ^  we partition off r into three 
sections for H",^(t\x). Note that  the event for ~ + ~ ( / . l x )  has a t  most n + 1 transitions of 
the background process. Suppose that  M{t) stays in S during time interval (0, x] without 
jumps for the buffer content process. In this case, there are a t  most n + 1 transitions of the 
background process. Hence, the corresponding transition probability matrix is not greater 
than e c  .''. If this is not the case, there are ni and n2 sat,isfying 0 < nl 5 Â¥ rind I < Q < n 
such tha t  the background process has n1 transitions in S on the first section [0, y), lias a 
transition a t  time y, has n2 transitions on the second section (y, y + u) ,  and has a t  most 
n - 711 - n2 transitions on the third section (y  + u ,  T\. From these observations, we have 

where 6 -- (u) is defined by 
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Since we also have 
fin' (u 1 w ) $ f"fI,^ ( d y  \ 0 )  fi; - (u  -- y  \w ) , 

we get 

Faking the limit of the above equation as  0 -+ 0+, and using (4 .1) ,  we have 

Hence, it follows from (4.7),  (4.8) and the monotonicity of Q7;- on n tha t  

(Integration by parts for the first integral) 
- - (,c--; { I -  + e-c--- ^;,,-IT _ 1- } = ̂ i.,;̂ .* 

This proves the second inequality in (4.6). I t  remains t o  prove the first inequality in (4.6). 
For 7/^,l(t10), let y be the first time when the uniformiz~d background process { f i ' ~ ( t ) }  has 
a transition. Note tha t  y  is exponentially distributed with mean l /r / .  Time intlerval 10, r]  
is partitioned into three sections: [0 ,  y) ,  [ y ,  y + u )  and [ y  + u ,  r ] ,  where 21 is tlie first return 
time of the buffer content to  level X { y - )  measured from time y. Since there is a transition 
of the uniformized background process a t  time y ,  there are a t  most n transitions of tlie 
uniformized background process on each of time intervals [0 ,  y ) ,  [ y ,  y  + u )  and [ y  + u ,  r ] .  We 
define 4; by 

It  follows from the above observations t,hat, 

From the induction assumption, tlie monotonicity of Q "  and the recursion equation (4.2) 
of R Ã £  we also have 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



Hence, we get 

Thus we get (4 .6 ) .  This completes the proof. 0 

Remark 4.1 The iteration (4 .2)  of q- includes a computation of the inverse a t  each step 
n .  When \ S  is very large, this may be inefficient. We can make another recursion of R:- 
by 

In this algorithm, we only need one inverse operation for C++ independent of n .  Hence, 
one might think tha t  this recursion is better than the former recursion for a large IS- 1 %  
However, our numerical experience shows tha t  this is not always the case (see Table 6.1 in 
Section 6 ) .  Another problem for this iteration is tha t  it seems hard to  verify its convergence 
t,o the right values Q-- and R + .  In particular, we could not prove that  I t :  > R +  for 
all n > 1. 

5. The Empty Probabilities 
To get the empty probabilities, we first consider busy cycles which is the time interval 
between successive instants when the buffer content attains 0. We then show that  the 
empty probabilities are given by a stationary vector of Q--. Let x be a busy cycle length. 
We define S \ x S f - m a t r i x  L ( t )  by 

Condit,ioning on the first time when the buffer content process leaves the empty state, we 
have 

Hence, we obtain the relationship 

Therefore, the following equality holds. 
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Since the limiting distribution of [ G ' ( t l ~ ) ] , ~ ~  is independent of initial conditions M(0)  = z and 
X(0) = x,  we have the following form: 

F ( 0 )  is the empty proba,bility vector in the case of v(S)  = {-I, I}. 
Lemma 5.1 For 0 > 0 and x > 0, we have 

Proof. We decompose time t into three parts: the first passage time from level x to  the 
empty state, successive busy cycles and the remaining time up to  time t .  We then have 

where \S-\ x IS- \-matrix LiTi)(y) is the TI,-fold convolution of I, with itself. From (5.1), the 
LT of G( t  1.r) is 

Thus we get (5.2). 0 
The following t,heorem gives the representation of F ( 0 )  in the term of the stationary 

distribution of Q- , which always exists because 5"' is finite. 
Theorem 5.1 Let K be the stationary distribution of Q .  Then, 

where Y is the stationary accumulated input process with v(S)  = {-I, l}. 
Proof. Using integration by parts, we have 

O 0 9  
lim QG*(Q\x) = lim c - " - ~ ( t \ x ) d t  = lim G(t1x) = 

0 + o \  0-+O+ 0 9t t-fm 
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Multiplying 0 t o  ( 5 . 2 )  and taking it in the limit as 6 Ã‘> 0+, we have 

Thus, we obtain F ( 0 ) Q - -  = 0 .  Since Q-- is irreducible, which follows froin t,he irre- 
ducibility of C + D ,  we have 

F(0) -  = CK, 

for some constant c > 0. Multiplying vector e to  both sides of this equation. 

To calculate the normalizing constant c, let U + ( t )  be the sojourn time in S4 up to  time 
/ ,  and let U ( t )  and U n ( t )  be the sojourn times in S up to  time t such that the buffer 
content is not empty and empty, respectively. Let TYi be the n th  jump instant of { X ( t ) } .  
Note that, 

U+ ( t )  + U,  ( t )  + U; ( t )  = t ,  
N(t} 

0 -5 < &%bwTn-), M(T, , ) )  + fT+(t) - f/. ( t )  5 Wt).  
n=l 

Since {.Y(t)} has the stationary distribution, 

Hence, we have 

u r n  c = lim - 
f.-->OG t  

U+(t )  U,  ( t )  
= 1 - lim(- 

f ^ ~  t +-) t 

Let .EN denote the expectation by the Palm probability with respect to  N .  Substituting 
t  = 1 to  (2 .2 )  and taking the expectation of i t ,  we have 

From the stJrong law of large numbers, 

Hence we have 

n 
Thus, combining Proposition 2.1 and Theorem 5.1, we can determine the LST F * ( 0 )  of 

the stationary joint distribution of X and M .  However, t o  get numerical values from tJhis 
LST, we need some more work. This will be done in the next section. 
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6. Moments of The Buffer Content and Numerical Examples 
We give an algorithm to  compute moments of the buffer content. Wo also exemplify it for 
some simple cases. We remove the restriction that  v ( S )  = { - I ,  l} in t,his section. 

( 2 . 4 )  can be written as: 

Let F*(')(o)  am1 ~ * ( * ' ) ( f f )  be the kth derivative of P(O) and D*(Q) ,  respectively. We note 
t,hat B ( X v  (-1) l ' ~ * ( ~ ) ( o + ) e  for k > I and F*(") (o+)  = I T .  Differentiating both sides of 
(6.1) for r~ times for n > 1 and taking 0 Ã‘ 0+ in i t ,  we have 

Define 91") and x(") as 

Since 

r ( e r  - (C + D))- '  = I T ,  

F*'") (0 )  ( e x  - (C + D ) )  = ( f 1 7 ' , )  ( 0 ) e ) n  + g("l, 

Differentiating both sides of (6.1) for n+ 1 times for n, > 1, taking 0 -+ 0+ to  i t ,  multiplying 
e to the right side of it and applying (6.5) to  i t ,  we have 

and, equivalently, 

From these calculations, we have the following algorithm: 
Step 1 .  The computation of F(0) 

Step 1-1. Compute stationary distribution TT of C + D. 
Step 1-2.  Compute c and . 6 ( x ) .  

Step 1-3. Compute Q" by the iteration ( 4 . 1 )  and ( 4 . 2 )  for C and D ( x ) .  
Step 1-4.  Compute stationary distribution n of Q-- .  

Step 1-5. Compute -/?(?(I)) by applying %, v and D ( x )  in stead of  ir, V and D(x)  
in ( 2 . 3 ) .  
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Table 1: The result of the numerical examples 
v ( d )  -E\Y(l)] 4 \ Y ( l ) \  Q-- Cornput,ation time 

Case 1 Case 2 

-2 0.065 
- 1 .036718 1.036718 

2 sec 40 sec 

1.065 
-1.205187 1.205187 

-6 1 sec 0.5 sec 

Step 1-6. Compute 

Step 2. Compute inverse 
For k Â¥=Â 1 t,o n:{ 

Step 3-k. Compute 

Step 4-k. Compute 
Step 5-k. Compute 
St,ep 6-k. FAXk) = 

F ( 0 )  by (2.5). 
matrix of (CTT - (C + D))  

In the rest of the this section, we consider numerical examples t o  show how the algorithm 
works. 
Example 6.1 Suppose that  jump sizes are deterministic for each possible transitions. Let 
B be a IS1 x IS-matrix, whose ( i ,  j}th element is the jump size of the buffer process when 
the background state changes from z to j .  Define D[x} by 

It is assumed that  (C + D)e = 0. Then the integral terms in the iteration (1.1) and (4.2) 
for Q-- are given by 

In a similar way, we can get the integral terms of the iteration for R^". The calculation of 
~ * ( * ' ) ( 0 )  for t > 1 is given by 

For numerical examples, we put the following parameters. 
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where the states are ordered as a ,  b, c and d .  For instance, a ' 5 '  x 15'1-matrix A has the 

v(d) is varied so as t o  represent the heavy traffic case ( - E ( Y ( 1 ) )  close to  zero) and the 
light traffic case (-E(Y(1))  far from zero). The results are presented in Table 6.1, where 
for F ( 0 ) .  F ( 0 )  and Q ,  the background states arc ordered as c,  d. i.e., 

For those examples, we also compare computation times of both iterations in Section 4 and 
Remark 4.1, which are referred t o  as cases 1 and 2, respectively. Here, numerical results of 
both iterations are found to  be identical as it is expected. 
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Appendix. Proof of Proposition 2.1 
To calculate the stationary equation of F(x ) ,  we assume that  X ( t )  and M ( t )  are jointly 
stationary, and define Z ( t )  as 

Z ( t )  = <^"<w^hf(t) = i ) ,  

for each z G S and 0 > 0. 
We uniformize {M(t)}  with rate A given by 

Namely, state transition instants are subject t o  the Poisson process with rate A ,  and a t  each 
i s t a n t ,  the state of M ( t )  changes according t o  the transition probability matrix PC 4- P D ,  
where 

For P'-transition, jumps are associated. Each jump size is subject to  distribution 
[ J . ( x ) ] , ~ / ' [ / ? ] , , .  We denote the Poisson process by A .  

We apply the rate conservation law (see Miyazawa [ 8 ] )  t o  Z ( t )  with uniformized M(t}. 

where E\ is the Palm expectation with respect to  point process A. 
To calculate tlie left side of rate conservation law, we have 

d d 
-Z(t) = -0-~( t )c- '" ' (~)!(~f( t )  = i ) .  
d t d t 

If X ( t )  = 0 and i E S ' ,  then X1(t)  = 0. In the other case, we have X ' ( t )  = v(i), Hence, we 
have 

This yields 
E(Z ' (0) )  = -0v(i)[F*(0)],  + 0v( i ) l ( i  c ,S-)[F(0)],. 

We calculate tlie right side of (A.1). Because transition instants of the uniformizecl process 
constitute the Poisson process with rate A ,  we can apply PASTA to  EA(7(0- ) ) ,  is(*. 
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We have 

A E * ( Z ( ~ - ) )  = M ( Z ( 0 ) )  = A[F*(e)]i ,  
AEA(Z(O+)) = A E N ( ~  - Ã ˆ . i ( o + ) i ( ~ . f ( O +  = i)) 

= A ~ E N ( ~  -Ãˆx(Oil (M(0+) = z ,  M(0-) = j ) )  
jes 

Hence, we get the right side of @.I),  

Thus, we obtain 
-OF'(O)V + OF(0)V = -F*(O)(C + D*(O)). 

This proves Proposition 2.1. 
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