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Abstract It is a current airline industry practice t o  upgrade passengers from the  economy cabin t o  the 
business cabin at no  additional cost to the  passengers. Incorporating this practice, this paper deals with 
a single-flight-leg multi-fare class seat inventory control problem. A discrete-time dynamic programniing 
model for finding the optimal booking policy is developed. It i s  found tha t  the booking policy can be 
reduced to  some set. of critical values. 

1. Introduction 
The airline business is an extremely competitive market. Within this competitive market, it 
has become important to develop strategies to improve revenues. One of the major strategies 
is the seat inventory control. 

Since the marginal cost of carrying an additional economy/business passenger is rela- 
tively low when compared to the high fixed cost incurred on a flight, the improved load 
factor resulting from additional passengers can produce a significant increase in the total 
revenue. Thus, instead of departing with many vacant seats, airlines will try to  sell all of 
the seats. A common strategy to increase sales is to classify a pool of identical seats into 
several fare classes through the application of restrictions or service on tickets [2]. Under 
this strategy, an identical seats in a certain cabin are sold at  a variety of prices. Airlines can 
never be certain what types of booking requests will appear in the future. If most of the 
customers' booking requests are accepted regardless of the fare class, an airline may lose a 
lot of customers who are willing to pay higher fares. On the other hand, if airlines reject 
most of the lower fare booking requests, they run the risk of taking off with many vacant 
seats. Hence, a problem associated with management arises in the seat inventory control 
(i.e., what are the suitable booking limits with respect to different booking status). 

Airline seat inventory control is an aspect of yield management. Several wonderful 
introductions to  the airline yield management problem exist in the literature [2, 8, 9, 141. 
In addition, a number of models (e.g. [I], [3], [4-71, [lo-121, [15-171) have been proposed to  
determine the booking limit for different types of seat inventory control problems. 

Using a method called the marginal seat revenue approach, Littlewood [ll] applied a 
two-fare class model. Belobaba [3] furthered this work and proposed a general model with 
multiple fare classes, assuming that the booking process is sequentially monotonic, that is 
the lower value fare was assumed to be booked before the higher value fare. By the same 
assumption, Curry [6] developed a multiple fare class model using the mathematical pro- 
gramming approach. Wollmer [I51 dealt with the multiple fare class model and introduced 
an algorithm for computing the optimal booking policy. Brumelle, McGill, Oum, Sawaki, 
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and Tretheway [4] dealt with a multiple fare class problem by formulating a revenue function 
for both discrete and continuous probability distributions of demand, and the conditions 
revealed a concave revenue function. In addition to the previous research, Robinson [12] 
dealt with a model with multiple fare classes, assuming the booking process was sequentially 
nonmonotonic. 

In another approach, Gerchak, Parlar, and Yee [7] used the dynamic approach to deal 
with a two-fare class model in which demands are modeled as a discrete time stochastic 
process. The assumption that demands are stochastic eliminates the need for the additional 
assumption that the demand from the different fare classes arrives sequentially. An impor- 
tant outcome of the work [7] is that the booking policy parameters can be reduced to two 
types of critical values: critical booking capacity and critical decision periods. These values 
play an important role in reducing the computational time and eliminating the need for 
a large amount of data storage. In an extension of Gerchak's work, Lee, and Hersh [lo] 
developed a dynamic model with multiple fare classes and multiple seat bookings. 

To generate the largest possible revenues, it is reasonable for airlines to  offer unbooked 
seats in the business cabin to passengers who requested seats in the economy cabin, at  no 
additional cost to the passengers. However, this was not taken into consideration in the 
models of the aforementioned literature. In the present paper, a model for a flight with 
two cabins and multi-fare classes within each cabin is proposed. In our model, demands are 
also modeled as a stochastic process, and the booking policy also can be reduced to some 
set of critical values. The booking policy includes the following information: (1) which fare 
classes should be opened for sale within each cabin (i.e. whether to accept a request for a 
fare class in each cabin), and (2) whether to accept a request for a fare class in the economy 
cabin once the economy cabin reaches full capacity. 

To that end, this paper has developed a discrete time dynamic programming model 
which leads to a decision rule for the problem involving two cabins and multiple fare classes 
within each cabin. The objective of this paper is to maximize the expected total revenue. 

2. Problem Description and Modeling Assumption 
Consider a single-flight-leg multiple-fare-class airline seat inventory control problem. Sup- 
pose that  an airline has previously specified a set of allowable fare classes, A  ̂= {I ,  2, Â . Â , L J } ,  
j ? {I,  2}, for a economy cabin ( j  = 1) and business cabin (7 = 2)in a flight. The purpose 
of the airline is to  optimally sell tickets (i.e. a t  a price that provides the airline the largest 
revenues possible). 

By considering the policy in which passengers in the economy cabin can be offered seats 
in business cabin without paying additional cost, this paper has attempted to develop a 
booking policy to achieve this purpose. The booking policy that was developed includes the 
following information: 

1. whether to accept a request for a fare class within the economy cabin when there are 
seats available within that cabin. 

2. whether to accept a request for a fare class within the economy cabin when there is 
no seat available in that cabin but there are seats available in the business cabin. 

3. whether to accept a request for a fare class in the business cabin when there are seats 
available within that cabin. 

For the modeling purpose, the total planning horizon has been divided into T decision 
periods which is small enough that no more than one customer arrives per period. Also, the 
decision periods are numbered in reverse sequence, i.e. t = 1 will refer to the final decision 
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period, t = 2 to  the period before the final decision period, and so on. It has been observed 
that t has also been used to represent the number of periods remaining. Moreover, in this 
paper, fare classes are classified into ordered types l?, k' E {I,  2 , .  . . , Lj}, where the ticket 
price of the fare class 1 is the most expensive and Li is the least expensive within cabin j .  

In this paper, cancellations, no-shows, and overbookings are not considered. Indeed, 
these assumptions are also assumed by other authors (e.g., Brumelle et al. [4], Curry 
[6], Lee et al. [ lo],  Robinson [12]). Furthermore, Brumelle et al. [4] have discussed the 
limitations. We agree with them that the analysis of this simplified version can serve as 
a basis for approximate solutions to more realistic versions. Finally, we assume that each 
passenger requests a single seat. 

3. The Model 
In this section, it is assumed that every request is only for one seat. Moreover, the following 
notation and functions are used. 
Notation: 

j : the type of cabin; economy cabin when j = 1 and business cabin when 7 = 2, 
z : the remaining seats available for cabin j, (initially, i, = I,) 

@(^I,  h) : a set of the opened fare classes in cabin j during period t when i i  and l2 seats 
remain (For simplicity, the symbol B{ is used to short for B{(Q, h)), 

L j  : the number of fare classes within cabin j, 
x3/ : the expected revenue from selling a seat in fare class Â within cabin j, 
\', : the probability of a customer's requesting fare class t in cabin j in period t .  
Functions: 

vt(zi, &) : the maximum total expected revenue that can be generated within t periods when 
there are z i  and iy seats remaining. 

vt.{i\, i2, B;, B a  : the maximum total expected revenue within t periods when there are 
and i2 seats remaining, and the fare classes Bt in cabin 1 and BF in cabin 2 are, 
respectively, opened for sale. 

If there is no time remaining or no seat remaining for booking, no additional revenue 
can be generated. Therefore, vt(O,O) = 0 and i z )  = 0. Moreover, during the booking 
periods, the following situations may arise: (1) there is no seat available for cabin 1 and 
cabin 2; (2) there are seats remaining in cabin 1, but, no seat remaining in cabin 2; (3) there 
is no seat remaining in cabin 1 while there are seats remaining in cabin 2; and (4) there are 
seats remaining in both cabins 1 and 2. 

In case ( I ) ,  all the fare classes in cabin 1 and cabin 2 should be closed (i.e. B; = $, 
] = 1 , 2 ) ,  and so the total expected revenue is 0; in case (2), no fare class in cabin 2 will be 
opened for sale (i.e. B; = 4 ) .  Thus, the total expected revenues from selling z1 seats within 
t periods is given by (1 - EGs; m v i - i  ( t i ,  0) + EGB; A:,(x; + "1-1 (21 - 1,O)). In case (3), 
since the free upgrading policy is used, a requests for cabin 1 can be upgraded for free to  a 
seat in cabin 2. Thus, the total expected revenue is (1 - GB; A& - LB; A$)vt-~ (O,z2) + 

+ (0, z2 - 1)) + A;(x: + vt-l (0, za - 1)). In case (4), the fare classes B; 
and Bf will be chosen for sale from A' and A2, respectively. Thus, the total expected revenue 
is (1 - Z I E ~ ;  - Ele8: A?[)vt--1(21,z2) + E ~ ~ B , I  A,'[(̂  + UI-1 ( ~ 1  - O)) + E t e ~ ?  A?l(x? + 
v t _ ~  (zi , - 1)).  Therefore, vt(zl, z2 ,  B}i B;) is expressed as the following backward recursive 
equation: 
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V ~ ( Z ~ , - ~ , , B ; , B ~  = (1 - Y, A;~I(!~ = 0 , i 2 = 0 )  - A:~I(Z~ = 0 ) ) ~ ~ . ~ ( i ~ , i ~ )  
ee B; fee? 

+ A;,(x; +ut..i(il - l , i2) ) I ( i i  :> 1) 
ten} 

+ E A;,(x; + vt-1 (0, i2 - 1))1(i, = 0, i2 2 I)  
lEB1 

+ E A?,(^ + v,-1 (21, i2 - 1))  I ( &  1) (1) 
e~ e'f 

where I ( - )  is an indicator function with I ( S )  = 1 if statement S is true, or else I(S) = 0. 
Since airlines will try to maximize the total expected revenue, vt(zl, &) is expressed as 
follows: 

Let z{ ( i l ,  i2) be the average maximum revenue per seat sold if the 4 t h  seat is sold in period 
t ,  that is 

Then, we can write ut(zl, &) in (2) in the following form 

For any given t,  z i  , and i2, 
set Bi .  That is, 

Fare classes are ordered 

K$) = max E W, - i ) .  
3; ̂ ' ec Bi 

define v$(zi7 h) as the largest index of the opened booking class 

according to descending fare value to the airline. Thus, v ig i l ,  $2) 
can be interpreted as the least expensive fare class among the opened fare class in cabin j 
in period t when '4 and i2 seats are available. Accordingly, the optimal opened booking 
classes is the set Bf = {I ,  2, . . . , rn',{h, i2)}. Therefore, if the index mi (i1, i2) is determined, 
the optimal booking class set Bi  is also determined. By (5) and (6), it is easy to determine 
the index, r n h  iy} and B^, and we have the following theorem. 

Theorem 3.1 mi (il ,  i2) = max L 
l : x : > ~ L , ( i ~  l i 2 ) l l ~ A ~  

The index, rn^il, ig), can be obtained by directly computing (3)'-^(5), and its application 
can be interpreted as follows. For example, if a customer who requests booking class (. in 
cabin j arrives in period t with i\ and seats available, the request should be accepted if 
and only if I <_ mi (ii ,  i;). Thus, instead of storing the set B{(ii, i d ,  the airline can only 
store the value v$ ( i i ,  i2) for each different combination of i i ,  i2 and t for each cabin j .  
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It should be noted that for any given j ,  d i i  , i2) is dependent on the values z i 7  i->. and t. 
Thus, the number of data storage for the booking policy for cabin j is the value Il x I2 x T .  

If we can find some approaches to eliminate the unnecessary data storage, the booking 
system will be more efficient. An efficient method to achieve this result is the monotone 
control approach. By applying this approach, Gerchak et al. [6] control a two-fare class 
production problem with a few controlling data (the number of original data is the product 
of total decision periods and the total number of the booking capacities. Using the critical 
booking period, the number of the data storage is reduced to the product of the total 
booking capacities and the number of booking classes). An extension of Gerchak's model, 
Lee et al.[9] show that the multiple fare class airline booking problem also can be controlled 
by using either a set of critical booking periods or a set of critical booking capacities. 
This paper will show that the monotone control approach can also be applied in the case 
concerning a two-cabins multi-fare class airline seat inventory problem. To show this the 
following lemmas and theorems are needed: 
Lemma 3.1 For any real numbers vl and v2 such that vl < v2, 

Proof: By (6) we have 

Kj'(v1)-Ki{v2) = mas  A ~ , ( Q - v , ) -  rnax A ~ x ~ - v ~ )  
f!" câ€̃  tE "', f!" c A.i a' 

5 a x  y \i,(v, - v1) = Y, * - uI), 
Bi @ KB;  ee ~ - i  

Kl(vi )  - %) = max ax, - vi) - max - v2) 
"" ̂ ' & B', B; ~ ' 4 - i  tEB! 

2 min &(v2 - vl) = 0. 0 
B; c A ~  fEB; 

Lemma 3.2 Let B(v)  be a set such that 

Then, for any real numbers vb  v2, vhand v4, the equationq = K(vl)  -K(v2) -K(v3) + K (v4) 

Case (2) vl > v4. The proof is similar to case (1). 
(b) The proof of (b) is almost the same as the proof of (a). 
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Proof: See Appendix. o 
Lemma 3.4 ,vt(ill i2  - I )  5 ut(il - 1,  i 2 ) .  

Proof: Since a seat within cabin 2 can be sold to a customer who requests a, seat witlii11 
cabin 1, while, a seat within cabin 1 can not be sold to a c~istotner wlio requests a, seat in 
cabin 2. 0 

. , 

Lemma 3.5 Suppose z:(ill i2)  is nonincrea.sinq in i]. Then, Ft( i l , i2)  = 8 t ~ t ( ~ , ~ ,  t 2 )  - ,ut(il - 
1, i2 + 1) is nonincreasing irt i l  and nondecreasing in i2 .  

Proof: See Appe~idix. o 
Colnbinirig the above le~~in las ,  one obtains the followillg tlleore~n. 

Theorern 3.2 zi (i l  i2) is nonincreasing in ?]. 

Proof: The proof again will be given in the appe~idix. 
Similarlyl one call also prove the following theore~ii. 

Theorern 3.3 2; ( i l ,  i2)  is nondecrea.sing in t 
Proof: See Appendix. 0 

3.1. Critical Booking Capacities 
In this subsection, we will show that tlie booking process caa be co~~trol led by using so~iie 
critical values. 

. . Theorern 3.4 rt2i(i1 z 2 )  2s riondecreasing in i l  and i2.  

Proof: Immediate frorn Tlleorem 3.1 and rI'lieort?~~i 3.2. 
The decisio~is of the proposed p r o b l e ~ i ~  are represe~ited by the set L?; = {l, 2 ,  . . - , rni(il ,  i2)} 

for eacli different conibi~~a~tion of i l ,  i2  and t .  T~ILIS, a request for booking class ! in cabin j 
with i l  and i 2  seats available> slio~ild be accepted if and o~i ly if ! 5 V L ~ ( I ~ ,  I ~ ) .  Tlie value 
m;(il, 1 2 )  is dependent on t ,  i l ,  i2?  and j ,  thus the 1l11rnt)er of the data storage for cabiri j is 
7' x Il x 12. 

In general, the values Il and I2 are several tirlies 11101-e than the total b o o k i ~ ~ g  classes LJ. 
Accordi11gly, T x I l  x l2 is several times more than I2  x 7' x LJ.  Below, we show that the 
nu[nbc:r of original data can be r~cluced to the nulnber I2 x T' x L J .  

Since rnj(i1, i2) is nolidecreasirig in i l  ancl i 2 ,  tliere exists sollie critical booking ca,pa,city, 
i1(t1 t l  i2) (i2(t1 t l  i l ) ) ,  sucll that t 5 772:(il, i2)  ( t  5 r ~ ~ : ( i ~ ,  i2 ) )  if and only if i l  2 i l ( t ,  t ,  i2)  
(i2 2 i ~ ( t ,  t ,  i l ) )  (Figure 1). 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



Therefore, the booking policy can be expressed as follows: 
a The Booking Policy using critical booking capacity 

1, for given t and i1 2 1, a request for booking class l in cabin 1 should be accepted if 
and only if z l  2 zl(!?, t ,  22). 

2. for given t and il  = 0, a request for booking class l in cabin 1 should be upgraded for 
free to a seat in business cabin if and only if 22 2 i2( l ,  t ,  i l ) .  

3. for given t and 22 2 0, a request for booking class l in cabin 2 should be accepted if 
and only if z2 2 z2 ( l ,  t ,  zl). 

It is noted that zl(l, t ,  22) is the minimum i l  among the index set {il : mi(zl, 22) = l} 
and rnk (til ,  i2) is no~ldecreasing in z l  from Theorrn 3.4, Thus, 2l (l, t ,  22) is nondecreasing in 
l .  Similarly, 22 (!?, t, i l )  is nondecreasing in l .  
3.2. Critical Booking Periods 
Theorem 3.5 rni (21, 22) 2s nonzncreaszng 2n t .  

Proof: Immediate from Theorm 3.3, 0 

In this section, we use the critical booking periods to  reduce the data storage. Here, the 
number of the data storage for cabin j is reduced to ll x I2 x LJ. 

Since mi (2, , 22) is nonincreasing in t ,  there exists some critical booking period, t1 ( l ,  i l ,  22) 
(t2(!?,i1,i2)), such that  l 5 mi(i1,i2) ( l  5 m;(il,i2)) if and only if t < - t1( l , i1 , i2)  (t 5 
t2( t ,  21, 22)) (Figure 2). Thus, the following booking strategy can be used to  coritrol the 
booking process. 
a The Booking Policy using critical booking period 

1. for given 21 2 1 and 22, a request of booking class l in cabin 1 should be accepted if 
and only if t 5 t l ( t ,  i l ,  22). 

2. for giveri z l  = 0 and z2 2 1, a request of booking class ! in cabin 1 should be upgraded 
for free to a seat in business cabin if and only if t 5 t1 ( l ,  0, 22). 

3. for given i l  2 1 and 22 2 0, a request of booking class l in cabin 2 should be accepted 
if and only if t 5 t2 (l,  i l ,  z2), 

It is noted that tJ(l ,  21, 22) is the maxi~num t among the index set { t  : vzi ( i l ,  22) = .!?I 
and mi ( z l ,  22) is nonincreasing in t from Theorm 3.5. Thus, tJ(t?, i l ,  z2)  is nondecreasing in l .  
Now, we will describe how to search the critical values. Observe that for giveri l, t ,  and 22, 

2l ( l ,  t )  22) is the minimum i l  among the index set {zl : mi (zl, z2 )  = l}, Therefore, by Theorm 
3.1 and Theorrn 3.2, the value i l ( l ,  t ,  22) can be obtained f ro~n the following equation: 

Similarly, we have 

Moreover, by Theorrn 3.1 and Theorrn 3,3, the critical booking periods are given by 
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4. Numerical Example 
Iri order to illustrate the proposed model and the booking policies, an example is described 
as follows. Assume a flight will be departing after T = 400 plannirlg periods. The rrmxirnum 
t~ooking capacity for the ecoriorny cabiri and the b~isiness cabin of the flight are I ,  = 100 
and I2 = 50, respectively. Also, assume that the airline has previously specified L = 4 fare 
classes for both cabins and their correspon~~ing ticket price x; and the arriving probabilities 
A: are as in Table I arid Ta,k>le 11, respectively. 

Table 1: the expected 

Table 11: Request Probabilities Ail 
j = l  j = 2  

t 1:100 101:200 201:300 301:400 1:100 101:200 201:300 301:400 -- 
A i l  0.08 0.07 0.06 0.03 0.08 0.06 0.04 0.03 

Tables 111-X show some values of the critical booking periods. The application of these 
Tables can be interpreted as follows. For exarrlple, from Tables 111-\'I, if there are z l  = 40, 
22 = 20 seats or1 hard, a request for fare classes 1, 2, 3 and 4 in cabin 1 is accepted if and 
orily if hislher arriving time is t 5 400, t 5 400, t 5 238, and t 5 168, respectively. From 
Tablos 111-\'I, if i l  = 0 and z2 10, a reqliest for fare classes 1, 2, 3 and 4 in cabin 1 should 
be upgraded for free to a seat in business cat~in if and only if hislher arriving tirne is t 5 50, 
t 5 31, t 5 22, and t 5 18, respectively. 

From Table VII-X, if there are L L  = 401 22 = 20 seats on hand, a request for fare classes 
1, 2, 3 and 4 iri cal~irl 1 is accepted if arid orily if kiislher arriving time is t 5 400, t 5 1201 
t 5 86, and t 5 70, resp~ctively. 

Not only the critical booking period b ~ i t  also the critical booking capacity can be used 
in corltrollirlg the booking process. In this example, since the total number of periods is 
several t , im~s rrlore than the total booking capacities and the number of booking classes, 
~isirig the critical booking period to cont,rol the booking process is more efficient than using 
t,he critical booking capacity, 

Table I11 Critical booking 
periods for L = 1 iri cabin 1 

i 
0 10 20 30 40 50 2 1 

0 50 98 150 203 269 0 
400 400 400 400 400 400 20 
400 400 400 400 400 400 40 
400 400 400 400 400 400 60 
400 400 400 400 400 400 80 
400 400 400 400 400 400 100 

Table IV Critical booking 
periods for L = 2 in cabin 1 

2 2 

0 10 20 30 40 
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Table V Critical booking Table VI Critical booking 
periods for L = 3 in cabin 1 periods for L = 4 in cabin 1 

22 2 2 

Z~ 0 10 20 30 40 50 i l  0 10 20 30 40 50 
0 0 22 46 71 96 123 0 0 18 39 61 83 106 

Table VII Critical booking 
~er iods  for L = 1 in cabin 2 

Table VIII Critical booking 
periods for L = 2 ill cabin 2 

2 2 

i1 10 20 30 40 50 
0 12 114 261 400 400 
20 13 118 264 400 400 
40 13 120 268 400 400 
60 13 120 270 400 400 
80 13 120 271 400 400 
100 13 120 271 400 400 

Table IX Critical booking Table X Critical booking 
periods for L = 3 in cabiri 2 periods for L = 4 in cabin 1 

2 2 2 2 

i L  10 20 30 40 50 i1 I0 20 30 40 50 
0 7 79 161 264 392 0 5 55 103 155 209 

5. Conclusion 
This paper studied a seat inverltory problem in the case of rrudtiple-fare classes arid two 
cabins on a single-flight leg. In many previous models, a seat in business cabin can riot 
be sold to  a customer who requests economy cabiri, However, in reality, a customer who 
requests economy seat may be offered a seat in the business cabin at, no addit,ional cost,. 
Taking this fact into account, this paper proposed a single-flight-leg multi-Ftre class seat 
inventory control model. 

We characterize the booking policy as follows: the booking policy can be controlled 
using either a set of critical booking capacities (The Booking Policy using critical booking 
capacity), or a set of critical decision periods (The Booking Policy using critical booking 
period). 

This paper allows the condition that customers of economy class may be upgraded to 
business class. The model can be extended to the models with multiple cabins, overbookirig, 
no-show, go-show and cancellation. Such extensions would be worthy sub,jects for future 
research, 
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Appendix: 
Proof of Lemma 3.3 

It suffices to show that 2: (i l ,  22) - zt (zl ,  22 - 1) 5 0 since zt (21, i2) - 2: ( i l ,  z2  - 1) = 
2;(zl, 22) - z:(il - 1, 22). Firstl we will note that 

- K;(0) 5 0, if i l  = 1 and i2 = 1, 
2; (21 i2) - 2; ( i l ,  i2 - 1) = otherwise. 

Thus, the statement holds for t = 1. Assume the statements hold for t - 1. For il  2 1 and 
i2 2 1 we have 

where 

Here, by Lemma 3.1 we obtain 

{:;(0) 2 0, if i2 = 1, 
FI(21,22) - Fl(2l,22- 1) = 

otherwise. 

Assume the statement holds for t - 1. Thenl well have 
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Since z ~ - l ( i ' i , i 2 ) - s ~ ( z l  - 1 , i 2 + 1 )  = Ft-l(zi, i2) -Fi- l ( i l  - l , i z )  5 0 and &-l(h - 2 , i 2 +  
1) - zl-i(il - 1 , i2 )  = Ft-,(h - 2,i2)  - f;-i(il - 1 , i2 )  > 0, by Lemma 3.1 we have 

Note that  

since <,(i1 - 1,. + 1) - & ( z l ,  22) = Ft-l( i l l  22 - 1) - Ft-.(ii, i2) 5 0 and sLl ( z l  - 
1, i2 + 1) < (il - 1 , i2) from the assumption of this lemma. Moreover, z:- îl, i2 - 1) > 
r n a ~ { ~ - ~ ( i ~ ,  i;), z2-l(il - 1, i2)} since zzLl(ii, i2 - 1) 2 ~ ~ ~ ( i ~ ,  12) from the assumption of 
this lemma and Z ~ - ~ ( Z ~ ,  - 1) - $-l(il - 1, h) = Ft-i(ii ,  z2 - 1) - Ft-l(i1, i2 - 2) > 0. Thus, 
by Lemma 3.2(a), 

Substituting (35), (36) and (37) into (34), we obtain 

Ft(i1, i2) - Ft(ii - 1, ̂ ) 
= (1 - V>U - E ~ ? e ) ( ~ t - , ( i i ,  22) - Ft-I(& - l , i2) )  5 0. (38) 

f? B; e~ B; 

Using Lemma 3.2(b) and similar arguments as the above, one can show that  F t ( i l ,  i2) - 
&(il l  i2 - 1) > 0. Therefore, F t ( i l ,  (2)  is nonincreasing in i\ and nondecreasing in 22. 0 
Proof of Theorm 3.2 
First, we will note that 

1 1 
~ ~ ( 2 ~ ~ 2 ~ )  - Zi{h - = 

-K,'(O) 5 0, if i l  = 2, 
otherwise ' (39) 

z?(il ,  i2) - z?(il ,  i2 - 1) = {iKl(0)  - Kf(0)  < 0, if i2 = 2, 
otherwise ' (40) 
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Assume the statements hold for t - 1. For i\ > 2 and z2  > 0 

where 

we have 
since z\_ 

2 
^ - ^ l  - 

He + Hs < 0 from Lemma 3.3. Moreover, we have H2 + H4 < - ztpAi AhHi 
( ' 1 ,  ' 2 )  5 z t - l ( i ~  - 1, 2 2 ) .  Similarly, we have H7 + Hg 5 0 since 6.. ( t i  - 2 ,  i 2 )  2 
1,k). Furthermore, since z L l  (2h) 5 2;-, (h  - 1,  i 2 ) ,  we have 

& + H ,  < y W-l(tl-1,i2)-3;Ll(il , l '2)) 
eâ‚¬ 

= A$(-& + F,-i(il,i2 - 1)  - Ft_l(i1 - 1,i2 - 1 ) )  5 - g~~ (52) 
[ â ‚ ¬  ^â ‚¬  

Therefore, zk(i i l  2 2 )  - zt (21  - 1, i 2 )  5 (1  - EfrAi A h  - EfcAi 5 0. 
Similarly, we can show that ah, i-i} - z'7{ih i'2 - 1 )  5 0. Thus, we have completed the 
proof. 
Proof of Theorrn 3.3 
Proof: First, by Lemma 3.4 we have 

Furthermore, we have t i l ,  &) < z\_, ( 2 ,  - 1, &) by Lemma 3.2 and zL (ii, i 2 )  < ( 2 ,  - 
1, &) by Lemma 3.3, thus by ( 5 )  and Lemma 3.1 we obtain 

Similarly, we can show that zf ( i h  i2 )  - ( i ,  , 2 2 )  2 0. Therefore, we have completed the 
proof. 
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