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Abstract It is a current airline industry practice to upgrade passengers from the economy cabin to the
business cabin at no additional cost to the passengers. Incorporating this practice, this paper deals with
a single-flight-leg multi-fare class seat inventory control problem. A discrete-time dynamic programming
model for finding the optimal booking policy is developed. 1t is found that the booking policy can be
reduced to some set of critical values.

1. Introduction

The airline business is an extremely competitive market. Within this competitive market, it
has become important to develop strategies to improve revenues. One of the major strategies
is the seat inventory control.

Since the marginal cost of carrving an additional economy/business passenger is rela-
tively low when compared to the high fixed cost incurred on a flight, the improved load
factor resulting from additional passengers can produce a significant increase in the total
revenue. Thus, instead of departing with many vacant seats, airlines will try to sell all of
the seats. A common strategy to increase sales is to classify a pool of identical seats into
several fare classes through the application of restrictions or service on tickets [2]. Under
this strategy, an identical seats in a certain cabin are sold at a variety of prices. Airlines can
never be certain what types of booking requests will appear in the future. If most of the
customers’ booking requests are accepted regardless of the fare class, an airline may lose a
lot of customers who are willing to pay higher fares. On the other hand, if airlines reject
most of the lower fare booking requests, they run the risk of taking off with many vacant
seats. Hence, a problem associated with management arises in the seat inventory control
(i.e., what are the suitable booking limits with respect to different booking status).

Airline seat inventory control is an aspect of yield management. Several wonderful
introductions to the airline yield management problem exist in the literature [2, 8, 9, 14].
In addition, a number of models (e.g. [1], [3], [4-7], [10-12], [15-17]) have been proposed to
determine the booking limit for different types of seat inventory control problems.

Using a method called the marginal seat revenue approach, Littlewood [11] applied a
two-fare class model. Belobaba [3] furthered this work and proposed a general model with
multiple fare classes, assuming that the booking process is sequentially monotonic, that is
the lower value fare was assumed to be booked before the higher value fare. By the same
assumption, Curry [6] developed a multiple fare class model using the mathematical pro-
gramming approach. Wollmer [15] dealt with the multiple fare class model and introduced
an algorithm for computing the optimal booking policy. Brumelle, McGill, Oum, Sawaki,
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and Tretheway [4] dealt with a multiple fare class problem by formulating a revenue function
for both discrete and continuous probability distributions of demand, and the conditions
revealed a concave revenue function. In addition to the previous research, Robinson [12]
dealt with a model with multiple fare classes, assuming the booking process was sequentially
nonmonotonic.

In another approach, Gerchak, Parlar, and Yee [7] used the dynamic approach to deal
with a two-fare class model in which demands are modeled as a discrete time stochastic
process. The assumption that demands are stochastic eliminates the need for the additional
assumption that the demand from the different fare classes arrives sequentially. An impor-
tant outcome of the work [7] is that the booking policy parameters can be reduced to two
types of critical values: critical booking capacity and critical decision periods. These values
play an important role in reducing the computational time and eliminating the need for
a large amount of data storage. In an extension of Gerchak’s work, Lee, and Hersh [10]
developed a dynamic model with multiple fare classes and multiple seat bookings.

To generate the largest possible revenues, it is reasonable for airlines to offer unbooked
seats in the business cabin to passengers who requested seats in the economy cabin, at no
additional cost to the passengers. However, this was not taken into consideration in the
models of the aforementioned literature. In the present paper, a model for a flight with
two cabins and multi-fare classes within each cabin is proposed. In our model, demands are
also modeled as a stochastic process, and the booking policy also can be reduced to some
set of critical values. The booking policy includes the following information: (1) which fare
classes should be opened for sale within each cabin (i.e. whether to accept a request for a
fare class in each cabin), and (2) whether to accept a request for a fare class in the economy
cabin once the economy cabin reaches full capacity.

To that end, this paper has developed a discrete time dynamic programming model
which leads to a decision rule for the problem involving two cabins and multiple fare classes
within each cabin. The objective of this paper is to maximize the expected total revenue.

2. Problem Description and Modeling Assumption
Consider a single-flight-leg multiple-fare-class airline seat inventory control problem. Sup-
pose that an airline has previously specified a set of allowable fare classes, A7 = {1,2,-.-, L7},
j € {1,2}, for a economy cabin (j = 1) and business cabin (j = 2)in a flight. The purpose
of the airline is to optimally sell tickets (i.e. at a price that provides the airline the largest
revenues possible).

By considering the policy in which passengers in the economy cabin can be offered seats
in business cabin without paying additional cost, this paper has attempted to develop a
booking policy to achieve this purpose. The booking policy that was developed includes the
following information:

1. whether to accept a request for a fare class within the economy cabin when there are
seats available within that cabin.

2. whether to accept a request for a fare class within the economy cabin when there is
no seat available in that cabin but there are seats available in the business cabin.

3. whether to accept a request for a fare class in the business cabin when there are seats
available within that cabin.

For the modeling purpose, the total planning horizon has been divided into T' decision

periods which is small enough that no more than one customer arrives per period. Also, the
decision periods are numbered in reverse sequence, i.e. t = 1 will refer to the final decision
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period, t = 2 to the period before the final decision period, and so on. It has been observed
that ¢ has also been used to represent the number of periods remaining. Moreover, in this
paper, fare classes are classified into ordered types ¢, ¢ € {1,2,---, L7}, where the ticket
price of the fare class 1 is the most expensive and L7 is the least expensive within cabin j.

In this paper, cancellations, no-shows, and overbookings are not considered. Indeed,
these assumptions are also assumed by other authors (e.g., Brumelle et al. [4], Curry
[6], Lee et al. [10], Robinson [12]). Furthermore, Brumelle et al. [4] have discussed the
limitations. We agree with them that the analysis of this simplified version can serve as
a basis for approximate solutions to more realistic versions. Finally, we assume that each
passenger requests a single seat.

3. The Model

In this section, it is assumed that every request is only for one seat. Moreover, the following
notation and functions are used.

Notation:

j : the type of cabin; economy cabin when 7 = 1 and business cabin when j = 2,

i; : the remaining seats available for cabin j, (initially, i; = I;)
BZ(il,ig) . a set of the opened fare classes in cabin j during period ¢ when 1, and i, seats

remain (For simplicity, the symbol B} is used to short for B{ (i, 2)),

L7 : the number of fare classes within cabin 7,

1:{f : the expected revenue from selling a seat in fare class £ within cabin 7,

/\{e : the probability of a customer’s requesting fare class ¢ in cabin j in period ¢.
Functions:

ve(71,172) © the maximum total expected revenue that can be generated within ¢ periods when
there are ¢; and 7, seats remaining.

vi(i1,19, Bf, Bf) : the maximum total expected revenue within ¢ periods when there are
and i, seats remaining, and the fare classes B} in cabin 1 and B} in cabin 2 are,
respectively, opened for sale.

If there is no time remaining or no seat remaining for booking, no additional revenue
can be generated. Therefore, v;(0,0) = 0 and vy(7y, i) = 0. Moreover, during the booking
periods, the following situations may arise: (1) there is no seat available for cabin 1 and
cabin 2; (2) there are seats remaining in cabin 1, but, no seat remaining in cabin 2; (3) there
is no seat remaining in cabin 1 while there are seats remaining in cabin 2; and (4) there are
seats remaining in both cabins 1 and 2.

In case (1), all the fare classes in cabin 1 and cabin 2 should be closed (i.e. B} = ¢,
Jj =1,2), and so the total expected revenue is 0; in case (2), no fare class in cabin 2 will be
opened for sale (i.e. B? = ¢). Thus, the total expected revenues from selling 7, seats within
t periods is given by (1 — Teep Ajp)ve-1(i1,0) + Lpem Ap(mg + via (i — 1,0)). In case (3),
since the free upgrading policy is used, a requests for cabin 1 can be upgraded for free to a
seat in cabin 2. Thus, the total expected revenue is (1 — Yyepr Ay — Leepz Af)ve-1(0,42) +
Yeent Mp(Tp +v0-1(0, 82— 1)) + Lge gz Afp(x7 +v:21(0,32— 1)). In case (4), the fare classes B}
and B? will be chosen for sale from A! and A?, respectively. Thus, the total expected revenue
is (1 — Tepr A — Teenz Ao ve-1(i1s 82) + Teeny Mp(Te + vp-1( — 1,0)) + Tgepz Aiplzf +
v-1(i1,19 — 1)). Therefore, v,(i;, 12, B}, B?) is expressed as the following backward recursive
equation:
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vi(ir,ig, BLBY) = (1= 3 Ad(iy = 0,12 =0) = Y MGl (ia = 0))ve1(in, i2)

ZGBl 2682
+ 3 Molzy + v (i = 1,09)) (3 > 1)
1735
+ Z Me(zg +0-1(0,72 — 1)) (4 = 0,43 > 1)
teB}
+ Z At[ .Ifg + Ui 1(21, 19 — 1))](’52 Z 1) (1)
teB?

where I(-) is an indicator function with I(S) = 1 if statement S is true, or else I(S) = 0.
Since airlines will try to maximize the total expected revenue, v,(iy,%2) is expressed as
follows:

Ut(il,ig) == Btlcg}%)fZCAZ Ut(i],iQ,Btl,B?). (2)

Let 2] (i1,172) be the average maximum revenue per seat sold if the i;th seat is sold in period
t, that is

Ztl(i1,i2) = ’Ut(il,if)) - 'Ut(il - 1,1‘2) for i] _>__ 1, (3)
2H(i1,d2) = iy, i2) —v,(iy,ie— 1)  for 4y > 1. (4)

Then, we can write v;(i1,%2) in (2) in the following form

ve(in,d2) = wi—1(in,i2) + K} (2l (61,32)) I (31 > 1) + K} (221 (i1, 82)) 1 (3, = 0,49 > 1)

+K (27 (i1,82)) (12 > 1) (5)

where
Ki(v) = max /\ 6
W) = o 3l (®

For any given ¢, i1, and i, define m] (i1,19) as the largest index of the opened booking class
set Bf. That is,

mi(i1,72) = max /. (7)
3

Fare classes are ordered according to descending fare value to the airline. Thus, ml (i1, i2)
can be interpreted as the least expensive fare class among the opened fare class in cabin j
in period t when i, and i, seats are available. Accordingly, the optimal opened booking
classes is the set B} = {1,2, - m{(zl, i2)}. Therefore, if the index mi (i1, 1) is determined,
the optimal booking class set B is also determined. By (5) and (6), it is easy to determine

the index, m{(il, iz) and B!, and we have the following theorem.

Theorem 3.1 mJ(iy, iy) = ‘max l.
L) >z (i,i2) L€ AT
The index, mJ (i1, i2), can be obtained by directly computing (3)~(5), and its application
can be interpreted as follows. For example, if a customer who requests booking class ¢ in
cabin j arrives in period t with ¢; and 7, seats available, the request should be accepted if
and only if £ < m{(z'l, i). Thus, instead of storing the set Bj(i1,%,), the airline can only
store the value mj(i;,ip) for each different combination of iy, i, and ¢ for each cabin j.
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It should be noted that for any given j, m{(il, i) is dependent on the values i;, i5, and .
Thus, the number of data storage for the booking policy for cabin j is the value I) x I, x T,

If we can find some approaches to eliminate the unnecessary data storage, the booking
system will be more efficient. An efficient method to achieve this result is the monotone
control approach. By applying this approach, Gerchak et al. [6] control a two-fare class
production problem with a few controlling data (the number of original data is the product
of total decision periods and the total number of the booking capacities. Using the critical
booking period, the number of the data storage is reduced to the product of the total
booking capacities and the number of booking classes). An extension of Gerchak’s model,
Lee et al.[9] show that the multiple fare class airline booking problem also can be controlled
by using either a set of critical booking periods or a set of critical booking capacities.
This paper will show that the monotone control approach can also be applied in the case
concerning a two-cabins multi-fare class airline seat inventory problem. To show this the
following lemmas and theorems are needed:

Lemma 3.1 For any real numbers v, and vy such that v, < vy,

0 < K{(n) - K1) <3 M, —un). (8)

e Al

Proof: By (6) we have

Kl (v)) - Ktj(ug) max Z /\te Ty — V) — max Z /\te Ty — Uy)

il

B} cAj teB BlCAI teBi

< max > My(vy — 1)) = =3y M,(ry — 1), 9)
BjcAs teB! LAY

Kl(n) — Ki(v,) = max > My(xp — 1) — max ST Ny(ze — w)

BiCA” yepi BiCAY e i

> min S N -wm)=0. O (10)
BicA e B]

Lemma 3.2 Let B(v) be a set such that
K{v) = maxZ)\g (ze—v)= Y Mlze—v). (11)
¢eB ¢eB(v)

Then, for any real numbers vy, vy, v3,and vy, the equation ¢ = K(v))— K (v9)— K (v3)+ K (v4)
has the following properties:
(a) if vo < min{vy, v} and vy > max{v,, v}, then q < YeeBw) Ae(v2 — vy + v3 — 1),
(b) if vi < min{vy, v3} and vy > max{vy, v}, then q > Y e p(,) Me(v2 — v1 + v3 — 1yg).
Proof: (a) There are two possible cases.: Case (1) v; < vy. In this case, we have v, < v} <
vy < vz and B(vs) C B(vy) € B(ry) € B(vs), thus

g = K()—-K(vy) - K(vs) + K(vy)
= Z Ae(ze — 1) — 2 Ae(xp — 112) + Z Ae(Tp — vy) — Z Ae(ze — v3)

e B(v1) e B(vs) 2€ B(va) 2e B(vs)

< S M)+ Yo Xz —w) < Y Meve— 1) + S vz — v)
LeB(v1) 2cB(v4) £eB(vy) eB(1)

< Z Ae(ve — vy + 13 — 1yg). 0 (12)
ZEB(Vl)

Case (2) vy > vy. The proof is similar to case (1).
(b) The proof of (b) is almost the same as the proof of (a). i
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Lemma 3.3 z;(iy,72) and z2(i1,15) are nonincreasing in iy and iy, respectively.

Proof: See Appendix. a

Lemma 3.4 v,(1;,1; — 1) < vy — 1,1y).

Proof: Since a seat within cabin 2 can be sold to a customer who requests a seat within

cabin 1, while, a seat within cabin 1 can not be sold to a customer who requests a seat in
cabin 2. a

Lemma 3.5 Suppose z{(i1,15) is nonincreasing in ;. Then, Fy(i1,1y) = v,(t1,19) — vty —
1,2, + 1) is nonincreasing in 1, and nondecreasing in i,.

Proof: See Appendix. O

Combining the above lemmas, one obtains the following theorem.

Theorem 3.2 ztj(z'l, i) 1s nonincreasing in i;.
Proof: The proof again will be given in the appendix. 0
Similarly, one can also prove the following theorem.

Theorem 3.3 zg(il,ig) is nondecreasing in t.
Proof: See Appendix. o
3.1. Critical Booking Capacities

In this subsection, we will show that the booking process can be controlled by using some
critical values.

Theorem 3.4 mf(il, i7) is nondecreasing in i, and 1.

Proof: Immediate from Theorem 3.1 and Theorem 3.2. a ‘ ‘

The decisions of the proposed problem are represented by the set By = {1,2,- -+, mj(i1,12)}
for each different combination of ¢, 7, and t. Thus, a request for booking class £ in cabin |
with ¢; and 7, seats available should be accepted if and only if £ < mj(i;,2;). The value
mj(i1,19) is dependent on ¢, iy, 45, and j, thus the number of the data storage for cabin j is
T x I, x I.

In general, the values I; and [, are several times more than the total booking classes L’
Accordingly, T' x I; x I, is several times more than I, x T x /. Below, we show that the
number of original data can be reduced to the number I, x 7' x L.

Since mj(iy,1,) is nondecreasing in 7; and 7o, there exists some critical booking capacity,
i1(€,t,02) (19(4,¢,11)), such that £ < mj(iy,iz) (¢ < mi(iy,4p)) if and only if &7 > 41(¢,t,22)
(i3 2 i5(¢,t,4,)) (Figure 1).

N - L
VR
my (i1, 12)! 1
| [, — 1 . .

L R e s T et e — mf(n, 12)

3 prermrrme e —_— R R R T ;-—-—*_A

N i N S A L

N ' B N S SN SRR I

- 1 “ ' ‘ ' t
011 (1,t i) 41(2,¢,i2) (L ~1,¢t,22) 11(L. t.12) 1 tI(L, vy, i) V(30are2) tT (10, 02)
Figure 1: Critical booking capacity Figure 2: Critical decision period
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Therefore, the booking policy can be expressed as follows:
e The Booking Policy using critical booking capacity
1. for given t and i; > 1, a request for booking class £ in cabin 1 should be accepted if
and only if 4, > 7,(¢, t,42).

2. for given t and i, = 0, a request for booking class ¢ in cabin 1 should be upgraded for

free to a seat in business cabin if and only if 75 > i5(¢,t,4;).

3. for given t and i, > 0, a request for booking class ¢ in cabin 2 should be accepted if

and only if i5 > i9(,1,41).

It is noted that ¢1(¢,t,4;) is the minimum 7, among the index set {4, : m; (i, i2) = ¢}
and m/ (i1,12) is nondecreasing in i; from Theorm 3.4. Thus, i;(¢,t, %) is nondecreasing in
¢. Similarly, i5(¢,t,1,) is nondecreasing in £.

3.2. Critical Booking Periods
Theorem 3.5 mj (i1, i) is nonincreasing in t.

Proof: Immediate from Theorm 3.3. a

In this section, we use the critical booking periods to reduce the data storage. Here, the
number of the data storage for cabin j is reduced to I x I x L.

Since m{ (i1,12) is nonincreasing in ¢, there exists some critical booking period, ' (¢, i1, i,)
(tQ(e,’L'l,ig)), such that ¢ < m%('&l,lg) (6 S mf(zl,h)) if and only if ¢ S tl(e,’il,iz) (t S
t2(¢,11,12)) (Figure 2). Thus, the following booking strategy can be used to control the
booking process.

e The Booking Policy using critical booking period

1. for given i; > 1 and iy, a request of booking class ¢ in cabin 1 should be accepted if

and only if t < t1(¢,1;,1,).

2. for given i; = 0 and i, > 1, a request of booking class £ in cabin 1 should be upgraded

for free to a seat in business cabin if and only if t < t'(¢,0,,).

3. for given iy > 1 and i > 0, a request of booking class ¢ in cabin 2 should be accepted

if and only if t < 12(¢, 11, i5).

It is noted that #/(¢,4;,12) is the maximum ¢ among the index set {t : mi (i1, i) = £}
and m] (i1, 1) is nonincreasing in ¢ from Theorm 3.5. Thus, t7(¢,%,,i3) is nondecreasing in 4.
Now, we will describe how to search the critical values. Observe that for given ¢, ¢, and 1o,
i1(£,t,12) is the minimum ¢, among the index set {i, : m}(i1,%2) = £}. Therefore, by Theorm
3.1 and Theorm 3.2, the value i;(¢,t,1,) can be obtained from the following equation:

i(6,t,3) = min{i, :zp > 2, (i1,02)}- (13)
Similarly, we have

io(€,t,41) = min{iy: x> 22 [ (i1,42)}- (14)
Moreover, by Theorm 3.1 and Theorm 3.3, the critical booking periods are given by

th(€,i1,4) = max{t:z} >z (i1,i2)}, (15)
t2(0,i1,iy) = max{t:x) >z} (i1,i2)}- (16)
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4. Numerical Example

In order to illustrate the proposed model and the booking policies, an example is described
as follows. Assume a flight will be departing after T = 400 planning periods. The maximum
booking capacity for the economy cabin and the business cabin of the flight are I = 100
and I = 50, respectively. Also, assume that the airline has previously specified L = 4 fare
classes for both cabins and their corresponding ticket price x; and the arriving probabilities
A¢ are as in Table I and Table 11, respectively.

Table I: the expected

revenues
14

;1 2 3 4
1 300 200 100 50
2 500 400 350 300

Table II: Request Probabilities X,

J=1 Jj=2
¢t 1100 101:200 201:300 301:400  1:100 101:200 201:300 301:400
X, 008 007 006 003 008 006 004 003
X, 009 005 002 003 005 004 003 003
Ao 006 007 005 003 005 007 003 002
M, 003 002 005  0.06 002 003 004 003

Tables I1I-X show some values of the critical booking periods. The application of these
Tables can be interpreted as follows. For example, from Tables I11-VI, if there are i, = 40,
iy = 20 seats on hand, a request for fare classes 1, 2, 3 and 4 in cabin 1 is accepted if and
only if his/her arriving time is ¢ < 400, t < 400, ¢t < 238, and ¢t < 168, respectively. From
Tables III-VI, if ¢; = 0 and iy = 10, a request for fare classes 1, 2, 3 and 4 in cabin 1 should
be upgraded for free to a seat in business cabin if and only if his/her arriving time is ¢ < 50,
t <31,t <22 and t < 18, respectively.

From Table VII-X, if there are i, = 40, i, = 20 seats on hand, a request for fare classes
1,2, 3 and 4 in cabin 1 is accepted if and only if his/her arriving time is ¢ < 400, ¢ < 120,
t < 86, and t < 70, respectively.

Not only the critical booking period but also the critical booking capacity can be used
in controlling the booking process. In this example, since the total number of periods is
several times more than the total booking capacities and the number of booking classes,
using the critical booking period to control the booking process is more efficient than using
the critical booking capacity.

Table III  Critical booking Table IV Critical booking
periods for L =1 in cabin 1 periods for L = 2 in cabin 1
i 19
i1 0 10 20 30 40 50 i1 0 10 20 30 40 50

0 0 50 98 150 203 269 0 0 31 62 93 126 160
20 400 400 400 400 400 400 20 192 192 193 196 210 247
40 400 400 400 400 400 400 40 400 400 400 400 400 400
60 400 400 400 400 400 400 60 400 400 400 400 400 400
80 400 400 400 400 400 400 80 400 400 400 400 400 400
100 400 400 400 400 400 400 100 400 400 400 400 400 400
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Table V  Critical booking Table VI  Critical booking
periods for L = 3 in cabin 1 periads for L = 4 in cabin 1
iz i?
i 0 10 20 30 40 50 1 0 10 20 30 40 50

0 0 22 46 71 96 123 0 0 8 39 61 83 106
20 96 97 102 124 151 179 20 74 75 8 106 131 155
40 237 237 238 240 244 263 40 166 167 168 170 184 208
60 400 400 400 400 400 400 60 287 287 287 288 289 295
80 400 400 400 400 400 400 80 400 400 400 400 400 400
100 400 400 400 400 400 400 100 400 400 400 400 400 400

Table VII Critical booking Table VIII Critical booking
periods for L = 1 in cabin 2 periods for L = 2 in cabin 2
i9 12
i 10 20 30 40 50 i1 10 20 30 40 50

0 400 400 400 400 400 0 12 114 261 400 400
20 400 400 400 400 400 20 13 118 264 400 400
40 400 400 400 400 400 40 13 120 268 400 400
60 400 400 400 400 400 60 13 120 270 400 400
80 400 400 400 400 400 80 13 120 271 400 400
100 400 400 400 400 400 100 13 120 271 400 400

Table IX Critical booking Table X Critical booking
periods for L = 3 in cabin 2 periods for L =4 in cabin 1
iz 'i2
i 10 20 30 40 50 iy 10 20 30 40 50
0 7 79 161 264 392 0 5 55 103 155 209
20 9 85 167 270 396 20 6 69 128 187 260
40 9 86 172 276 400 40 6 70 133 194 272
60 9 86 173 279 400 60 6 70 134 198 276
80 9 86 173 281 400 80 6 70 134 198 279
100 9 86 173 281 400 100 6 70 134 198 279

5. Conclusion

This paper studied a seat inventory problem in the case of multiple-fare classes and two
cabins on a single-flight leg. In many previous models, a seat in business cabin can not
be sold to a customer who requests economy cabin. However, in reality, a customer who
requests economy seat may be offered a seat in the business cabin at no additional cost.
Taking this fact into account, this paper proposed a single-flight-leg multi-fare class seat
inventory control model.

We characterize the booking policy as follows: the booking policy can be controlled
using either a set of critical booking capacities (The Booking Policy using critical booking
capacity), or a set of critical decision periods (The Booking Policy using critical booking
period).

This paper allows the condition that customers of economy class may be upgraded to
business class. The model can be extended to the models with multiple cabins, overbooking,
no-show, go-show and cancellation. Such extensions would be worthy subjects for future
research.
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Appendix:
Proof of Lemma 3.3

It suffices to show that z)(ij,dy) — 21 (i1, 39 — 1) < 0 since z{(i1,42) — 2/ (i1,2 — 1) =
22(iy,12) — 22(i; — 1,19). First, we will note that

{- K}(0) <0, ifiy =1andiy =1,
0

otherwise.

21 (i, 4) — 21 (31,79 — 1) = (17)

Thus, the statement holds for t = 1. Assume the statements hold for ¢ — 1. For ¢; > 1 and
19 > 1 we have

9
Z;(ihiz) - Ztl(i],ig - 1) - ZGk (18)
k=1
where
G1 = z_(i1,i2) — 2, (i1,i2 — 1) <0, (19)
G2 = Ktl(ztl—l(ilvi'z))v (20)
Gy = KZ(Z? (i1, 82)), (21)
Gy = (zt iy = 1, i) (i > 2) — KNz (6 — 1,42)) I (41 = 1,40 > 1), (22)
Gs = —K;(z} (i1 — 1,i9)), (23)
Gs = —K;(z.,(i1,12 — 1)), (24)
Gr = —Kz( (i1, 02 = 1)) (é2 > ) (25)
Gg = Kl(zt (i = i = D) > 2) + K (271 (i1 = 1,60 — 1)1 (i = 1,45 > 2),(26)
Gy = K}z (in— 1,0y —1))I(i2 > 2). (27)
Here, by Lemma 3.1 we obtain
G4 + GS S Oa (28)
Go+Gs < - Y MG, (29)
te Al
G3 + G5 S Z /\”) "t 1 1 22) Zt 1 ’Ll,’LQ E /\gCl, (30)
£e A? fcA?
G +Gy < 0. (31)
Thus, z; (i1, 72) — 2 (i1, 52 — 1) = £h_ Gk < (1 = Tpear My = Tpeaz Ay)Gr < 0. O
Proof of Lemma 3.5
From (5) we have
F (il,l‘:z) - Fl.(il - 13752) = 0, (32)
. L K20)>0, ifi,=1
F - F -1 = =" 27
111, 72) 1ty iz = 1) {0, otherwise. (33)

Assume the statement holds for ¢t — 1. Then, well have
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Fi(iy,ia) — Fi(in —1,02) = Fooq(ia, o) — Fioi (4 — 1, dg)

+K [ (2 (61, 72)) — K¢ (2 1(&1 =14y + 1))

+K (Zt 1(’L1 2 ZQ+1)) (Zt 1('51 1 22))

+Kz2(zt—1(11532)) (z 1(11 —1,ip + 1))

+K7 (2 (0 — 2,0+ 1)) — KP (27, (0 — 1,42)). (34)
Since Ztl--l(ilv 22) — Ztl_l(il — 1, ig + 1) = .Ft_..l(il, ZQ) - E—l(il - 1, 32) S 0 and zf,lul(il - 2, 'ig +
1) — zf (i1 — 1,i2) = Fyo1(i1 — 2,12) — Fi_1(41 — 1,42) > 0, by Lemma 3.1 we have

Kzl(ztl—l(ilvi2)) - Kl(ztl (G = 1,42 + 1))
< Z ’\t(’ Zt (i =g+ 1) = Zt (i1, 12))

¢eB)
= — 3 A(Fioi(in,i2) = Froi(in — 1,49)), (35)
173:h
KMzl (i = 2,2+ 1) — Kl(2l (i~ 1,4)) 0. (36)

Note that
2 (i — Lo+ 1) < min{z] (i1, 42), 21, (11 — 1,32)}

since Z?ﬁl(l.l — 1,i2 + 1) - Z?wl(lll,l.g) = E_l(il,ig — ].) - F‘t_l(il,ig) < 0 and 3152_1(i1 -
1,ip + 1) < 22 (41, — 1,4y) from the assumption of this lemma. Moreover, 27 | (i1,i2 — 1) >
max{z?_,(i1,22), 22 (¢ — 1,42)} since 22 ,(i1,92 — 1) > 27 (71, 12) from the assumption of
this lemma and 22 | (41,49 — 1) — 27 (i1 — 1,42) = Fy— (41,92 — 1) = Fy_1 (41,92 — 2) > 0. Thus,
by Lemma 3.2(a),

K} (2l (i1, d2)) — KZ (221 (in — Lia + 1)) + K2 (22 (i1 — 2,02 + 1)) — K7 (27, (i1 — 1,142))

< SN2 (= i+ 1) = 2y (6, d0) + 20y (i — 1,02) — 271 (61 — 2,ip + 1))
¢eB?

Il

> AL (Fioi (1 — 1,4) — Fooa (i, i2) + Froy (41,02 — 1) — Fmg (3 — 1,62 — 1))

te B}
< N A(Fioa (i — 1,42) — Froa (14, 32)). (37)
{eB?

Substituting (35), (36) and (37) into (34), we obtain

5),
( 1712) Ff(il - 1ai2)

1“‘ Z /\ Z A?Z)(Ft._l(il,lé) Ft 1( 11 — 1 12)) < 0. (38)

(e B} teB?
Using Lemma 3.2(b) and similar arguments as the above, one can show that Fj(iy, i) —
Fi(iy,i2 — 1) > 0. Therefore, F;(i1,1i2) is nonincreasing in i; and nondecreasing in i,. O

Proof of Theorm 3.2
First, we will note that

z{(zl,h) - Z}(h —1,d9) = {O 10) < othlerwise ' (39)
N ~K}(0) = K¥(0) <0, ifip =2,
z%(h,w) - Zf(h,w - 1) - {0 1( ) ( ) B i)t;?erwise ' (40)
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Assume the statements hold for ¢ — 1. For i; > 2 and i, > 0

—
=
—

~—

9
2 (i1, i2) — 2 (i1 — 1,i) = Y Hy
k=1

where

i
[\]

Hy, = 2z ,(i1,i2) — z1_, (i, — 1,iy) <0,
Hy, = Ktl(zf.l—l(ilvi’?))v

—
w

Hy = K222 ,(i1,19))1(iy > 1), 44
Hy = —K;(z_,(i, - 112)), 45
Hs = =K}z (i1 — 1,3))(ip > 1),

He = —K;(z_,(i — 1,12)), 47
Hy = —K}(z} (iy = 1,i2)) (i > 1), 48

AN TN TN TN N N N S~
= [
O (@]

=
|

K (24 (i - 2, 62))1(1 > 8) K (2 (i = 2,00)) (i1 = 2,15 > 1),
Hg = KQ(Zt 1(2 27,2 )I('& > )

Since z}_, (i1 — 2,4s) > z}_,(i, — 1,43) and by Lemma 3.4

[
)

2p (1= 2,4y) = v(i — 2,19) — w1ty — 2,09 — 1)

Z Ut—l(il - 1,?2 - 1) - Ut—l(il - Q,ig - 1)
= 2, (i = Lip— 1) > 2, (i — 1,3a), (51)

we have Hg + Hg < 0 from Lemma 3.3. Moreover, we have Hy + Hy < — Y000 ALH,
since z;}_; (i1, 12) < 2,-1(4; — 1,43). Similarly, we have H; + Hy < 0 since 22 (1 — 2,ip) >
2} (i1 — 1,1y). Furthermore, since 27 | (i1,4) < 22 | (i; — 1,45), we have

Hj + H; < Z /\?é(zt2~—l(?;1 - 17i2) - Ztg—l(il’iQ))

e A?
= D M(—Hi+Fioi(iniz = 1) = Fog(in — 1,y — 1)) < = 3 A2 H, (52)
e A? cA?

Therefore, 2/ (i1,12) — z{ (i1 — 1,42) < (L = Tpear Al — Tpenz A Hy < 0.

Similarly, we can show that 22(i,4s) — 22(i),79 — 1) < 0. Thus, we have completed the
proof. il

Proof of Theorm 3.3

Proof: First, by Lemma 3.4 we have

Zg—l(l»iz) = Ut—l(lyiz) - Utfl(oaiQ)
< (0,02 + 1) = v1(0,49) = 27, (0,40 + 1) < 22 (0, 4y). (53)

Furthermore, we have 2}, (41,4y) < 2/, (éy — 1,42) by Lemma 3.2 and 22, (i1,4,) < 22, () —
1,42) by Lemma 3.3, thus by (5) and Lemma 3.1 we obtain

2 (i, 42) — 2{_y (i1, 12)
= Ktl(ztlal(ilaiQ)) = Kl(znl 1( -1 12))[(i1 > 2) - Kl(zt 1(0 12))]( = 1)
K (21 (i, 02)) (62 2 1) = KE(22 (i — 1,i)) I (32 > 1) > 0. (54)

Similarly, we can show that z7(iy,4s) — 27 ,(4),42) > 0. Therefore, we have completed the
proof. ®
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