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Abstract This paper is concerned with an efficient algorit-hm for solving a large-scale dense non-factorable 
q ~ a d r a t ~ i c  programming problem arising in portfolio optimi~at~ion consisting of a large number of assets. 

A number of algorithms for quadrahic programming problems have been proposed in tjhe past,. However, 
tJhese met,hods tend t80 become less efficient as the ra,nk of the covariance mat,rix increa,ses. The algorithm 
proposed in this pa,per is a combination of p r~~jec ted  steepest descent algorit,hm and projected variable 
metric algorithm. Subproblems tjo be solved in each step a,re simple linear programs which can be solved 
very fast, contrary to other quadratic programming algorithms which require the manipulation of large 
dense matrix. 

Cornp~t~ational experiment shows that t,his algorithm outperforms renowned softwares when the number 
of assets is over one t,housand. 

1. Introduction 
There exists a number of studies about efficient algorithms for solving a large scale mean- 

variance(MV) model which still plays a fundamental role in portfolio optimization. The first 
such algorithm was proposed by Perold [lo] in 1984. He employed a multi-factor approach 
t,o reduce the rank of covariance matrix and applied a quadratic programming algorithm 
developed by Pang 191. This approach can successfully solve a large-scale mean-variance 
model where n, the number of assets included in the model is up to a few thousand. 

Later in 1992, one of the authors proposed a compact factorization method [6] for solving 
much larger MV models using historical/scenario dat,a approach instead of multi-factor 
approach. The key observation is that when the number of historical/scenario data is small 
compared wit,h the number of assets, one can derive an alternative sparse representation of 
the original quadratic programming problem. The resulting sparse problem can be solved 
either by interior point methods [12] or other efficient quadratic programming algorithms. 

The success of this approach is due to the low rank property of the quadratic programming 
problem. In fact, when the rank of covariance matrix is small, we can apply Cholesky 
factorization to calculate a sparse representation of the covariance matrix. However, when 
the number of variables is over a few thousand, it is a very time consuming even if the rank 
of the matrix is relatively low. 

The purpose of this paper is to propose an efficient and easy-to-implement algorithm 
for solving a large scale MV problem where the covariance matrix is dense and its rank 
is very high. Such problems can arise when we use a large number of data to estimate 
the covariance of random variables. Let us consider a scenario model using K factors and 
suppose each factor can attain I different values. Then the possible number of scenarios 
is l K .  When K = 10 and / = 5, this number is close to lo7.  Also, when we handle 
iriternat~ionally diversified portfolio including stocks and bonds of several countries [5], the 
number of assets will be as large as lo5. Therefore, compact factorization is doomed to fail 

251 

© 2001 The Operations Research Society of Japan



252 N. Kawaclai & H. Konno 

under these circumstances unless we impose stronger assumptions on the underlying model 
or data. 

There exist a number of algorithms for solving general convex quadratic programming 
problems. Among the well known algorithms are the simplex type algorithm [14], active 
set method [2], dual approach [4] and more recent primal-dual interior point algorithm [12]. 
However, some of these algorithms require calculation of the inverse of the covariance matrix 
and the others have to handle a large dense system of equations, or treat the set of inequality 
constraint in a combinatorial way. Most of these methods are therefore not suitable for a 
large scale dense higher rank covariance matrix. In fact, when n is over one thousand, it 
takes hours to solve such MV problems by reputed mathematical programming softwares 
such as NUOPT. 

Our algorithm is concerned with an algorithm for solving a large scale dense mean- 
variance model with properties above. We will propose a two-stage algorithm. The first 
step is to decompose the variance of the rate of the portfolio into two parts using a beta- 
relation established in CAPM. [ I ,  7, 111 We will calculate a good starting point to be used 
in the second stage by solving a linear programming problem. We then apply a projected 
steepest decent method and projected variable metric approach [3] to obtain an optimal 
solution. The amount of cornputxition is small compared to other standard approaches 
because we do not have to calculate the inverse of the covariance matrix nor do we trea>t a 
dense linear system of equations. 

In the next section, we will discuss a compact factorization approach which is commonly 
used for solving MV models of practical size and argue why it cannot be used to dense full 
rank problems. Section 3 will be devot,ed to the problem reduction procedure based upon 
CAPM. In Section 4, we will propose projected steepest descent and pro-jected variable 
metric algorithm. Finally in Section 5, we will discuss computational results up to n = 1000. 

2. Compact Representation of the Mean Variance Model 
Let &(z  = 1, + + Â ¥  n)be the random variable representing the rate of return of z-th asset, 

and let r^ be the rate of return of z-th asset under scenario t ( t  = 1, + + , T). Also, let pi be 
the probability of occurrence of scenario t. Then the expected rate of return r, of z-th asset 
and the covariance cr̂ , of the rate of return between i-th and j th  asset are given by 

Let x = (xl, - - , xn) be a portfolio weight vector, whose element is the ratio of wealth 
invested in i-th asset to the entire wealth and let 

be the rate of the return of the portfolio x. The mean-variance(MV)model is represented 
as follows 
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minimize f ( x )  = ELl Â£:x QijXixj 
subject to r+~ = p, 

x e X. 

where p E [mznjrj, maxjrj} is the target expected rate of return and X is the investable set. 
The simplest such set is 

where ui is the maximal purchasable units of j t h  asset. 
Problem (4) is a convex quadratic programming with a dense covariance matrix since the 

rate of return of assets are highly correlated, so that (T;, # 0 for almost all z ,  j .  Therefore, 
it is very difficult to solve the problem (4) by standard QP algorithm. However, when T 
is much smaller than n, we can apply the following compact factorization approach 161. By 
noting ( 2 ) ,  we have 

f ( x )  = y ffijxix, 

Let us introduce auxiliary variables 

Then the problem (4) can be represented as follows: 

2 minimize pixi 
subject to zt = (rjt - rj)x^ t = 1 ,  . , T, 

r p j  = p, 
X E X .  

This is a quadratic programming problem with only T separable convex terms. 
It has been demonstrated in [12] that this problem can be solved very fast by interior 

point algorithms when n is over ten thousand if t,he number of historical/scenario data T is 
less than one hundred. However, it tends to become less efficient as T increases and it loses 
its advantage if T is larger than n, 
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3. Decomposition of the MV Model Using Beta-Relation 
Among the well known results of CAPM(Capita1 Asset Pricing Model) is the so-called 

beta-relation between the rake of return of individual assets and the rate of return of the 
market portfolio. 

Theorem 3.1 Let Rj  and & be, respectively, the rate of return of z-th asset and the market 
portfolio. Then the following relation holds 

where 9 is a random variable with E[E~]  = 0 and T O  is the rate of return of riskless asset. 1 
For the derivation of this relation, readers are referred to standard texts of financial 

economics [I].  This result was first proved by Sharpe [ill under several assumptions on 
the capital market and individual investors and it has been demonstrated that this relation 
holds in practice as a first approximation. Also, it has been proved in [7] that some of these 
assumptions can be relaxed. 

Let (3, be the value of fij(j = 1 , .  , . , n)  estimated by standard least square method using 
historical data. Then 

where a\. = C O V [ E ~ ,  ~ j }  under the common assumption cov [RM,  E,?] = 0 ,  V j .  Therefore, 

Since 4 are usually much smaller than 4, the first term is expected to dominate the 
second term. This observation leads us to solve the following problem: 

whose optimal solution x0 is expected to give a good approximation of the optimal solution 
of the original problem (4). Let us note that the problem (12) is equivalent to the following 
linear programming problem because /?$.) is positive since /3/s are in the interval 
10.5, 2.01 for almost all j 's with possibly one or two exceptions. In particular, if we use 3 to 

-^ 1 

5 years historical data, as we did in our experiments, all fty s turn out to be nonnegative. 

minimize sy=i ftjxj 
subject to Sgl rjxj  = p, 

x E X .  
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4. Descent Procedure 
Given a feasible solution xk,we will calculate the descent direction dk by solving the 

following linear programming problem. 

and define xk+' as follows: 

Let us note that  can be calculated analytically since f is quadratic. 

Algorithm PSD (Projected Steepest Decent Algorithm) 
Step 0. Solve a linear program (13) to obtain starting solution xO, k := 1. 
Step 1. Calculate dk by solving a linea,r program (14). 
Step 2. xk+' = xk + akdk where = wgrnin,,{f (xk + adk)IO 5 a 5 1)) .  
Step 3. If - xk \  < &,then stop. Otherwise k = k + 1 and go to Step 1. I 

This algorithm may not converge t;o an optimal solution. To guarantee convergence, we 
may adopt a. scheme proposed by Topkis-Veinott [13]. However, t,he speed of convergence 
of t,his modified algorithm may not be satisfactory since it depends upon the first order 
approximation of the objective function. 

To obtain a fast and convergent algorithm, we will switch to the projected variable metric 
method of Goldfarb [3] after certain number of iterations of the PSD Algorithm. 

Algorithm PVM (Projected Variable Metric Algorithm) 
Step 0. & = Pq where Pq is the projectlion matrix to the sets of active constraints a t  x O .  
Step 1. dk = - m t f ( x l - } .  
Step 2. If dk = O1tlien go to Step 4. Otherwise 

xk+' = xk + a d k  where ak is defined by (15). 
Step 3. If the active set a t  x e l  is same as that at  xkl  then update by using BFGS 

formula [3] and go t,o Step 1 by setting k = k + 1. If the active set changes, then 
update 

where a' is the gradient of the new active constraint. Let 8 be the new projection 
matrix and go to Step 1. 

Step 4. Let 
\ = -V f (xk)-4: (A,,/!;)-' (17) 

where the matrix A,, is the matrix of active constraints a t  x k .  If A,, > 0 then 
stop(Karush-Kuhri-Tucker condition is satisfied). Otherwise choose the largest nega- 
tive component of \n and remove the corresponding vector, as from the matrix An. 
Update 
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q=q- l , k  = k + l  and go to Step 1. I 
If xO, the starting solution, is close to x* ,  then the set of active constraints is expected 

to remain stable. Also the direction vector of this algorithm uses the second order approxi- 
mation of the objective function. Therefore, it is expected to be efficient if the solution of 
the Algorithm PSD is close to x*. 

Remark: We may employ anti-jamming procedure such as Zoutendijk [15] to avoid 
jamming. 
Let us summarize our algorithm for solving the problem (4) in the following steps. 

Algorithm PSDVM (Projected Steepest DescentIVariable Metric Algorithm) 
Step 0. Calculate fSj, j = 1, . . . , n. 
Step 1. Solve a linear program (13) and let xO be its optimal solution. 
Step 2. Execute PSD Algorithm. Let x be the resulting solution. 
Step 3. Execute PVM Algorithm using x as a starting solution xO. 

5. Numerical Experiments 
We conducted a series of numerical experiments of the Algorithm PSDVM using: Genuine 

Intel Pentium(II1) processor 500MHz, RAM 383MB with Microsoft Windows 98.We used 
optimization package software NUOPT3.1' to solve linear programmirg problems.Also, we 
used this software as a benchmark to compare the performance. 

We solved the following simple MV model: 

minimize crq xixj 
1=1 j=1 
n 

subject to r jxj  = p 
j d  

where oij's and rj's are calculated by using 1000 daily data in the Tokyo Stock Exchange 
from January, 1993 to December, 1998 and we choose U ~ ' S  from 0.05 to 0.2. Also, we used 
TOPIX as the market portfolio. 

As expected, computation time for solving the problem (13) is negligibly small. In fact, 
it takes only 0.05 seconds even when n = 1000 excluding the computation time to estimate 
(3;s. (Calculation of Pi's for 1000 assets requires less than one second.) The quality of 
the starting solution of PSD(projected steepest descent,) a,lgorit,hm is reasonably close to 
the optimal solution, but not as good as we expected although a[,s are much smaller than 
%^(See Figure 1 below) The quality of the starting solution calculated via (13) tends to 
improve as we decrease u's. In fact, the solution is not much different from the uniform 
portfolio, i.e., x j  = l /n , , j  = 1 , .  . , n when uj = 0.2 for all j .  But it is much better than 
uniform portfolio when u j  = 0.05 for all j .  Also the quality of the initial solution via (13) 

L e t  us add that the new version of NUOPT4.0, which were not available at  the time of our experiment, 
can solve large non-factorable mea,n-varia,nce problems very fast using "asqp" algorithm. 
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tends to improve when we impose more restrictive constraints on the problem. 
Also, Figure 2 shows the value of the objective function as a function of the iteration of 

PSD algorithm. We see from this that convergence becomes slower after 10 to 15 iterations. 
Let us note that the computation time for 20 iterations of PSD algorithm is less than 24 
seconds even when n = 1000. 

Figure 3 shows the computation time for calculating an optimal solution by applying 
PVM (projected variable metric) algorithm. The optimality condition An ;> 0 was satisfied 
after several iterations. In particular, we reached an optimal solution after 11 iterations 
with 58.7 CPU seconds when n = 1000. 

- - - - - -" - - 

OS : Optimal Solution; SS : Starting Solution 
Figure 1 Quality of Starting Solution 

---L.-.l-.-L ..-. L l . L 4  , I t , . ' , t ! 8 ! , -- 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

Iteration 

Figure 2 Result of PSD Algorithm 
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Iteration 

Figure 3 Result of PVM Algorithm 

I J 

1 2 3 4 5 6 7 8 9 1 0 1 1  

Iteration 

Figure 4 Result of PVM Algorithm 

Figure 4 shows the computational results of PVM algorithm for various values of uj7s. 
Computation time is relatively insensitive to the magnitude of upper bounds. 

Figure 5 shows the total computation time of our algorithm and that of NUOPT. We see 
from this that our algorithm outperforms NUOPT when n > 400. Also, our algorithm is 
more than 20 times faster than NUOPT when n is over 1000. I t  appears that the compu- 
tation time of our algorithm is more or less linear, whereas that of NUOPT is exponential 
as a function of n. The amount of computation depends upon the number of linear con- 
straints, in addition to the number of variables. However, the number of linear constraints 
remains small in most practical applications, so that the efficiency of our algorithm should 
not deteriorate too much. 
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Figure 5 Comparison of PSVM and NUOPT 

6. Conclusions and Future Directions of Research 
We showed in this paper that the projected steepest descentlvariable metric algorithm 

can solve a large dense non-factorable MV model very fast. The starting solution obtained 
by solving (13) was not very good for the tested problems contrary to  our expectation. In 
fact, we could reach such a solution after a few iterations of the projected steepest descent 
procedure regardless of its starting point. However, this procedure has prone to be more 
effective for problem with more complicated constraint set. 

One may argue that the use of the PVM procedure from the beginning would lead to  a 
better result. However, as discussed earlier, active sets will frequently change at  the earlier 
stage of computation, so that the use of "cheap" PSD is useful. 

In this experiment, we compared our algorithm with the package software NUOPT, which 
is referred to as one of the most efficient softwares for solving large scale MV models and is 
widely used in many financial companies of Japan. Therefore, we believe it is not inadequate 
to use it as a benchmark for the comparison. 

Large scale dense non-factorable quadratic programming problems arise when we apply 
sequential quadratic programming algorithm to nonlinear programming problem with many 
variables. Our algorithm may be used as a subprocedure for solving such class of problems. 

Acknowledgements. The research of the first author was supported in part by Grant-in-Aid 
for Scientific Research of the Ministry of Education, Science and Culture B(2)104 
50041. Also, he acknowledge the generous support of the IBJ-DL Financial Technologies, 
Co. and The Tokyo Trust and Banking, Co., Ltd.. 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



References 

[I] H. J. Elton and N. J .  Gruber : Modern Portfolio Theory and Investment Analysis, 4th 
Edition (John Wiley & Sons, New York, 1991). 

[2] P. E. Gill and W. Murray : Numerically stable method for quadrat,ic programming. 
Mathematical Programming, 14(1978) 349-372. 

[3] D. Goldfarb : Extension of davidon's variable metric method to maximization under 
linear constraints. SIA M J. of Applied Mathematics, 17(1969)739-764. 

[4] D. Goldfarb and I. Idnani : A numerically stable dual method for solving strictly convex 
quadratic programs. Mathematical Programming, 27(1983) 1-33. 

[5] H. Konno and J .  Li : Internationally diversified investment using an integrated portfolio 
model. International J. of Theoretical and Applied Finance, l(1998) 145-160. 

[6] H. Konno and K. Suzuki : A fast algorithm for solving large scale mean-variance models 
by compact factorization of covariance matrices. J, of the Operations Research Society 
of Japan, 3 5  (1992)93-104. 

[7] H. Konno and K. Suzuki : Equilibria in the capital market with nonhomogeneous 
investors. Japan J.  of Industrial and Applied Mathematics, 13(1996)369-383. 

[8] H. M. Markowitz : Portfolio Selection : Efficient Diversification of Investments 2nd 
edition (John Wiley & Sons, New York, 1990). 

9 J.-S. Pang : A new efficient, algorithm for a class of portfolio selection problems. Opw- 
ations Research, 28 (1980) 754-767. 

[lo] A. Perold : Large scale portfolio optimization. Management Science, 30(1984) 1143- 
1160. 

[11] W. F. Sharpe : Capital asset process : a theory of market equilibrium under condition 
of risk. J. of Finance, 19(1964)425-442. 

[12] H. Takehara : An interior point algorithm for large scale portfolio optimization. Annals 
of Operations Researc!~, 4 5  (1993) 373-386. 

[13] D. M. Topkis and A. F., Jr. Veinott : On the convergence of some feasible directions 
algorithms for nonlinear programming. SIAM J. on Control, 5(1967)268-279. 

[14] P. Wolfe : Simplex method for quadratic programming. Econometrics, 27(1959)382- 
398. 

[15] G. Zoutendij k : ~ e t h o d s  of Feasible Directions(Elsevier, 1960). 

Naoya Kawadai 
Department of Industrial Engineering and Management 

Graduahe school of Decision and Technology 
Tokyo Institute of Technology 

2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552 JAPAN 
E-mail: nkawadai@me . t i t e c h .  ac  . jp  

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.




