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Abstract In this paper, multi-source possibilistic information is represented by a set of possibilistic 
constraints to characterize decision variables from different information aspects. Possibilistic linear pro- 
gramming is used to  integrate multi-source possibilistic information into the upper and t>he lower possibility 
distributions of decision vector. 

1. Introduction 
The remarkable advance of computer techniques has brought about a present-day information 

age characterized by the acceleration, intellectualization and globalization of information, which 
has stimulated a more emergent requirement for dealing with huge and sophisticated 
information in the real world. Information fusion is one of newly-emerging information 
techniques which tries to offer an integrated information from multiple information sources 
which are conflicting, partially inconsistent or reflect different aspect of information, such as 
multi-sensor and multi-expert pool where signals from different sensors represent the different 
or partially common information and likewise the experts also have different or partially 
common background and interests. Generally speaking, information fusion models can be built 
based on probability and possibility theories, respectively, to represent the intrinsic uncertainty 
contained in multi-source information. The probability networks, such as Bayes networks and 
Markov networks are well-known probability methods for information fusion where information 
is represented by a conditional probability distribution and fusion procedure is based on Bayes 
formula[13]. Dempster-Shafer theory of evidence (DS) is an important tool of information 
fusion where the fusion procedure is based on the Dempster's rule of combination [16]. Dubois, 
Prade and Yager proposed several information fusion models based on possibility theory 
[1,2,19,20]. The approaches related to information fusion also have been researched in the 
papers [3,5,6,7,18] for decision analysis. In this paper, another method for information fusion is 
proposed where multi-source information is represented by a set of possibilistic constraints to 
characterize decision variables from different information aspects. Each possibilistic constraint 
leaves some feasible region for decision variable. The feasible set of decision variables from all 
constraints conflicting with each other is characterized by their upper and lower possibility 
distributions obtained by possibilistic linear programming. 

It is the first time to deal with information fusion via possibilisitic programming problems. 
However, it is been well-known that fuzzy linear programming initiated by Zimmermann [21] 
has been widely used and got many achievement in both applications and theories 
[9,10,11,14,15]. Generally speaking, in fuzzy linear programming problems, the coefficients of 
decision variables are fuzzy numbers while decision variables are crisp ones. This means that in 
uncertain environment, a crisp decision is made to meet some decision criteria. On the other 
hand, Tanaka et al. [17] initially proposed a possibilistic linear programming formulation where 
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the coefficients of decision variables are crisp while decision variables are obtained as fuzzy 
numbers, and LP technique is used to obtain the largest possibility distribution of the decision 
variables. As an extension of that idea, Guo et al. [4] have used LP and quadratic programming 
(QP) techniques to obtain different fuzzy solutions to enable a decision maker select a preferable 
one. Further, Guo et al. [8] dealt with the interactive case of decision variables in which 
exponential distribution functions are used so that the formulation is very complex and a little 
bit difficult to be solved. This paper reconsiders the meaning of getting possibility distributions 
of decision variables from the viewpoint of information fusion. For avoiding the difficult of 
understanding, the triangular fuzzy numbers are used to represent possibilistic information. 

2. Information Fusion via Possibilistic Linear Programming 
Suppose that multi-source information related to decision vector x = [ x ,  ,. . . , xt, 1' 

described by a set of possibilistic constraints as follows: 
b , , ~ , + ~ . . + b , , , ~ , ~  = ' C , ,  i = l ,  ..., m , ,  

b , , ~ , + ~ ~ . + b , , , ~ , ,  2 c , ,  i = ~ , + l ,  ..., m ,  
- + where the symbols == and = , defined later, represent two kinds of "approximately 

can be 

(1) 

satisfy", 
C  is a fuzzy number((= 1,. . . ,m), x is a decision variable (/= 1,. . . ,n) and bij is an associated 
crisp coefficient. The ith constraint of (1) characterizes information on decision vector x from 
the ith information source. The left-hand side of the constraint is some technical conditions to 
attain such possibilistic information. The fuzzy number c, in ( I ) ,  for example, can be regarded 
as a fuzzy goal given by a head with only considering the benefit of his own department in some 
company where the center of fuzzy number is an ideal point and the spread of fuzzy number 
represents some tolerance. As a result, a reasonable plan should be feasible for constraints from 
all of such departments. 

It is obvious that if " y  =' Cl" and "2" (soft equal) become "=" (hard equal) and 
correspondingly c becomes a crisp value in (I),  we can rarely obtain the feasible solutions for 
the case of m n .  However, each possibilisitc constraint leaves some feasible region for decision 
variables. Because the feasible regions left from possibilistic constraints are conflicting and 
partially inconsistent in nature, the problem considered now is to obtain an integrated feasible 
region of decision vector, which satisfies all of possibilistic constraints. Let S ,  (i=l,. . .,m) be a 
feasible region from the ith possibilistic constraint, the fused feasible region denoted as S is as 
follows 

It can be seen that fusion operator here is intersection which satisfies the following three 
conditions: 
(I) Idempotency: if the feasible regions from all possibilistic constraints are the same, the 

fused region should be this same one. 
(11) Commutativity: the indexing of constraints is irrelevant. 

(Ill) Monotonicity: If b'i , sl a Xi, then n s i  a OX, 
i=! ,..., m  i=l ...., in 

Let us consider how to obtain the feasible region from possibilistic constraints in (1). For the 
sake of simplicity, assume that C,  is a symmetrical triangular fuzzy number denoted as ( ~ ~ , d ~ ) ~  

where c, and di are its center and spread with the condition C ,  - d, 0 .  The feasible region of 
x = [x, ,..., , X  1' left from the ith possibility constraint is characterized by a symmetrical triangular 
fuzzy decision vector A = [ A ,  ,......, A-, 1' . The membership function of A is defined as follows: 
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where 

a, and r, are the center and spread of fuzzy number A.  A is simply denoted as (a,r), , with 
a = [a,  ,---,a,,]' (ai  2 0, i = 1 ,..., n )  and r = [ri , --- ,  r J  ( r, 2 0, i = 1 ,..., Ã ). Denote two typical possibilistic 
constraints in (1) as follows: 

bi,x,+---+binxn =- c, ,  i = l ,  ..., mi, ( 5 )  
, , x ,  +-..+bjnxn =+ c , j = m i  +I...., mj=ml +I7  ..., m, (6) 

where the subscripts i and j correspond to symbols "=-"  and "=+", respectively. The left-hand 
side of possibilistic constraint of (1) is written as 

y. =bi,x,+---+bixfl.  (7) 

Since x = [ x , ,  q, ---,at becomes a possibilistic vector A = [A, , . . . . . , ,A2  1' , the possibility 
distribution of fuzzy set Y. can be obtained by the extension principle as 

where center y, and spread S, are b'a and b'r , respectively, and bi  = [b,, , --+,bin] '  2 0 .  
Constraint yi =- Ci is explained as ' ' X ,  is a little bit smaller than C,", defined by the 

following inequalities. 
y. -(l-h)s, <c i  -(l-/i)di, i = l ,  ..., mi, (9) 

y. +(l-h)si < c i  +(l-h)d,, i = l ,  ..., mi, ( 10) 

y, 2e ,  -(I--h)d,, i = 1, ..., m, , (11) 

where h is a predetermined possibility level by decision-makers. It can be understood that the 
higher h is, the stricter constraints are. A graphical explanation of = =  C, is given by Figure 1 
which shows that "Y, is a little bit smaller than ci ", denoted as Yi = =  Ci , means that the left and 
right endpoints of the h-level set of 5 are smaller than the left and right ones of C;, 
respectively described in (9) and (lo), but the center of is confined to be larger than the left 
endpoint of C; shown by the dotted line described in (1 1). 

Y 

Figure 1. Explanation of Y =- c, with degree h 

Similarly, the constraint Y, =+ C, is explained as "Y, is a 
by the following inequalities: 

yi  - (I - h)s, 2 c, - (1 - h)d, , i = 1 ,...,mi , 

y +(l-h)s, 2c i  +(l-h)d, , i=l, . . . ,  m,, 

y< c, + (1 - h)di , i = 1 ,..., m, . 
It is obvious from the above definitions that possibilistic 

little bit larger than Cj ", defined 

(12) 

(13) 

(14) 
constraint conditions leave some 
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feasible region for decision variables described by inequalities (9)-(14). Considering (8), 
possibilistic constraint (5) can be rewritten as 

b'a-(1-h)b;r<c, -(I-h)d,,  i = l ,  ..., nz , ,  (15) 

b 'a+(l-h)b;r<c,  + ( I -h )d ,  , i =  1 ,..., m,, (16) 

b w c ,  -(I-h)d, , < =1, ..., m , ,  

and possibilistic constraint (6) can be rewritten as 

b>a+( l -h)b ; r>c ,  +( I -h)d j ,  j = m ,  +l,..., nz, (19) 

b>a<c j  +(I-h}dj ,  j = m,  +l,...,w . (20) 
From constraints (15) -(20), it is easy to understand that the center vector a should comply 

with the following constraints, 
c - ( I -h)d  < b ; a < c ,  i = l ,  ..., m , ,  (21) 

c < b:.a<cj +(1 -h)d, ,  j = m ,  i-l,..., i n .  (22) 

It implies that the center vector must exist in the region formed by (21) and (22). The following 
LP problem is used to find out a candidate of center vector. 

max g(a) 
a 

a 2 0 ,  

where objective function g(a) is given by decision-makers to characterize his preference for 
selecting center vector, which is regarded as a reference point in the feasible region of decision 
variables. Parameter p 2 0  is used to reduce the original feasible region to guarantee the 
obtained center vector inside the region formed by (21) and (22). It should be noted that the 
selected parameter p by decision-makers should satisfy the following theorem. 
Theorem 1 The necessary condition for the existence of an optimal solution in (23) is that 
parameter satisfies the fillowing condition: 

(1 - h)di (1 - h)d, 
< (  mm ) A (  min ' - ;=L,.:.,~~, '2ci -(I -h)di j = ~ 1 , + i  ,.... '2c, + (1 --jz)dj ) 

Proof: Suppose that there is an optimal solution in (23). Considering the first two constraints of 
(23), we have 

(c, - ( l - h ) d i ) ( l + ~ ) 5 c j ( l - / 3 ) ,  i=\ ,..., m i .  (25) 

(25) leads to 

(2c, -(I-h)d,)ft  <(I-h)& i =  I, ..., m , .  

The support of C, is assumed to be non-negative. Therefore, the inequality c -dl 2 0  is 
satisfied and the following inequality holds. 

Considering the third and fourth constraints of (23), likewise we can have 
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Inequalities (27) and (28) lead to ( 2 4 ) . ~  
It should be noted that constraints (21) and (22) are the necessary conditions for a being a 

center vector rather than the sufficient conditions. As a reasonable center vector it is also needed 
to satisfy constraint conditions (15)-(20) with spread vector r . We can find out a reasonable 
center vector via changing the value of /3 . The larger the value of /? , the smaller the feasible 
set of center vector. If we set the different Q for each constraint, by changing the value of 3 and 
g(a) , we can search all of points in the original feasible set of center vector. After determining 
one center vector, denoted as a , ,  we investigate two kinds of possibility distributions of fuzzy 
vector A,  i.e., upper and lower possibility distributions denoted as n U ( x )  and n l (x ) ,  
respectively, with the condition n ,  > nl  , which have some similarities with rough sets concept 
[12]. The upper possibility distribution of A corresponds to the upper possibility distribution of 
Y and the lower possibility distribution of A corresponds to the lower possibility distribution of 
Y. Figure 2 gives a graphic explanation of upper and lower possibility distributions of Y 
restricted by the possibility constraint Y = C . Figure 2 shows that the region covered by the 
lower possibility distribution of Y is completely included by the h-level set of the given 
possibility information C while the region covered by the upper possibility distribution of Y 
completely includes the h-level set of the given possibility information C under the definition 
of Y =- C .  It can be understood that the upper and lower possibility distributions of Y are the 
upper and lower bounds of Y restricted by Y = C for a fixed center of Y . 

With considering a center vector a,, , the problem for finding out the lower spread vector of A 
is formalized as the following LP problem. 

Y 

Figure 2. Illustration of upper and lower possibility distributions in Y = C 

min wtrl 
'-1 

S. t. -(I-h)b;r, <c ,  -(I-h)d, -b;a(,, i=l, ..., m,, 

(1-h)b#, <c,  +(l-h)d, -b'a,,, i=l, ..., m , ,  

r, > 0, 
where w is the weight vector of the lower spread vector r, . 

Similarly, the problem for finding out the upper spread vector of A is formalized as the 
following LP problem. 
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rnax wtrlf 
"II 

rl, 2 0 . 
It can be seen that intersection operator of feasible sets in (2) is transformed into the above LP 
problems. It is obvious that constraints in (29) and (30) satisfy idempotency) commutativity and 
monotonicity. It means that if the feasible set formed by each possibilistic constraint in (1) is the 
same, the fused feasible set of decision variables obtained from (29) or (30) is the same as that 
one, and changing the indices of constraints in (1) can not make any difference of the solutions 
obtained from (29) and (30), and any reduction of the feasible set formed by constraints of (1) 
leads to the reduction of fused feasible set of decision variables obtained from (29) or (30). By 
considering the inclusion relation between the upper and lower possibility distributions, the 
problem for obtaining the upper and lower spreads of A simultaneously is introduced as follows: 

rnax wr(r , -r , )  
Â¥- ."I 

s. t. - ( I - h ) b ' r , < c . - ( I - h ) d i - b a ,  i = l ,  ..., m , ,  

( I  - h)b'r, 2 ci +(I - h)d, - bia,), i = I, ..., m, , 

-(\-h)b'p-, >Cj - ( I - h ) q  - b h ,  j - m ,  +l,..., m, 

(1-h)b',.r, k c ,  +(I-h)d, -b>a,,, j = m ,  +I ,..., m, 

-(I-h)b'r, < c ,  -(l-h)di -b'a,,, i = l ,  ..., m,, 

(1-h)b'rl, <q+(l-h)d,  -b',a,), i = l ,  ..., m,, 

-(l-h)b;r,, k c ,  - ( l - h ) 4  -b'̂ , j = m ,  +l,..., m, 

(I-h)birlf k c ,  +(I-h)dj -b;a,), j = m ,  +l,..., m, 

r,, -r, 2 0 ,  

r, 20 .  
The dual problem of (3 1) is as follows: 
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c,', =(c ,  - ( I - / ! ) d l  - b ; a , , ) / ( l - h ) ,  i = l ,  ..., m , ,  

Considering the theorem of complementary slackness, it is convenient to know which 
constraints in (3 1)  are active by solving the dual problem (32). 
Definition 1 m y  numbers Cl in (1 )  is called critical possibilistic information for fusion i f  any 
inequality for describing the possibilistic constraint associated with Cl is active in the LP 
problem (31). 
Theorem 2 Denote the optimal solution obtained from (32) as z* =[(, ..., zfÃ£,, and the index 
set of positive elements of z*  as D = {i \ z  > 0,i < 4ml.  The index set of critical possibilistic 
informations for fusion, denoted as D , is 

Dr = { j \ j = i - m 8 ( i ) , i < -  Dl (33) 

where 

and it should be noted that j in (33) denotes the jth constraint in (1). 
Proof: The constraints of the dual problem of the problem (32) are as follows. 

- b , , r , < c , , ,  i = l ,  ..., in, ,  

bir, < c , : ~ ,  i = l ,  ..., m , ,  

b'r, s<, ,  j = m ,  +l,..., nz, 

t bjru Â £ c j l  j = m l  +I,..., m, 

r, - rL, < 0 , 

r, 2 0 ,  
where i and j indicate the ith possibility constraints of b , , ~ ,  + - - - +  bItlxt, =- C, and jth possibilistic 
constraint of b , , ~ ,  +... +bItlxt, =+ cl in (I), respectively. It can be seen that one possibilistic 
constraint in (1) correspond to four constraints in the above constraints. With considering the 
theorem of complementary slackness and Definition 1, the index set of critical possibilistic 
informations for fusion can be obtained as Dr .  

Definition 2 Denote the fused feasible sets of decision variables obtained from the upper and 
lower possibility distributions with a possibility level h as S: and S: , respectively. The sets 

S" and S" are defined as follows: 
s: = {XE r 1 n,, (x) a}, (34) 
S' = {x e Rn 1 I V x )  2h} . ( 3 5 )  

Theorem 3 For a possibility level h, the relation fl c holds. 
It is trivial to prove this theorem with considering constraint condition r - rl 2 0 in (31). 

This theorem means that the fused region of decision vector covered by the upper possibility 
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distribution leaves more rooms than the one by the lower possibility distribution. 

4. Numerical Example 
Let us consider the following possibilisitc constraints, 

+ 
xl+2x2 = 13, 

where - - 
15 =(15.,2.)[ , 4.5 =(4.5,1.),, , 34=(34.,4.), , 5.5 =(5.5,0.9), , 13 =(13.,2.), . (37) 

Assume that the possibility distribution of decision variables xi and x2 is X=(a,r), with 
a=[a , ,aJ1 ,  r = r l , r , I t .  

In (36)  each possibilistic constraint characterizes one information aspect related to decision 
variables and leaves a feasible region. Our concern is to obtain the fused feasible region of 
decision variables satisfying all possibilistic constraints of (36) .  By setting h G . 5 ,  a center 
vector was obtained with p =  0.01 and g(a) = 2x1 +3x, as follows: 

a = [5.28,4.2911 . 
Upper and lower spread vectors were obtained by ( 3  1 ) with w = [I ,]  1' as follows: 

r, = [0.56,0.58]' . 
The fused region of decision variables left by the possibilistic constraints of (36)  is characterized 
by the possibility distribution of decision variables. The upper and the lower possibility 
distributions of fuzzy decision variables with h=0.5 are shown in Figure 3. In Figure 3 the 
regions inside the two contours are feasible sets  and s " ~ ,  respectively. It is obvious that the 
solution obtained from the upper possibility distribution leaves more room than the one from the 
lower possibility distribution. Solving the dual problem (32),  we had D = {2,6,11,13} . Using 
(33) ,  we obtained D,. = {1,2,3} with m=5. It means that the first three fuzzy numbers are critical 
for obtaining the fused feasible region. Figure 4 shows the difference between the first and the 
fourth constraints. It can be seen that there is some margin for the fourth constraint but not for 
the first one corresponding to critical possibilistic information. 

Figure 3.  s,: ' and s:' (the outer is from the upper possibility distribution and the inner is from 
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the lower possibility distribution). 

C 1 

t " 
5 5 - 5  6 6 - 5  7 

Y 

Figure 4. Illustration of the first and fourth constraints 

5. Conclusions 
In this paper, multi-source information on decision variables is characterized by a set of 

possibilistic constraints, which characterize decision variables from different information 
aspects. Two kinds of the fused regions of decision variables are obtained by possibilistic linear 
programming where the region governed by the upper possibilistic distribution leaves more 
room than that by the lower possibilistic distribution. 

Acknowledgements 
This research was supported in part by the Japanses Ministry of Education, Sports, Science 

and Technology (Research-in-aid Program No. 12680444). The authors wish to acknowledge 
two anonymous referees for their helpful comments. 

References 
D. Dubois and H. Prade: Possibility theory and data fusion in poorly informed environment. 
Control Engineering Practice, 2 (1994) 81 1-823. 
D. Dubois and H. Prade: An introductory survey of possibility theory and its recent 
developments. Journal of Japan Society for Fuzzy Theory and Systems, 10 (1998) 2 1-42. 
P. Guo: Mathematical Approaches to Knowledge Representation, Fusion and Decision 
Based on Possibility Theory (Doctoral Dissertation, Osaka Prefecture University, Japan, 
2000). 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



Possibilis f ic In forma tion Fusion 229 

[4] P. Guo, H. Tanaka; Fuzzy decision in possibility programming problems. Proceedings of 
Asian Fuzzy System Symposium, (1 996) 278-283. 

[5] P. Guo and H. Tanaka: Possibilistic data analysis and its application to portfolio selection 
problems. Fuzzy Economic Review, 312 (1998) 3-23. 

[6] P. Guo and H. Tanaka: Possibilisitc information fusion. Proceedings of The Eighth IEEE 
International Conference on Fuzzy Systems, 2 (1999) 819-823. 

[7] P. Guo and H. Tanaka, M. Inuiguchi: Self-organizing fuzzy aggregation models to rank the 
objects with multiple attributes. IEEE Transactions on SMC, Part A: Systems and Humans, 
30 (2000) 573-580. 

[8] P. Guo, H, Tanaka and H.-J. Zimniermann: Upper and lower possibility distributions of 
fuzzy decision variables in upper level decision problems. Fuzzy Sets and Systems, 111 
(2000) 7 1-79. 

[9] H. Ishii, M. Tada, T. Masuda: Two scheduling problems with fuzzy due-dates. Fuzzy Sets 
and Systems, 46 (1992) 339-347. 

[10]M. Inuiguchi, H. Ichihashi and H. Tanaka: Fuzzy Programming: A survey of recent 
developments. In R. Slowinski and J. Teghem (eds.): Stochastic Versus Fuzzy Approaches to 
Multiobjective Mathematical Programming under Uncertainty (Kluwer Academic 
Publishers, Netherlands, 1990), 45-68. 

[11]M. Inuiguchi and J. Rarnik: Possibilistic linear programming: a brief review of fuzzy 
mathematical programming and a comparison with stochastic programming in portfolio 
selection problem. Fuzzy Sets and Systems, 111 (2000) 3-28. 

[ 121 Z. Pawlak: Rough Sets (Kluwer Academic Publishers, Netherlands, 199 1). 
[13] J. Pearl: Possibilistic Reasoning in Intelligent Systems: Networks of Plausible Inference 

(Morgan Kaufman, California, 1993). 
[14]H. Rommelfange: Fuzzy linear programming and applications. European Journal of 

Operational Research, 92 (1996) 5 12-527. 
[15] M. Sakawa: Fuzzy Sets and Interactive Multiobjective Optimization (Plenum Press, New 

York, 1993). 
[16]G. Shafer: A Mathematical Theory of Evidence (Princeton University Press, Princeton, 

1976). 
[17] H. Tanaka and K. Asai: Fuzzy solution in fuzzy linear programming problems. IEEE 

Transaction on System, Man, and Cybernetics, 14 (1984) 325-328. 
[ la ]  H. Tanaka andP. Guo: Possibilistic Data Analysis for Operations Research (Physica-Verlag, 

Heidelberg, 1999) 
[19] R. R. Yager: Information fusion in multiple database environments. Proceeding of Seventh 

1FSA World Congress, (1997) 26 1-266. 
[20]R. R. Yager and A. Kelman: Fusion of fuzzy information with considerations for 

compatibility, partial aggregation, and reinforcement. International Journal of Approximate 
Reasoning, 15 (1 996) 93- 122. 

211 H. -J. Zimmermann: Fuzzy programming and linear programming with several objective 
functions. Fuzzy Sets and Systems, 1 (1978) 45-55. 

Peijun Guo 
Faculty of Economics 
Kagawa University 
Takamatsu 760-8523, JAPAN 
guo@ec. kagawa-u.ac.jp 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.




