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Abstract Tn this paper, we consider a repair-cost limit replacement problem and develop a graphical 
method t)o det,erminc the optimal repair-cost limit which minimizes the expected cost per unit t,ime in the 
steady-statre, using the Lorenz transform of the underlying repair-cost distribution function. The rnet,hod 
proposed can be applied t,o an estimation problem of the optimal repair-cost limit from empirical repair-cost 
data. Numerical examples are devot,ed to exa,mine asymptotic propertlies of the non-parametric estimator 
for the optimal repair-cost limit. 

1. Introduction 
Tlie repair-cost limit replacement policies can provide how to design the recovery mecha- 
nism of a system using two maintenance options; repair and replacement, in terms of cost 
minimization. That is, if the repair cost of a failed unit is greater than the replacement 
cost, one should replace a failed unit,, otherwise one should repair it. First this problem was 
considered by Drinkwater and Hastings [5] and Hastings [8] for army vehicles. Especially, 
Hastings [8] proposed three methods of optimizing the repair-cost limit replacement policies 
by simulation, hill-climbing and dynamic programming. Since the seminal contributions 
above, a number of authors dealt with a variety of repair-cost limit replacement problems. 
For instlance, Naka,gawa and Osaki [15] and Kaio and Osaki [9] reformulated the Hasting;' 
original problem from the viewpoint of renewal rewaxd argument and discussed both con- 
tinuous and discrete models. Love, Rodger and Blazenko [14] examined the similar problem 
for vehicle replacement using postal Canada data which was constructed by dividing the 
life of the vehicle into discrete ages. Park [16] considered a simple but interesting cost limit 
replacement policy under minimal repair. Love and Guo [13] extended the repair-limit anal- 
ysis by incorporating a changing force of mortality as the unit ages in the framework of a, 
Markov or semi-Markov decision process. 

As Love and Guo [13] pointed out implicitly, it is often a,ssumed that the repair-cost 
distribution furict,ion is arbitrary but known. Of course, this seems to be rat her restrictive 
in many practical situations. In other words, practitioners have to determine the repair-costJ 
limit under incomplete information on the repair-cost distribution in most cases. Dohi, 
Koshimac, Kaio and Osaki [4] proposed a non-parametric estiinator of the optimal repair- 
cost limit from the empirical cost, data. More precisely, they applied the total time on 
t]est (TTT) statistics to those estimation problems in accordance with the graphical idea 
by Bergman [1] and Bergman and Klefsj6 [2]. If the optimal repair-cost limit has to be 
estimated from the sample data with unknown repair-cost distribution, their method will 
be useful in practice, since one need not specify the repair-cost distribution in advance. 

However, it should be noted that the repair-cost limit replacement problem in [4] was 
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very interesting but somewhat different from existing ones. More specifically, the main 
objective in [4] was to derive the optimal repair-cost limit to retire the repair action, 2.e. 
if the repair is not completed within a cost limit, the failed unit is scrapped and then a 
new spare is ordered. Such a policy seems to be plausible in some practical situations, 
but should be distinguished from the original repair-cost limit problem. In this paper, we 
consider a repair-cost limit replacement problem proposed by Nakagawa and Osaki [15] 
in the framework of renewal reward processes and propose a stahistical estimation method 
based on the Lorenz curve. Notice that the basic idea in this paper is similar to the graphical 
one used in [4] but the statistical device employed here is different from the TTT statistics. 
The Lorenz curve was first introduced by Lorenz [l2l into economics to describe income 
distributions. Since the Lorenz curve is essentially equivalent to the Pareto curve used in 
the quality control, it will be one of the most important stakistics in every social sciences. 

The more general and tractable definition of the Lorenz curve was made by Gastwirth 
[6]. Goldie [7] proved tlie strong consistency of the empirical Lorenz curve and discovered its 
several convergence properties. Chandra and Singpurwalla [3] and Klefsjo [lo] investigated 
the relationship between the TTT statistics and the Lorenz statistics, and derived a few 
aging and partial ordering proper ties. Recently, tlie further results on two statistics were 
examined by Pham and Turkkan [18] and Perez-Ocon, Gamiz-Perez and Ruiz-Castro [17]. 
It is shown that the estimator of the optimal repair-cost limit derived in this paper has also 
severa,l powerful properties proved in earlier contributions a,bove. 

The paper is organized as follows. In Section 2, we describe the repair-cost limit re- 
placement problem under consideration. In Section 3 we develop a graphical method to 
calculate the optimal repair-cost limit which minimizes the expected cost per unit time in 
the steady-state. Then, it is seen that the Lorenz curve plays an important role to derive the 
optimal solution on the graph. In Section 4, the statistical estimation problem is discussed. 
We show that the estimator of tlie optimal repair-cost limit has a strong consistency, and 
examine its convergence property. Numerical examples are presented for illustration of the 
graphical method throughout the paper. 

2. Model Description 
Consider a single-unit repairable system, wliere ea<ch spare is provided only by an order after 
a lead time L (> 0) and each failed unit is repairable. The original unit begins operating 
at  time 0 and the mean time to failure for each unit is m,f (> 0). When the unit has failed, 
the decision maker wishes to determine whether he or she should repair it or order a new 
spare. If the decision maker estimates that the repair is completed within a prespecified 
cost limit VQ E [0, oo), then the repair is started immediat,ely at the failure time. The mean 
repair time is (> 0) when the repair cost does not exceed VQ. On the other hand, if the 
decision maker estimates that the repair cost exceeds the cost limit VO, then the failed unit is 
scrapped immediately and a new spare unit is ordered. Then the spare unit is delivered after 
the lead time L. Without any loss of generality, it is assumed that the unit once repaired is 
presumed as good as new and that the time required for replacement is negligible. 

The repair cost V for each unit is a non-negative i.i.d. random variable and unknown. 
The decision maker has a subjective probability distribution function Pr{V < v} = H[v} 
on the repair cost, with density h(v)  (> 0) and finite mean mm (> 0). Suppose that the 
distribution function H ( v )  G [0, 11 is arbitrary, absolutely continuous and strictly increasing 
in u [O, oo) , and has an inverse function, i. e.. H 1  (Â¥} Under these model assumptions, 
define the interval from the start of the operation to the following start as one cycle. Figure 
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Repair-Cost Limit 011 the Lore11z Curve 

u- 
Operation t Repair Time t 

Failure & 
Estimation of Repair Cost 

Cycle Point 

t 
Operation t h a d  Time 

Failure & 
Estimation of Repair Cost 

Figure 1: Configuration of repair-cost limit replacement problem. 

1 depicts the configuration of the 1rmde1 under co~lsideratio~i. The costs considered in this 
paper are the followirlg; 
k  (> 0) :  a cost per unit shortage time. 
c (> 0):  a cost for ea,ch order. 
We m a k ~  the following additional assumpt,ioris: 
(A-1) ms > L. 
(A-2) k f m s  < k f L  + c. 
The assumption (A-1)  implies that t,he mean repair time rns  is strictly longer than the lead 
time. Irk the assurrlption (A-2), the shortage cost when the repair cost does not exceed 71" is 
less than the total cost wlien the new spare is orderccl. It is l~oticed that these assumptions 
rnotivattl the ~mderlyirig problem to determine the optimal repair-cost limit. 

Let 11s fornlulate the cxpected cost dtiring  on^ cycle. If the dccision maker judges tlxat 
a new spare unit should be ordered, t l l ~ n  the ordering cost for one cycle is C ~ ( I I ~ ) ~  where - 
H ( . )  - 1 - H ( - ) .  111 this case, the expected shortage cost for one c y c l ~  is k f  LP(v" ) .  On 
the other hard, if he or she s~lects  the repa,ir optionl the expected repair cost for one cycle 
is J? udH(v)  and the expected shortage cost for one cycle is k J m s H ( 7 ~ o ) .  Thus the total 
expected cost during one cycle is 

Also, the rnean time length of one cycle is 
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It may be appropriate to adopt an expected cost per unit time in the steady-state over ax1 
infinite planning horizori. The expected cost per unit time in the steady-state is, from the 
renewal reward argument, 

E[the total cost on (0) t ] ]  
TC(vo) = lim 

t-+m t = Ec ( t l O )  /ET ( ~ 0 ) .  

The problem is to derive the optimal repair-cost limit ?lo* such as 

Then, we have the followirlg result on the optimal repair-cost limit. 

Theorem 2.1: Define the rillmerator of the derivative of Eq.(3) with respect to 710, divided 
h ( v ~ ) 7  as ~ o ( ~ o )  7 i .  e- 

Suppose tliat both assurnptioris (A-1) and (A-2) hold. Then there exists a unique optimal 
repair-cost limit v: (0 < v; < 00) satisfying qo(vG) = 0 and the minimum expc?cted cost is 

Proofi The proof is similar t,o Nakaga,wa, and S. Osaki [15]. Differentiating TC(vo) with 
respect to v0 and settirig equal to zero implies qo(uo) = 0. This lea,& to dqO(vo)/dvo = 

ET(v0) > 0 and the fact that the function TC(vo) is strictly convex in vO. Since limvo+w q(?)()) 
-+ oa and q(0) < 0 u~ider (A-1) and (A-2), there exists a ~ ~ n i q u e  optinla1 repair-cost limit 
v: (0 < u: < GO) satisfying qO(v;) = 0. The proof' is completed. (Q.E.D.) 

Froni 'I'lleorern 2.1, one sees t,hat the optimal repa,ir-cost limit can be calculated easily, 
by solving the nonlinea,r equation q0(?lO) = 0) if the repair-cost, distribution is conlpletely 
known. In the following section, t,he minimiza,tion problem in Eq.(4) is transformed to a 
simple graphical one on the Lorenz curve. 

3. Graphical Method 
Instead of differe~it~iating TC (vo ) with respect to v0 directly, we here employ an interesting 
gra,phical mct,hod, Define the Lorenz tra,r~sform of the repair-cost distribution p = H(v) by 

Then the curve L = { ( p ,  @(p)); p G [O) 11) is called tlie Lorem curve [6) 71. It should be 
noted that tlie curve L is absolutely continuous from the continuity of H(u). The following 
result plays an important 

Theorem 3.1: Suppose 
Eq.(4) is equivalent to 

role to develop the graphical solution rrietliod. 

that the assumpt,ion (A- 1) holds. The minimization problem in 
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Repair-Cost Limit on the Lore~~z C L ~ V ~  

where 

and 

ProoE From the definition of the Lorenz transfor111 in Eq.(7), we Imve 

From (A-1) arid the contiriuity of H (v) > the optimal p* E [O, 11 which minimizes TC(H-' (p)) 
is a solution of the r~iiriiiriiza~tio~i problerri in Eq. (8). Tlie proof is thus cor~iple t,ed. (Q.E. D .) 

Frorn Theorem 3.1, the optimal repair-cost limit is determiried by p* = H(ui) wliicli niii~i- 
rriizes t,lie targent slope frorii the poirit B = (-rjl -0 E (-ml 0) x (-ml 0) to the curve L 
in thc pl;~ne (xl y) E [O1 11 x [O1 11 under the assurxiptio~i (A-2). 

More precisely, we prove the uniqueness of the optinla1 repair-cost limit. 

Theorem 3.2: Suppose that both assuniptioiis (A-1) and (A-2) hold. Then there exists a 
uniqlie optimal solution p* = H(vg) (0 < vg < m )  miriimizing M(p,  4(p)), where p* is given 
by the x-(~oorcii~ia~te a,t the point of contact for tlie curve L fro111 tlie point B. 

Proof: Fro111 (A-1) and (A-2), it car1 he seen that, [ > 0 aiid q > 0. Differentiating 
M(p, 4(p)) with respect to p and setting it equal to zero irriplies 

amrid the function M(p, ~ ( T I ) )  is strictly convex iri p7 since d2#(p) /dp2 = 1/ {mnz h(Hh' (p))} > 
0. From q(0) = -[ < 0 and q(1) -+ ml the proof is co~ripleted. (Q.E.D.) 

'I7lle result, above is a dual thcore~n and is esscxitially saiiie as Tlieorerrl 2.1. The ir1terestirig 
point of Theorem 3.2 is to deterrriine the optilnd solut,ion on the grapll iristead of solving 
the iionlinea,r equation. 

Example 3.3: We give an example for the graphical method proposed above. Suppose 
that the repair-cost distrib~itio~i H(v) is known and obeys tlie Weibull distribution; 

with the shape parameter ,O = 4.0 and the scale para,rneter 6 = 0.9. The other model 
parairletors are c = 0.4000 ($), L = 0.3500 (day), k f  = 0.4000 ($/day) mf = 0.3000 (day), 
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Figure 2: Deterlniriation of optilxial repair-cost limit 011 the Lorenz curve. 

rns = 1.2000 (day) and mm = 0.7090 ($1. The determination of the optimal repair-cost limit 
is presented in Figure 2. In this case, we have B = (-0.7647, -0.8264) and the optima1 point 
with riliriirriurn slope from I3 is (p* 4 ( p * ) )  = (0.4580,0.2530). Thus, the optimal repair-cost 
limit is ?J: = H-'(0.4580) = 0.6261. 

The basic idea for the graphical method proposed in this section can be applied to an 
estimation problem of the optimal repair-cost limit when the empirical repair-cost data are 
a~a~ilable. In the followi~ig sectiori, the st at ist ical optimization technique is developed for 
the empirical counterparts of the Lorenz curve. 

4. Statistical Estimation Method 
Based on the graphical idea in Section 3, we propose a non-parametric method to estimate 
the optimal repair-cost limit. Suppose that the optimal repair-cost, limit has to be estimated 
from an ordered complete sample 0 = x~ 5 XI 5 x2 5 a 5 xn of repair cost data from 
an absolutely corltirli~ous repair-cost distribution H ,  which is unknown. The estimakor of 
H(v) = p is the empirical distrib~ltioli given by 

Hn(x) = { z I n  for xi 5 x < xi+' 
1 for xn, 5 x, 

where z = 0, 1,2, . + , n - 1. Then the Lorenx ,statzstzcs [7] is defined as 

Plotting the point (z/nl, xi.l xk/ zEx1 xk),  z = Ol 1,2, - a - n, and connecting them by line 
segme~its, we obtain the empirical Lorenz curve ,CTL = {(I&, &); i = 0, 1, . . , n}. As em- 
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Figure 3: Estimation of optirnal repair-cost limit on the empirical Lorenz curve, 

pirical c:ount,erpart of Theorerr1 3.1, we obtain a no~i-para~rietric esti~nator of the optimal 
repair-cost limit in the following tlieorern. 

Theorem 4.1: (i) The optimal repair-cost limit can be estirriated by 6& = xi*, where 

aJrld the theoretical mean mrT1 involved in ,( is replaced by the sample mean xt=l xk/n. 
(ii) The estimat,or 6in = in Eq. (17) is strongly consistent, i. e. @zn = xi* + u$ as n + GO. 

The result in (i) is trivial. The proof of (ii) is based on the a,symptotic property q$, + d ( p )  
as n -+ GO, which is duc to Goldie [7]. 

Example 4.2: Tlre repair-cost data were made by tlie random number following the Weibull 
distrik~ution witti shape parameter ,B = 4.0 and scale parameter 0 = 0.9. The other model 
parametlers are same as Example 3.3 except tliai, mn,, and [. The empirical Lorenz curve 
based on the 30 sample data is shown in Figure 3, where mn,, = xzl xk/30 = 0.7325 
($). Sirrce I3 (-0.7647, -0.7999), the optirrial point with nrinimuln slope from E3 be- 
comes (i*/n, xc=l xk/ x:=l xk) = (14130, xk /  xEl xk) = (0.3400,0.1309). Thus, the 
estimator of' the optimal repair-cost limit is 6& = 0.6037 ($), 

If tlie estimator 6 & ,  = xi* is obta,ined, it, is casy to calculate the estimate of the rniriimum 
expected cost. That is, frorn Eq. (ti), 
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Figure 4: Asymptotic property of estimates for the optimal repair-cost limit. 

which may be strongly consistent. 
Of our next interest is the convergence speed of the estimators Ã )̂ and TC(w&). We 

examine numerically the strong consistency of the estimator derived in Theorem 4.1. 

Example 4.3: Suppose that the repair-cost distribution and model parameters are similar 
to those in Example 4.2. Notice that the mean repair cost mn,, and its associat,ed oarameter 
6 are changed in each sample. Then the real optimal repair-cost limit and the minimum 
expected cost become vi = 0.6261 ($) a,nd TC(v,) - 0.6666 ($), respectively. On the other 
hand, the asymptotic behaviours of estimates for the optima,l repair-cost limit and their 
associated minimum expected cost are depicted in Figures 4 and 5, respectively. From these 
figures, we observe that the estimates converge to the corresponding real values around where 
the number of da,ta is 30. In other words, without specifying the repair-cost distribution, 
the proposed non-parametric method may function to estimate the optimal repair-cost limit 
precisely. 

Finally, utilizing the results above, we determine the asymptotic valid confidence interval 
for the optimal repair-cost limit approximately. R,ecall that determining asymptotically 
valid confidence intervals for the probability distribution function is based on the normal 
approximation to the binomial distribution. Notice that the empirical distribution defined 
in Eq.(14) can be regarded as the binornia,l random variable having mean E[H,z(x)] = H(x)  
and variance Var[II,,(x)] = ~ ( x ) p ( x ) / n .  Furthermore, when the sample size n is large and 
H ( x )  is not too close to  0 or 1, t,he binomial distribution may have a shape that is closely 
approximated by a normal distribution, and can be used to find interval estimates for H(x).  
It should be noted that these interval estimates afre most accurate around the median of the 
distribution, since the normal approximation to the binomial distribution works best when 
the probability of success is about 0.5, where the binomial distribution is symmetric. 
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Figure 5: Asymptotic property of estimates for the associated minimum expected cost. 

Replacing H ( v )  by Hn in the variance formula, an alsyrnptotically valid 100(1 - a)% 
confidence interval for the repair-cost distribition is approximately 

where is the (1 - 4 2 )  fractile of the standard normal distribution, and the lower and 
upper bounds are 

and 

respectively. This confidence interval is appropriate as the number of data increases (see 
Leo [ l l ] ) .  Consider the asymptotically valid 100(1 - 4% confidence interval for the repair- 
cost distribition. Since the Lorenz curve is a non-decreasing function, the lower and upper 
bounds of the Lorenz transform are approximately given by 

where 
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Figure 6: Upper and lower bounds of the empirical Lorenz curve. 

and [a] is the greatest integer in a .  Then, it is straightforward to see that, the asymptotically 
valid 100( lÃ a )  % confidence interval for the optimal repair-cost limit is approximately given 
by 

where v k  = xji and v̂ , = x p  satisfy 

[nr~:] 

{ j *  1 min Ek.1 -ck /  ELI ̂  + ̂  
O<j<n j l n  - 2n/2 i/(.i/n>)(l - ] / n ) / n  + v } 

and 

[& }̂ 

{A:* 1 min Ek=l x k /  EL-i xk  + 
OsWn j/n + ̂ / ( . j /n)  ( 1  - j/n)/n + v 

respectively. 

Example 4.5: Under the same parameters as Example 4.3, we determine the asymptotic 
valid confidence interval for the optimal repair-cost limit. Figure 6 shows the upper and 
lower bounds of the empirical Lorenz curve. FYom this figure, we obtain v: and vE which 
minimize the tangent slope from the point B to the curves <j)u and 4;, respectively. Figures 
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7 and 8 show the behaviours of the asymptotically valid 95% confidence intervals of the 
optimal repair-cost limit and its associated minimum expected cost, respectively. These 
figures tell us that the estimation when the number of data is more than 30 is stable, 
and that the observation result in Example 4.3 can be also valid taking account of the 
asymptotically confidence interval. 

- estimate 

Figure 7: The asymptotically valid 100(lÃ a)% confidence interval of the optimal repair-cost 
limit. 

5. Conclusion 
This paper has considered a typical repair-cost limit replacement problem and developed a 
graphical met hod to determine the optimal repair-cost limit which minimizes the expected 
cost per unit time in the steady-state, using the Lorenz transform of the underlying repair- 
cost distribution function. We have examined some properties of the strongly consistent 
estimator and the asymptotically valid 100(1 - 4% confidence interval for the optimal 
repair-cost limit t hroughout numerical examples. 

The main contribution of this paper is to show that the Lorenz statistics as well as 
TTT statistics is a useful device to estimate the optimal maintenance schedule. This sim- 
ple but interesting idea should be applied to solve other kinds of stochastic maintenance 
optimization problems in the future. 
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