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Abstract In this paper, we consider a repair-cost limit replacement problem and develop a graphical
method to determine the optimal repair-cost limit which minimizes the expected cost per unit time in the
steady-state, using the Lorenz transform of the underlying repair-cost distribution function. The method
proposed can be applied to an estimation problem of the optimal repair-cost limit from empirical repair-cost
data. Numerical examples are devoted to examine asymptotic properties of the non-parametric estimator
for the optimal repair-cost limit.

1. Introduction

The repair-cost limit replacement policies can provide how to design the recovery mecha-
nism of a system using two maintenance options; repair and replacement, in terms of cost
minimization. That is, if the repair cost of a failed unit is greater than the replacement
cost, one should replace a failed unit, otherwise one should repair it. First this problem was
considered by Drinkwater and Hastings [5] and Hastings [8] for army vehicles. Especially,
Hastings [8] proposed three methods of optimizing the repair-cost limit replacement policies
by simulation, hill-climbing and dynamic programming. Since the seminal contributions
above, a number of authors dealt with a variety of repair-cost limit replacement problems.
For instance, Nakagawa and Osaki [15] and Kaio and Osaki [9] reformulated the Hastings’
original problem from the viewpoint of renewal reward argument and discussed both con-
tinuous and discrete models. Love, Rodger and Blazenko [14] examined the similar problem
for vehicle replacement using postal Canada data which was constructed by dividing the
life of the vehicle into discrete ages. Park [16] considered a simple but interesting cost limit
replacement policy under minimal repair. Love and Guo [13] extended the repair-limit anal-
ysis by incorporating a changing force of mortality as the unit ages in the framework of a
Markov or semi-Markov decision process.

As Love and Guo [13] pointed out implicitly, it is often assumed that the repair-cost
distribution function is arbitrary but known. Of course, this seems to be rather restrictive
in many practical situations. In other words, practitioners have to determine the repair-cost
limit under incomplete information on the repair-cost distribution in most cases. Dohi,
Koshimae, Kaio and Osaki (4] proposed a non-parametric estimator of the optimal repair-
cost limit from the empirical cost data. More precisely, they applied the total time on
test (TTT) statistics to those estimation problems in accordance with the graphical idea
by Bergman {1] and Bergman and Klefsjo [2]. If the optimal repair-cost limit has to be
estimated from the sample data with unknown repair-cost distribution, their method will
be useful in practice, since one need not specify the repair-cost distribution in advance.

However, it should be noted that the repair-cost limit replacement problem in [4] was
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very interesting but somewhat different from existing ones. More specifically, the main
objective in [4] was to derive the optimal repair-cost limit to retire the repair action, i.e.
if the repair is not completed within a cost limit, the failed unit is scrapped and then a
new spare is ordered. Such a policy seems to be plausible in some practical situations,
but should be distinguished from the original repair-cost limit problem. In this paper, we
consider a repair-cost limit replacement problem proposed by Nakagawa and Osaki [15]
in the framework of renewal reward processes and propose a statistical estimation method
based on the Lorenz curve. Notice that the basic idea in this paper is similar to the graphical
one used in [4] but the statistical device employed here is different from the TTT statistics.
The Lorenz curve was first introduced by Lorenz [12] into economics to describe income
distributions. Since the Lorenz curve is essentially equivalent to the Pareto curve used in
the quality control, it will be one of the most important statistics in every social sciences.

The more general and tractable definition of the Lorenz curve was made by Gastwirth
[6]. Goldie [7] proved the strong consistency of the empirical Lorenz curve and discovered its
several convergence properties. Chandra and Singpurwalla [3] and Klefsjo [10] investigated
the relationship between the TTT statistics and the Lorenz statistics, and derived a few
aging and partial ordering properties. Recently, the further results on two statistics were
examined by Pham and Turkkan [18] and Perez-Ocon, Gamiz-Perez and Ruiz-Castro [17].
It is shown that the estimator of the optimal repair-cost limit derived in this paper has also
several powerful properties proved in earlier contributions above.

The paper is organized as follows. In Section 2, we describe the repair-cost limit re-
placement problem under consideration. In Section 3 we develop a graphical method to
calculate the optimal repair-cost limit which minimizes the expected cost per unit time in
the steady-state. Then, it is seen that the Lorenz curve plays an important role to derive the
optimal solution on the graph. In Section 4, the statistical estimation problem is discussed.
We show that the estimator of the optimal repair-cost limit has a strong consistency, and
examine its convergence property. Numerical examples are presented for illustration of the
graphical method throughout the paper.

2. Model Description

Consider a single-unit repairable system, where each spare is provided only by an order after
a lead time L (> 0) and each failed unit is repairable. The original unit begins operating
at time 0 and the mean time to failure for each unit is ms (> 0). When the unit has failed,
the decision maker wishes to determine whether he or she should repair it or order a new
spare. If the decision maker estimates that the repair is completed within a prespecified
cost limit vy € [0, 00), then the repair is started immediately at the failure time. The mean
repair time is m, (> 0) when the repair cost does not exceed vy. On the other hand, if the
decision maker estimates that the repair cost exceeds the cost limit vy, then the failed unit is
scrapped immediately and a new spare unit is ordered. Then the spare unit is delivered after
the lead time L. Without any loss of generality, it is assumed that the unit once repaired is
presumed as good as new and that the time required for replacement is negligible.

The repair cost V for each unit is a non-negative 1.i.d. random variable and unknown.
The decision maker has a subjective probability distribution function Pr{V < v} = H(v)
on the repair cost, with density h(v) (> 0) and finite mean m,, (> 0). Suppose that the
distribution function H(v) € [0, 1] is arbitrary, absolutely continuous and strictly increasing
in v € [0,00) , and has an inverse function, i.e. H'(-). Under these model assumptions,
define the interval from the start of the operation to the following start as one cycle. Figure
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Figure 1: Configuration of repair-cost limit replacement problem.

1 depicts the configuration of the model under consideration. The costs considered in this
paper are the following;
k; (> 0): a cost per unit shortage time.

¢ (> 0): a cost for each order.
We make the following additional assumptions:
(A-1) ms > L.
(A-2) kymg < ksL + c.
The assumption (A-1) implies that the mean repair time m, is strictly longer than the lead
time. In the assumption (A-2), the shortage cost when the repair cost does not exceed vy is
less than the total cost when the new spare is ordered. It is noticed that these assumptions
motivate the underlying problem to determine the optimal repair-cost limit.

Let us formulate the expected cost during one cycle. If the decision maker judges that
a new spare unit should be ordered, then the ordering cost for one cycle is ¢H (vy), where

the other hand, if he or she selects the repair option, the expected repair cost for one cycle
is [;° vdH (v) and the expected shortage cost for one cycle is kym,H(vy). Thus the total
expected cost during one cycle is

Ec(vo) = /

0

Ui

" wdH(v) + k{myH(ve) + LH(vo)} + H (vo). (1)

Also, the mean time length of one cycle is

Er(vy) = my +moH (vg) + LH(vp). (2)
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It may be appropriate to adopt an expected cost per unit time in the steady-state over an
infinite planning horizon. The expected cost per unit time in the steady-state is, from the
renewal reward argument,

E[the total cost on (0, t}]

t—o0 t

= EC'(’LI())/ET(U()). (3)
The problem is to derive the optimal repair-cost limit vy* such as

TC(vy) = min TC(vp). (4)

0<vg <o

Then, we have the following result on the optimal repair-cost limit.

Theorem 2.1: Define the numerator of the derivative of Eq.(3) with respect to vy, divided
by h(UO)v as QO(UO)a i.e.

qo(vo) = {vo + kyms — kL — ¢} Er(vg) — {ms — L} Ec(vp). (5)

Suppose that both assumptions (A-1) and (A-2) hold. Then there exists a unique optimal
repair-cost limit v§ (0 < vf < oco) satisfying go(vg) = 0 and the minimum expected cost is

vy 4+ kpms — kfL —¢

TC(vg) = (6)

me — L

Proof: The proof is similar to Nakagawa and S. Osaki [15]. Differentiating 7'C(v,) with
respect to vy and setting equal to zero implies go(vg) = 0. This leads to dgo(ve)/dvy =
Er(vo) > 0 and the fact that the function TC(wy) is strictly convex in vp. Since limy,— o0 (o)
— o0 and ¢(0) < 0 under (A-1) and (A-2), there exists a unique optimal repair-cost limit
vy (0 < v} < 00) satistying go(vg) = 0. The proof is completed. (Q.ED.)

From Theorem 2.1, one sees that the optimal repair-cost limit can be calculated easily,
by solving the nonlinear equation go(vy) = 0, if the repair-cost distribution is completely
known. In the following section, the minimization problem in Eq.(4) is transformed to a
simple graphical one on the Lorenz curve.

3. Graphical Method
Instead of differentiating T'C(vg) with respect to vy directly, we here employ an interesting
graphical method. Define the Lorenz transform of the repair-cost distribution p = H(v) by
1 P
o(p)=— [ H '(v)dv, 0<p<L (7)
M Jo

Then the curve £ = {(p,é(p));p € [0,1]} is called the Lorenz curve [6, 7]. It should be
noted that the curve £ is absolutely continuous from the continuity of H(v). The following
result plays an important role to develop the graphical solution method.

Theorem 3.1: Suppose that the assumption (A-1) holds. The minimization problem in
Eq.(4) is equivalent to

Ml

d(p) +£ 8)

3

J2ip, + M(p, 9(p)) = = "
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where
cmg — {ki(my, — L) — ctm
Myn(ms — L)
and
mf —+ L
- . 10
me — L (10)

Proof: From the definition of the Lorenz transform in Eq.(7), we have

TC(v) = TC(H'(p))
&(p) + (ks L+ ¢)/mp + [(ks(ms — L) — c|p/mm,
(g + D) (= Dl
My, \O(p)+€  keims—L)—c¢
(ms—L> p+n = ms—L (1)

From (A-1) and the continuity of H(v), the optimal p* € [0, 1] which minimizes TC(H !(p))
is a solution of the minimization problem in Eq.(8). The proof is thus completed. (Q.E.D.)

From Theorem 3.1, the optimal repair-cost limit is determined by p* = H(vj) which mini-
mizes the tangent slope from the point B = (=7, —¢) € (—o0,0) x (—00,0) to the curve £
in the plane (z,y) € [0,1] x [0, 1] under the assumption (A-2).

More precisely, we prove the uniqueness of the optimal repair-cost limit.

Theorem 3.2: Suppose that both assumptions (A-1) and (A-2) hold. Then there exists a
unique optimal solution p* = H(vj) (0 < v§ < o0o) minimizing M (p, #(p)), where p* is given
by the z-coordinate at the point of contact for the curve £ from the point B.

Proof: From (A-1) and (A-2), it can be seen that £ > 0 and n > 0. Differentiating
M (p, #(p)) with respect to p and setting it equal to zero implies

q(p) = (dé(p)/dp)(p +n) — (6(p) + &), (12)

where d¢(p)/dp = H™'(p)/m,,. Further, we have
dq(p)/dp = d*¢(p)/dp*(p+n) > 0 (13)
and the function M (p, ¢(p)) is strictly convex in p, since d?¢(p)/dp? = 1/{m,h(H ' (p))} >
0. From ¢(0) = —€ < 0 and ¢(1) — oo, the proof is completed. Q.E.D.)

The result above is a dual theorem and is essentially same as Theorem 2.1. The interesting
point of Theorem 3.2 is to determine the optimal solution on the graph instead of solving
the nonlinear equation.

Example 3.3: We give an example for the graphical method proposed above. Suppose
that the repair-cost distribution H(v) is known and obeys the Weibull distribution;

H(v) = exp{m(s)ﬁ} (14)

with the shape parameter 8 = 4.0 and the scale parameter # = 0.9. The other model
parameters are ¢ = 0.4000 ($), L = 0.3500 (day), k; = 0.4000 ($/day) m, = 0.3000 (day),

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



212 T. Dohi, N. Kaio & S. Osaki
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Figure 2: Determination of optimal repair-cost limit on the Lorenz curve.

ms = 1.2000 (day) and m,,, = 0.7090 ($). The determination of the optimal repair-cost limit
is presented in Figure 2. In this case, we have B = (—0.7647, —0.8264) and the optimal point
with minimum slope from B is (p*, ¢(p*)) = (0.4580, 0.2530). Thus, the optimal repair-cost
limit is v = H~1(0.4580) = 0.6261.

The basic idea for the graphical method proposed in this section can be applied to an
estimation problem of the optimal repair-cost limit when the empirical repair-cost data are
available. In the following section, the statistical optimization technique is developed for
the empirical counterparts of the Lorenz curve.

4. Statistical Estimation Method

Based on the graphical idea in Section 3, we propose a non-parametric method to estimate
the optimal repair-cost limit. Suppose that the optimal repair-cost limit has to be estimated
from an ordered complete sample 0 = 2y < z; < 29 < --- < x, of repair cost data from
an absolutely continuous repair-cost distribution H, which is unknown. The estimator of
H(v) = p is the empirical distribution given by

. 7/” for z;,<z< Tiv1
Ho(z) = { 1 for T, <, (15)
where ¢ =0,1,2,---,n — 1. Then the Lorenz statistics [7] is defined as
- 0 for t=20
¢TL - { Zﬁc:l ];k/ ZZ:I Ty for 1= 17 27 INL2 (16>

Plotting the point (i/n, >, 7x/ 7 2k), @ = 0,1,2,---,n, and connecting them by line
segments, we obtain the empirical Lorenz curve £,, = {(H,, ¢,);i = 0,1,---,n}. As em-
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(PII 1
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Figure 3: Estimation of optimal repair-cost limit on the empirical Lorenz curve.

pirical counterpart of Theorem 3.1, we obtain a non-parametric estimator of the optimal
repair-cost, limit, in the following theorem.

Theorem 4.1: (i) The optimal repair-cost limit can be estimated by 4}, = z;-, where

{i* | min S ket Th/ Sopey Th + 5}7 (17)

0<i<n i/n+n

and the theoretical mean m,, involved in £ is replaced by the sample mean S7_, z/n.
(ii) The estimator 7, = = in Eq.(17) is strongly consistent, i.e. 93, = zi» — v as n — 0o.

The result in (i) is trivial. The proof of (ii) is based on the asymptotic property ¢, — ¢(p)
as n — oo, which is due to Goldie [7].

Example 4.2: The repair-cost data were made by the random number following the Weibull
distribution with shape parameter 3 = 4.0 and scale parameter ¢ = 0.9. The other model
parameters are same as Example 3.3 except that m,, and £. The empirical Lorenz curve
based on the 30 sample data is shown in Figure 3, where m,, = Y% 1,/30 = 0.7325
(§). Since B = (—0.7647, —0.7999), the optimal point with minimum slope from B be-
comes (i*/n, Y4_; zi/ Sp_y 2x) = (14/30, 25 2,/ 330 2,) = (0.3400,0.1309). Thus, the
estimator of the optimal repair-cost limit is 4, = 0.6037 ($).

If the estimator o, = 2;» is obtained, it is easy to calculate the estimate of the minimum
expected cost. That is, from Eq.(6),
_ Ug, + kemg — kyL —c

TC(?A)Sn) - M — L ’ (18)
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Figure 4: Asymptotic property of estimates for the optimal repair-cost limit.

which may be strongly consistent. ‘
Of our next interest is the convergence speed of the estimators o5, and TC(9f,). We
examine numerically the strong consistency of the estimator derived in Theorem 4.1.

Example 4.3: Suppose that the repair-cost distribution and model parameters are similar
to those in Example 4.2. Notice that the mean repair cost m,, and its associated oarameter
¢ are changed in each sample. Then the real optimal repair-cost limit and the minimum
expected cost become vf = 0.6261 ($) and T'C(v§) = 0.6666 (3), respectively. On the other
hand, the asymptotic behaviours of estimates for the optimal repair-cost limit and their
associated minimum expected cost are depicted in Figures 4 and 5, respectively. From these
figures, we observe that the estimates converge to the corresponding real values around where
the number of data is 30. In other words, without specifying the repair-cost distribution,
the proposed non-parametric method may function to estimate the optimal repair-cost limit
precisely.

Finally, utilizing the results above, we determine the asymptotic valid confidence interval
for the optimal repair-cost limit approximately. Recall that determining asymptotically
valid confidence intervals for the probability distribution function is based on the normal
approximation to the binomial distribution. Notice that the empirical distribution defined
in Eq.(14) can be regarded as the binomial random variable having mean E[H,,(z)] = H(z)
and variance Var[H,(z)] = H(z)H(z)/n. Furthermore, when the sample size n is large and
H(z) is not too close to 0 or 1, the binomial distribution may have a shape that is closely
approximated by a normal distribution, and can be used to find interval estimates for H(z).
It should be noted that these interval estimates are most accurate around the median of the
distribution, since the normal approximation to the binomial distribution works best when
the probability of success is about 0.5, where the binomial distribution is symmetric.
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Figure 5: Asymptotic property of estimates for the associated minimum expected cost.

Replacing H(v) by H, in the variance formula, an asymptotically valid 100(1 — «)%
confidence interval for the repair-cost distribition is approximately

HY < H(v) < HY

n?

(19)

where z,/; is the (1 — «/2) fractile of the standard normal distribution, and the lower and
upper bounds are

Hn,Hn
Hé‘ == Hn - Za/g n (20)
and
H1'Lﬁn
H, = Hy + zay2 > (21)

n

respectively. This confidence interval is appropriate as the number of data increases (see
Lee [11]). Consider the asymptotically valid 100(1 — «)% confidence interval for the repair-
cost distribition. Since the Lorenz curve is a non-decreasing function, the lower and upper
bounds of the Lorenz transform are approximately given by

or < o(H '(v)) < ¢y, (22)
where
[nH,I;] n
o= a/ Yz, (23)
k=1 k=1
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Figure 6: Upper and lower bounds of the empirical Lorenz curve.

U (nH) n
h= D w/ Yy (24)
k==1 k=1

and [a] is the greatest integer in a. Then, it is straightforward to see that the asymptotically

valid 100(1 —a)% confidence interval for the optimal repair-cost limit is approximately given
by

L ~ % U
vOn < v()n < UOn? (25)
where vY = z,» and vl = .« satisf
on J On Sk Yy

nH}]

{]* , gnél ’ k=1 ‘I;k/ k=1 xk +£ } (26)
05950 j/n = 2o/ (3/n)(1 = j/n)/n+ 1
and
n %4 n
{k* | min ZE“:H;" | o/ iy 7+ € } (27)
OSKSn i /n 2as0/ (/)1 = j/m)/n+ 7
respectively.

Example 4.5: Under the same parameters as Example 4.3, we determine the asymptotic
valid confidence interval for the optimal repair-cost limit. Figure 6 shows the upper and
lower bounds of the empirical Lorenz curve. From this figure, we obtain v%, and v, which
minimize the tangent slope from the point B to the curves ¢U and ¢%, respectively. Figures
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7 and 8 show the behaviours of the asymptotically valid 95% confidence intervals of the
optimal repair-cost limit and its associated minimum expected cost, respectively. These
figures tell us that the estimation when the number of data is more than 30 is stable,
and that the observation result in Example 4.3 can be also valid taking account of the
asymptotically confidence interval.

ok
Von
A
1.8 |
|
lower limit
— eStimate
12 womrmnens - UPPET limit

0.6

50 100 150 200

Figure 7: The asymptotically valid 100(1—«)% confidence interval of the optimal repair-cost
limit. '

5. Conclusion

This paper has considered a typical repair-cost limit replacement problem and developed a
graphical method to determine the optimal repair-cost limit which minimizes the expected
cost per unit time in the steady-state, using the Lorenz transform of the underlying repair-
cost distribution function. We have examined some properties of the strongly consistent
estimator and the asymptotically valid 100(1 — @)% confidence interval for the optimal
repair-cost limit throughout numerical examples.

The main contribution of this paper is to show that the Lorenz statistics as well as
TTT statistics is a useful device to estimate the optimal maintenance schedule. This sim-
ple but interesting idea should be applied to solve other kinds of stochastic maintenance
optimization problems in the future.
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