
Journal of the Operations Research 
Society of Japan  

Vol. 44, No. 2, June 2001 

A REVISION OF MINTY'S ALGORITHM FOR FINDING 
A MAXIMUM WEIGHT STABLE SET OF A CLAW-FREE GRAPH 

Daishin Nakamura Akihisa Tamural 
Tokyo Denkz University Kyoto University 

(Received July 3, 2000; Revised December 7, 2000) 

Abstract The maximum weightlcardinality stable set problem is to find a maximum weightlcardinality 
stable set of a given graph. It is well known that these problems for general graphs belong to  the class 
of NP-hard. However, for several classes of graphs, e.g., for perfect graphs and claw-free graphs and so 
on, these problems can be solved in polynomial time. For instance, Minty (1980), Sbihi (1980) and LovAsz 
and Plummer (1986) have proposed polynomial time algorithm finding a maximum cardinality stable set 
of a claw-free graph. Moreover, it has been believed that Minty's algorithm is the unique polynomial time 
algorithms finding a maximum weight stable set of a claw-free graph up to date. Here we show that Minty's 
algorithm for the weighted version fails for some special cases, and give modifications to  overcome it. 

1. Introduction 
Let G = (V, E) be a simple graph with vertex-set V and edge-set E. A subset S of V is 
called a stable set (or an independent set or a vertex packing) if any two elements of 5' are 
nonadjacent. A subset M of E is called a matching if no two elements of A4 are incident 
to the same vertex. Given a weight function w : V -+ R, a maximum weight stable set 
is a stable set 5" maximizing the sum of weights of all of its elements, w(S) = zgs w(v). 
Similarly, given a weight function 6 : E -+ R, a maximum weight matching is a matching 
M maximizing w(M) = LEM 6(e) .  We will deal with the problems of finding a maximum 
weight stable setlmatching, the so-called maximum weight stable set/matching problem. 
Particularly, if w(v) = 1 for all v E V (G(e) = 1 for all e E E ) ,  they are called the maximum 
cardinality stable set/matching problems. The maximum weight matching problem can be 
easily transformed to a maximum weight stable set problem by using line graphs. The line 
graph Â£(G of G is a graph whose vertex set is E and in which two distinct vertices e and f 
are adjacent if and only if e and f have a common endpoint in G. Since the matchings of G 
correspond to the stable sets of Â£(GI it is easily seen that the maximum weight matching 
problem is a special case of the maximum weight stable set problem. However, it is well 
known that there is a big gap between these two problems. The maximum weight stable 
set problem is NP-hard, even if w(v) = 1 for v G V (see [$I).  On the other hand, many 
polynomial time algorithms for the maximum weight/cardinality matching problem have 
been proposed, e.g., [ll, 9, 51 for bipartite graphs and [2, 3,  15, 61 for general graphs. 
Moreover, these polynomial time algorithms have been extended to those solving more 
general problems, for instance, the maximum weight /cardinality stamble set problem for 
claw-free graphs [I$, 16, 141, the linear matroid parity problem [12, 13, 7, 171 and the linear 
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delta-matroid parity problem [lo]. 
This paper deals with the maximum weight stable set problem for claw-free graphs. The 

complete bipartite graph K 3  is called a claw. A graph is said to be claw-free if it does not 
contain an induced subgraph isomorphic to a claw (see [4] for a survey on claw-free graphs). 
The claw is one of the forbidden subgraphs of line graphs [l]. That is, line graphs are claw- 
free, and the maximum weight stable set problem for claw-free graphs is a generalization 
of the maximum weight matching problem. Up to date, three polynomial time algorithms, 
one by Minty [l6], one by Sbihi 1181 and the third by Loviisz and Plummer [14] are known 
for the maximum cardinality stable set problem for claw-free graphs. Furthermore, it has 
been believed that Minty's algorithm is the only algorithm which can be extended to the 
weighted problem. This algorithm is based on a scheme by constructing "semi-optimal" 
stable sets for increasing cardinalities until it finds a maximum one. Here we say that a 
stable set S is semi-optimal if there is no stable set T such that IT1 < IS1 and w(T) > w(S). 
In order to find a next semi-optimal stable set from a current one, the algorithm transforms 
the problem to the maximum weight matching problem by constructing a graph called the 
Edmonds' graph. However, the construction does not always work well for the weighted 
problem (it is correct for the cardinality version). We will describe an example in which 
the construction fails. And in this paper we shall show how to revise the original definition 
of Edmonds' graphs by Minty [16] so that an optimal solution is obtained for the weighted 
case as well. 

For combinatorial optimization problems which can be solved in polynomial time, polyhe- 
dral descriptions of the feasible regions of those problems are generally known (e.g., matching 
polytopes of general graphs [2, 31). Although polyhedral descriptions of stable set polytopes 
of claw-free graphs are unknown so far, the maximum weight stable set problem on them 
can be solved in polynomial time. From this point of view, Minty's result seems to be 
important. Our contribution is to give that reassurance. 

Section 2 briefly explains Minty's algorithm, gives an example in which it fails and 
analyzes why such an error occurs. Section 3 proposes our revision. 

2. Minty's Algorit hrn 
The claw-freeness is the property that the set of all neighbors of any vertex have no stable 
set of size greater than or equal to three. This guarantees that the symmetric difference of 
any two stable sets, referred to as "the black vertices" and the "purple vertices" respectively, 
consists of a family of disjoint paths and cycles in which the black and the purple vertices 
appear alternately. Minty's algorithm is based on this property. Here, we first define basic 
notations and explain Minty's idea. 

We denote the difference and the symmetric difference of two sets by using symbols '-' 
and 'A'. Fix a claw-free graph G = (V, Â£1) a weight function w : V -+ R and a stable set S 
of G. We call the elements of S black and other vertices white. A white vertex is adjacent to 
at most two black vertices since G is claw-free. A white vertex is said to be bounded if it is 
adjacent to two black vertices, free if it is adjacent to exactly one black vertex and otherwise 
super free. A simple path (or cycle) is called an alternating path (or an alternating cycle) 
of S, if white and black vertices appear alternately, and no two of its white vertices are 
adjacent to each other. We call an alternating path white (or black) if both of its endpoints 
are white (black), and otherwise white-black. We define the weight of a path P (or cycle C) 
by the sum of weights of its white vertices minus the sum of weights of its black vertices 
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and denote it by 6(P} (or S(C)). An alternating path P is called an augmenting path if 
6 (P)  > 0, and endpoints of P are not bounded (i.e. free, super free, or black). Note that 
S A P is a stable set and w(S A P) = w(S) + 6(P).  

The scheme of Minty's algorithm is described below. 
1. s-0; 
2. if there exists no white augmenting path of S then output S; stop 

else find a white augmenting path P* having the maximum weight; 
3. S +- S A P*; go to Step 2. 

The correctness of the scheme follows from the next fact: 
Fact 2.1 ([16, Lemma 111) Let S be a semi-optimal but not maximum weight stable set. 
Then, for any maximum weight white augmenting path P* of S, S A P* is a semi-optimal 
stable set with cardinality \S\ + 1 .  

The essential part, Step 2, is divided as below: 

2-1. Generate all white alternating paths of length 0 or 2; 
2-2. for each pair of non-adjacent free vertices a and b do 
2-3. Let xa and xb be the black vertices adjacent to a and b respectively; 
2-4. if xu # xb then 
2-5. find a maximum weight white alternating path between a and b; 
2-6. end for; 
2-7. if all the white alternating paths generated above have nonpositive weight then 

output s; stop; 
2-8. Choose a maximum weight path P* among all the generated white alternating paths. 

The above scheme is correct, but the execution of Line 2-5 in Minty's algorithm contains 
an error. In [l6], Line 2-5 is transformed to an instance of the maximum weight matching 
problem by constructing a graph, called the "Edmonds' graph." 

We will explain the construction of the Edmonds' graph briefly. We first ignore all the 
super free vertices, free vertices except a and b, and all the white vertices that are adjacent 
to a or b, since they never appear in any white alternating path between a and b. The 
reduced graph is called an RBS (a reduced basic structure), including the weight function 
w and the semi-optimal stable set S.  In the rest of this paper, we will deal with the RBS 
instead of G. 

A nonernpty set of all bounded vertices, which are adjacent to the same two black 
vertices x and y, is called a wing. Vertices xa and xb are called regular I. Other black 
vertices are classified as follows: a black vertex is called regular 11 if it is adjacent to three 
or more wings, irregular if it is adjacent to exactly two wings, and otherwise useless. Let 
v 0 ,  vl, v2,. . . , v21-i- vvu} be a black alternating path. If va v4, . . . , v2e-2 are all irregular, then 
the subpath (vl,  va, . . . , v2e-1) is called an IWAP (irregular white alternating path) between 
VQ and vu. 

We partition the neighbor set N(xa) of the vertex xu into two sets N1(xa) = { a }  and 
N2(xa) = Nixa) - { a } ,  and define N1(xb) and N2(xb) similarly. Obviously, the unique 
element a of N1 (xu) is nonadjacent to any element of N2(xa). This property can be extended 
to regular I1 vertices as below. 
Fact 2.2 ([16, Theorem 11) For any regular 11 vertex v, N(v) is uniquely (except for 
exchanging) partitioned into N1(v) and N2(v) so that for any x and y in distinct wings 
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Figure 1: RBS. 
Figure 2: Edmonds' graph. 

adjacent t o  v, x is not adjacent t o  y if and only if one of x and y is  i n  N1(v) and the other 
is  i n  N2 (v) . 

This and the following fact are keys in constructing the Edmonds' graph. 
Fact 2.3 ([16, see Lemma 41) A simple path (vl, v2, . . . , Q) is a n  alternating path i f  and 
only i f  white and black vertices appear alternately, each white vertex vi-1 is  not adjacent to  
vi+l) neither vl nor we is  adjacent t o  two black vertices of the path, and vl and ve are not 
adjacent to  each other i f  they are white. A simple cycle (vl,  792,. . . , v2e, v2e+l = v l )  is an  
alternating cycle if and only if white and black vertices appear alternately and each white 
vertex v;-1 is  not adjacent t o  V i + l .  

The Edmonds ' graph is defined as below. Let xi,  . . . , xy be all the regular (I or 11) vertices 
of the RBS. The Edmonds' graph has 2r + 2 vertices labeled by xt , x: (i = 1,. . . , r )  and a, b. 
Each edge is painted black or white and assigned a weight G ( - )  in the following manner. For 
each regular vertex xi, join x] and x: by a black edge with weight G ( ( x 5  xf}) = w(xi). Join 
a and x: by a white edge with G((&,x:)) = w(a), and join b and XI, by a white edge with 
~ ( ( 6 ,  x])) = w(b). These two white edges correspond to white vertices a and b. For each pair 
of regular vertices xi and xj  and for p, q E {I, 2}, if there exists an IWAP between xi and x, 
whose endpoints are in Np(xi) and Nq(xj), join xr and XI by a white edge whose weight is 
the maximum weight among such IWAPs. Such an edge can be found in polynomial time, 
since it can be transformed to the longest path problem of an acyclic directed graph from 
Fact 2.3. 

We briefly explain the construction of the Edmonds' graph by using an example in Fig- 
ure 1. The RBS has four regular II vertices {xi, x2, x3, x4}. For example, let us consider two 
black vertices x3 and x4. By Fact 2.2, N(x3) and N(x4) are partitioned into N1(xs) = { g ,  j} 
and N2(x3) = if,Â£} and N1(x4) = { h ,  k) and N2(x4) = {i, m}, respectively. Between x3 
and x4, there are four IWAPs ( j ,  a, k ) ,  ( j ,  21, m), (Â£ 2-1, k )  and (Â£ 21, m) which join vertices 
belonging to distinct pairs of partitions of N(x3) and N(x4). Thus, the Edmonds' graph of 
the RBS has four white edges (xi,  xi), (xi,  xi),  (xj,, x\\ and (xi, x2) whose weights are 10, 
11, 11 and 12, respectively. Figure 2 in which the waved lines represent the black edges is 
the Edmonds' graph of the RBS in Figure 1. 

We call a simple path/cycle in the Edmonds' graph an alternating path/cycle if white 
and black edges appear alternately, and also define white alternating path and so on, in a 
manner similar to the vertex case. We define the weight of a path @ (or cycle b) in the 
Edmonds' graph by the sum of weights of its white edges minus the sum of weights of its 
black edges and denote it by S(P) (or S(C )) . 
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The key property connecting the RBS and the Edmonds' graph is the next fact. 
Fact 2.4 ([16, Theorem 21) There exists a (in general many-to-one) m,apping of the set 
of white alternating paths between a and b in the RBS onto the set of alternating paths 
between and 6 in the Edmonds' graph. Furthermore, maximum weight augmenting paths 
in the RBS and the Edmonds'graph have the same weight. 

Minty's algorithm checks whether or not the current RBS has a heavier stable set of 
size one greater than the semi-optimal stable set S as below. Let n be the size of S, and 

%+I be a maximum weight matching in the Edmonds' graph. For preciseness, we borrow 
statements from [16, pp. 3021: 

Form a set of vertices w+i in the RBS consisting of (a) the (black regular) 
vertices corresponding to the black branches of B L ,  (b) the black (irregular) 
vertices appearing in IWAPs corresponding to white branches not appearing in 
Bi+l, (c) the white vertices which appear in IWAPs corresponding to white 
branches appearing in and (d) those free white vertices in the RBS which 
correspond to white branches appearing in Bk+l. 

It is routine but somewhat tedious to verify that WL1 is an independent 
set of vertices. . . 

However, this construction fails. For example, let us consider the case described in Figures 1 
and 2. The Edmonds' graph in Figure 2 has a maximum weight matching 

By using the above construction, we obtain { a ,  6, c,  d ,  e, j ,  l, k ,  rn} as Wo, which is not a 
stable set. 

The reason of occurrence of the above failure is as follows: even though Fact 2.4 holds, 
there is no such relation between the sets of alternating cycles. More precisely, some alter- 
nating cycle of length 4 in the Edmonds' graph (e.g., (x\^ x& x& x\^ xi) in Figure 2) does 
not correspond to an alternating cycle in the RBS. 

From Fact 2.4, we may overcome the above error by directly finding a maximum weight 
alternating path between ii and 6 in the Edmonds' graph in polynomial time. This approach, 
however, seems to be difficult. Given a graph G, a matching M, two specified unmatched 
vertices s and t and a weight function on edges, the problem finding a maximum weight 
alternating path between s and t is NP-hard, because the longest simple path problem 
between two specified vertices on weighted directed graphs which is NP-hard [8], can be 
easily transformed to the problem. 

The problem, however, can be solved in polynomial time in some special cases. For 
instance, let us consider the case where M is semi-optimal, where we define semi-optimal 
matchings in the same way as in the case of stable sets. Without loss of generality, we assume 
that all vertices other than s and t are matched. If M has the maximum weight then there 
is no alternating path of positive weight; otherwise, for any maximum weight matching 
M" of 6, M A M* contains a maximum weight alternating path between s and t .  Hence, 
this case can be solved in polynomial time by using polynomial time algorithms for the 
maximum weight matching problem. We note that the matching consisting of black edges 
in the Edmonds' graph is semi-optimal in the cardinality case, that is, Minty's algorithm 
works well. Unfortunately, in the weighted case, this does not always hold (see Figure 2). 
The fact seems the other weak point of Minty's algorithm. 
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In the next section, we fix the error of Minty's algorithm by modifying the Edmonds' 
graph whose black edges form a semi-optimal matching. 

3. Revised Edmonds' Graphs 
Before constructing our revised Edmonds' graph, we analyze the case where the matching 
consisting of black edges in the Edmonds' graph is not semi-optimal. In general, any graph 
with non semi-optimal matching contains one of the following subgraphs: 

(1) an augmenting cycle, 

(2) a white-black augmenting path whose one endpoint is unmatched, 

(3) a black alternating path P and a white alternating path Q such that the end- 
points of Q are unmatched, P and Q are vertex-disjoint and :(PI + 6 ( ~ )  > 0 
(we call these an augmenting path pair), 

(4) a black augmenting path. 

However, the Edmonds' graph contains none of them except one special case. 
Lemma 3.1 The Edmonds'graph contains none of augmenting cycles of length more than 
or equal to 6 ,  white-black augmenting paths, augmenting path pairs or black augmenting 
paths. 

Proof. Assume that there is an augmenting cycle C of length more than or equal to 6 
in the Edmonds' graph. Each white edge of C corresponds an IWAP in the RBS. Since 
the length of C is greater than or equal to 6, these IWAPs do not join the same pair of 
regular vertices (this does not hold for cycles of length 4). By Facts 2.2 and 2.3 and the 
construction of the Edmonds' graph, C corresponds to an alternating cycle C' in the RBS. 
Moreover SIC') = :(c). Hence C ' i s  an augmenting cycle in the RBS, contradicting the 
assumption that the given stable set is semi-optimal. 

Next let us consider the case where an augmenting path pair (P, Q) exists. In the same 
way as above, P and Q correspond to alternating paths P' and Q' in the RBS, respectively. 
Since P and Q are vertex-disjoint, P' and Q' are also vertex-disjoint. From the construction 
of the Edmonds' graph, the white vertices of P' (or Q') are nonadjacent to each other. 
Assume to the contrary that a white vertex v of Q' is adjacent to a white vertex u of Pi. 
Since P' is a black alternating path, u is adjacent to exactly two black vertices x and y .  By 
claw-freeness, v must be adjacent to either x or y. Thus, either x or y must be contained in 
Q'. However, this contradicts that P' and Q' are vertex-disjoint. Hence the white vertices 
of P' and Q' are nonadjacent to each other. The symmetric difference of the given stable 
set S and (PI U Q') is a stable set of the RBS, because two endpoints of Q' are a and b 
and because a white vertex of P' and Q' is adjacent to none of S - (Pi U Q'). Furthermore, 
&(Pi) + 6(Q1) = 6(P)  + S(Q) holds. This contradicts that S is semi-optimal. 

We can similarly show the remaining cases. 
By the above lemma, we modify the Edmonds' graph by eliminating all augmenting cycles 
of length 4, while preserve all alternating paths between ii and b. 

Since the Edmonds' graph has no alternating cycle containing (xt ,  x2) or (xk x!}, let us 
fix distinct regular I1 vertices xi and xi. Suppose that Ppn denotes the maximum weight 
IWAP corresponding to the edge (x: x'3.} in the Edmonds' graph if the edge exists, for 
p, q E {I, 2}. We consider the following cases where an augmenting cycle of length 4 exists 
in the Edmonds' graph: 

Case A: there exist both Pn and PZ2, and <(pH) + S(P^) > w(xi) + w(xj), or 
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Case B: there exist both P i 2  and Pal, and S(P12) + 6 ( P 2 1 )  >  xi) + w(xj). 
We first discuss an easy situation. A wing W is said to  be reachable b y  irregular vertices 

t o  a regular vertex x if there exist an integer i > 1, distinct irregular vertices zl, . . . , ~ e _ ~  
and distinct wings Wl(= W), W2, . . . , We such that Wl is adjacent to zl and Wk is adjacent 
t o  zk-1 and zk for k = 2 , .  . . ,i, where = x. Let W(X;,XJ) denote the union of all the 
wings that are reachable by irregular vertices to both xi and xi.  
Lemma 3.2 If 7V1(xj) C W(xi, xj), then any white alternating path between a and b in the 
RBS passes through neither P12 nor P22. That is, we can delete the edges (x], x;) and (x?, x:) 
from the Edmonds' graph. Similarly if N2(xJ)  2 W(xi,  xj),  we can delete (xk  x:) and 
(x], x i ) .  If W x . )  C W ( x i ,  we can delete (x:, xi) and (x:, x;). If N2(xi) & W(xi, xj), 
we can delete (x}, x;) and (x}, x;). 

Proof. Assume to the contrary that a white alternating path from a to b passes xi, P12 
(or P 2 2 )  and a;-. Before xJ, it passes a vertex in N2(xj).  Hence it must pass a vertex in 
N1(xj) after xJ. However, since N^(xj) C W(xi, x j)̂ it must pass xi again. 
Under the condition of Lemma 3.2, we can delete an augmenting cycle of length 4. 

In the sequel, we suppose that none of N ~ x ; ) ,  N2(xi),  N1 (xi) and N2(xj )  belongs to 
W(xi ,  xA. Let us consider Case A. (It is symmetric to consider Case B.) We next introduce 
key lemmas in our revision and will give proofs of those in the last part of this section. 
Lemma 3.3 Paths Pll and P 2 2  have the same set of irregular vertices (which may be 

empty). 
Lemma 3.3 says that  Pll and PZ2 can be represented as follows: 

Here z l , .  . . , z^_l are irregular vertices, both y], and y; are in a common wing Wk for k = 

1, . . . ,1, y w x i ) ,  y@ N2(xi),  y i ~  N1(xj) and y m x ~ ) .  
We first consider the case where i = 1. 

Lemma 3.4 If i = 1 ,  any white alternating path from a to b passes through neither Pll nor 
PS2. Hence we can delete the edges (x], x;) and (x], x;) from the Edmonds'graph. Moreover, 
Case B does not occur for the same pair xi and XJ. 

Next we consider the case where i > 2. 
Lemma 3.5 If i 2 2, the followings hold. 

(1) There exists k such that 2 5 k <_ Â - 1 and y; = y;, or there exists k such that 
1 5 k < i - 1 ,  y]^ is not adjacent to y L 1  and y^ is not adjacent to y;+l. 

(2) For such k ,  let 

and let Pi2 = (Plli, zk, PW,) and P', = (Pm, z h  Pil l ) .  Then 6(Pi2) +6(P21) = ~ ( P I I )  + 
6(P22), P[i is an IWAP between N1(xi) and N2(xj ) ,  and Pil is an IWAP between 
N2(xi)  and N1(xj). 

(3) ^(Pll) + W2) = qh) + ̂ 21) * 

(4) 6(P[.) = S(P12) and 6(P^} = S(P21). 
Summing up the above discussion, we propose a revision of the Edmonds' graph. The 

above discussion deals with three cases, Lemmas 3.2, 3.4 and 3.5. In the first two cases, 
elimination of augmenting cycles can be easily done by deleting edges. Lemmas 3.2 and 3.4 
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x; 4 
Figure 3: The revised Edmonds' graph of the RBS in Figure 1. 

guarantee that the alternating paths between ii and 6 are preserved and no new alternating 
path is generated. Let us consider the last case. We revise the Edmonds' graph as below 
(see Figure 3): 

0 delete the four edges (x] , xi) ,  (x'j , x;) , (x] , x: ) and (x;, xi ) (Lemma 3.5 guarantees the 
existence of these four edges), 

add two new vertices z\ and zL join z\ and 4 by a black edge and assign its weight 
'w{{z\, zi))  to be w(zk), where k satisfies the conditions of Lemma 3.5, 

add the four white edges (x], .&), (x?, zi),  (xh 4) and (x;, z i ) ,  and assign their 

weights to be w({x], 4)) = 6(Plli), &((x],zi)) = 6(PZzi), &((xi,z$)) = 6(Pllj) 
and W((x$ 4)) = 6(PZ2j). 

All alternating paths passing through black edges (x], xf} and ( x s  x:) can be preserved by 
our revision, because (x: xj) in the original Edmonds' graph ( p ,  q E {l, 2}) is interpreted by 

the path {x:, 4, zi, xj} in the revised Edmonds' graph. Furthermore, Lemma 3.5 guarantees 
that weights of these four edges are equal to those of such four paths, respectively. 
Lemma 3.6 For every pair of regular II vertices xi and xfi if Case A or Case B occurs, 
we apply the above revision. Then, the black edges i n  the revised Edmonds' graph are a 
semi-optimal matching. 

Proof. Obviously, all the augmenting cycles of length 4 are eliminated and no new 
augmenting cycle of length 4 is generated. In the same way as in the proof of Lemma 3.1, 
we can prove that the revised Edmonds' graph contain no augmenting cycle of length more 
than or equal to 6, no white-black augmenting path, no augmenting path pair or no black 
augmenting path. 
Theorem 3.7 A maximum weight stable set of a claw-free graph can be found i n  polynomial 
t ime i n  the numbers of vertices and edges. 

Proof. The number of alternating cycles of length 4 is polynomially bounded. For each 
pair of regular I1 vertices xi and xj, W(xb xj) can be found in polynomial time. Hence the 
revised Edmonds' graph can be constructed in polynomial time. 

We now prove Lemmas 3.3, 3.4 and 3.5. 

Proof of Lemma 3.3 If Pll and PZ2 have no irregular vertices, the assertion clearly 
holds. Suppose that Pll or PZ2 contains an irregular vertex. Assume to the contrary that 
the assertion does not hold. Since Pll and Pz2 have no regular vertex, the sets of irregular 
vertices of these IWAPs have no intersection. Thus, all white vertices of Pn and PZ2 belong 
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to distinct wings. Let us consider the cycle C = (xi, Pll, xj,  P 2 2 ,  xi}. By Facts 2.2 and 2.3 
and the assumption 6(C) = 6(P11) + 6(P^} - w(xi) - ~ ( x j )  > 0, C is an augmenting cycle 
in the RBS. However this contradicts the fact that the given stable set is semi-optimal. U 

Lemma 3.8 For Pll and Pm in (3.1)) there exists k such that 2 < k < I - 1 and y; = y;, 
or there exists k such that 1 < k < I and yi is adjacent to y;. 

Proof. Suppose that yL # y; for all k (2 < k < I - 1). Note that y: # y: and 
y; # y] since N1(xi) n N2(xi) = 0 = N1(xj) n N2(xj).  Let zo = xi and zt = xj. Since 

0 < SIP,,) + 6 ( P 2 2 )  -  xi) - ~ ( x j )  = ~ L l ( w ( i / ; )  - W ( M )  + w(y:) - ~ ( z t ) ) )  we can 
choose k such that w(y;) - ~ ( z k - ~ )  + w(y2) - w(zk) > 0. If y} and y; are not adjacent, 
C = { y 1  k ,  zk-i  ̂ yk zk} is an augmenting cycle in the RBS, contradicting the assumption that 
the given stable set is semi-optimal. Hence y\ and y: must be adjacent. 
Lemma 3.9 Suppose that I = 1 .  Then, xi is adjacent to precisely three wings: Wl, a wing 
W: C N1(xi) and a wing Wf N2(xi),  and xj is also adjacent to precisely three wings: 
Wl, W: & N1(xj) and W] & N2(xj) .  Moreover, W;.' and W: are adjacent to a common 
black vertex vl, and W: and Wf are adjacent to a common black vertex v2. 

Proof. Let US fix a vertex u â N1(xi) - W1(2 N1(xi) - W(xi, x j )  # 0). Suppose that ~1 

is the black vertex adjacent to u other than xi. Let w be any vertex in N1(xj) - Wl(# 0). 
By Lemma 3.8, y; is adjacent to y:. Fact 2.2 says that y1 is adjacent to both u and w, but y? 
is adjacent to neither u nor w. Thus w must be adjacent to u, since otherwise { y h  y& w} 
induces a claw. Since w 6 Wl, w is not adjacent to xi. Then, by claw-freeness, w must be 
adjacent to vl. Now we can conclude that all the vertices in N1(xi) - Wl belong to one 
wing W/ which is adjacent to both x j  and vl. Similarly, one can prove the other assertions. 

Proof of Lemma 3.4 If a white alternating path from a to b passes through xi, Pll (or 
P 2 2 )  and xj,  it must pass through v2 (or vl)  twice, a contradiction. 

Assume to the contrary that Case B occurs. By Lemma 3.9, P12 and Pgl pass through 
neither vl nor v2, even if vl and v2 are irregular. That is, Pn and Pal belong to the wing 
Wl. A parallel discussion to Case A concludes the "twisting" version of Lemma 3.9, but 
this contradicts the assertion of Lemma 3.9 for Case A. 

Proof of Lemma 3.5 
(1): Suppose that y; # y'j; for all k with 2 5 k <t - 1. Recall that y; # yf and y; # y]. 

Suppose that y; is adjacent to y;. Fix a vertex u E N1(xi) - W(x^ xi). Fact 2.2 says that 
u is adjacent to y;, but not to y2  Vertices y2 and y; are not adjacent to each other, since 
they belong to P 2 2 ,  Vertex u must be nonadjacent to y& since otherwise, by claw-freeness, 
u must be adjacent to either z1 or z2, a contradiction to u $ W(xi,xj). Thus y; is not 
adjacent to y;; otherwise { y;, y?, yj, u} induces a claw. Similarly, y\ is not adjacent to y;. 
Hence k = 1 satisfies the latter assertion of (1). 

If y) is adjacent to yj, one can analogously show that k = I - 1 satisfies the latter 
assertion. 

Finally let us consider the other case. Lemma 3.8 guarantees that there is k such that 
2 < k < I - 1 and yi is adjacent to y:, but yi--, is not adjacent to y l r  Obviously, zk-1 
is adjacent to yl_l, y ~ _ l ,  and y;. Vertices y;_l and y i  are nonadjacent since they belong 

2 to pH. Thus y'j;-, is adjacent to yL since otherwise Y ; _ ~ - ,  ykPl, y]} induces a claw. 
2 1 Vertices y;_l, yk and y L l  are mutually nonadjacent since they belong to P22. Hence yk 

must be nonadjacent to ~ ' j ; + ~ .  Similarly, we can prove that y; is not adjacent to yii1. 
(2): Obviously the assertion holds by (1) and Fact 2.3. 
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(3): By the definition of P12 and P21, S{Ph) <. S(P12) and S(P^) 5 S(P21). Hence S(P11) + 
S(P22) <: S(P12)+S(Ptl). Assume to  the contrary that S(Pll)+6(P22) < S(P12)+S(P21) holds. 
By the parallel discussion about P12 and P21, and by Lemma 3.4, if P12 and Pal are of length 
0, then Case A does not occur, a contradiction. Thus, lengths of P12 and Pal are greater 
than or equal t o  two (i.e., i >_ 2). From the assertions (1) and (2) of this lemma for P i 2  and 
PZ1, there exist Pil and Pi2 such that  W )  + &(Pi2) = S(P12) + S(Pu) > S(P11) + S(P22). 
However, this implies S(Pil) > S(Pll) or S(Pw) > S(Pa2), contradicting the maximality of 

Pll or p 2 2 -  

(4): It follows from S(PL) 5 S(P12), S(P&) < 6(Pn) and 6(Pi2) + S(P&) = 6(P12) + 6(Pn). 
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