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Abstract This paper considers a scheduling problem of minimizing the maximum lateness for a parallel- 
machine flowshop with m stages, each of which consists of one or more identical parallel machines. We 
propose a heuristic algorithm being based on a shifting bottleneck approach which decomposes the parallel- 
machine flowshop problem into m parallel-machine scheduling problems to be solved one by one. Each 
parallel-machine problem is approximately solved by applying a property of its reversibility in the proposed 
heuristic. To evaluate performance of the proposed heuristic, it is numerically compared with Wittrock's 
algorithm for a real production line, and with Santos et al.'s global lower bound for test problem instances 
randomly generated. The results obtained strongly suggest that the proposed heuristic produces optimal 
or quite near optimal solutions within short computational time with high probability. 

1. Introducton 

This paper considers a scheduling problem for a parallel-machine flowshop (denoted by 
PMFS) consisting of m stages, each of which is composed of one or more identical ma- 
chines. A flowshop with multiple processors (e.g., Brah and Hunsucker [4], Brah and Loo [5], 
Rajendran and Chaudhuri [25 ] ,  Santos et  al. [28]), a hybrid flowshop (e.g., Aghezzaf and 
Artiba [2], Guinet and Solomon [lo], Gupta [Ill,  Gupta et  al. [12], Gupta and Tunc [13], 
Lee and Vairaktarakis [19], Riane et  al. [26]) and a flexible flow line (e.g., Kochhar and 
Morris [18], Leon and Ramamoothy [21], Sriskandarajah and Sethi [30], Wittrock [31, 321) 
belong to the same class of the PMFS. 

The PMFS is a generalization of the traditional flowshop model with only one machine 
at each stage and a generalization of a parallel-machine shop with a single stage, and thus 
scheduling problems for the PMFS are more intractable. In fact, the problem of minimizing 
the makespan for the PMFS is NP-hard even in special cases such as a two-stage case with 
a single machine at a stage (see Gupta [ll]) and a two-stage with preemption allowed (see 
Hoogeveen et  al. [14]). 

One of the earliest papers for the PMFS is Arthanary and Ramaswarmy [3] where a two- 
stage problem was discussed. Since then, there have been a lot of papers for two- or three- 
stage problems (e.g., Chen [8], Deal and Hunsucker [9], Gupta [l l] , Gupta et  at. [12], Gupta 
and Timc [13], Hoogeveen et  at. [14], Riane et  al. [26], Seetharama [29], Sriskandarajah and 
Sethi [30]). 

Wit trock [3l, 321 has developed heuristic algorithms for general m-stage problems of 
minimizing the makespan and reducing work-in-processes (WIP's) for real production lines 
in IBM. Kochhar and Morris [l8] discussed problems of minimizing the effect of setup 
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time, blocking with finite buffers and down time. Hunsucker and Shah [15] developed a 
dynamic simulation model for a PMFS to evaluate priority rules for some measures such 
as the makespan, the mean flow time, the maximum flow time, the mean tardiness and 
the number of tardy jobs. Santos et al. [28] developed a global lower bound for a general 
makespan problem to assess the quality of heuristic solutions when the optimal one is 
unknown. In fact, branch-and-bound algorithms developed so far could solve only small 
size problem instances with typically two-stage and up to ten jobs (e.g., Brah and Loo [5], 
Deal and Hunsucker [9], Gupta and Tunc [l3], Rajendran and Chaudhuri [24, 251). Leon 
and Ramamoothy [21] proposed a problem-space-based neighborhood for local seach which 
does not mean to perturb the current solution, but to perturb problem data for generating 
new solutions. Brah and Loo [5] investigated five better performing heuristics for their 
performance of the makespan and the mean flow time criteria using regression analysis. 
There have been reports on practical applications to problems of the PMFS (e.g., Iima and 
Sannomiya [16], Luss and Rosenwein [22], Paul [23], Wittrock [31, 321). 

We discuss the parallel-machine flowshop scheduling problem of minimizing the max- 
imum lateness (denoted by PMFSP), and propose an efficient heuristic algorithm for the 
PMFSP. It adopts the basic idea of the so-called shifting bottleneck procedure (SBP, for 
short) that was originally developed for the classical jobshop scheduling problem by Adams 
et al. [I]. The SBP sequences the machines one by one, successively, at each time taking the 
machine identified as a bottleneck among the ones not yet sequenced. For this purpose and 
getting feasible solutions the SBP optimally solves a lot of one-machine scheduling problems 
by a quite effective branch-and-bound algorithm. But this is not the case for the parallel- 
machine scheduling problem (denoted by PMSP) with which we have to be confronted in the 
PMFSP, because there is no such an effective exact algorithm. Thus, our heuristic utilizes 
effective lower bounds instead of optimal values for the bottleneck identification. 

For each PMSP, our heuristic utilizes the reversibility of the problem. That is, each 
PMSP has the corresponding reverse PMSP that is different from the original one. They 
have the same optimal value in sequences reversed each other. This means that a heuristic 
applied to the original and its reverse PMSP yields different approximate solutions, thus we 
can easily choose the better solution. This reversibilty generalizes that for the one-machine 
scheduling problem (see Kise et al. [17]). 

The remainder of this paper is organized as follows. Section 2 formulates the PMFSP 
through a disjunctive graph. Section 3 presents a heuristic algorithm for the PMFSP, be- 
ing based on a shifting bottleneck approach that decomposes the PMFSP into rn PMSP's, 
and describes the reversibility of the PMSP. The proposed heuristic consists of two phases, 
getting a feasible solution in Phase One and reoptimizing in Phase Two. Section 4 shows 
the results of numerical experiments executed to evaluate the performance of the proposed 
heuristic. It is compared with Wittrock's algorithm for his bench mark problem instances 
(see Wittrock [32]) and with Santos et al.'s global lower bound for their test problem in- 
stances randomly generated (see Santos et al. [28]). The results obtained strongly suggest 
that the proposed heuristic produces optimal or quite near optimal solutions within short 
computational time with high probability. 
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2. Problem Formulation 
2.1. Description of the model 
The parallel-machine flowshop scheduling problem (PMFSP) considered here can be de- 
scribed as follows: 

(1) n parts are processed by a m-stage production system. Each stage consists of one 
or more identical parallel machines and has sufficient capacity of buffer storage for 
work-in-processes (WIP 's) . 

(2) Each part is processed by at most one machine in each stage, i.e., each part consists 
of at most m tasks and the tasks of a part are processed at different stages each other. 
All the parts visit the m stages in the same order of them, but some parts are allowed 
to skip some stages, if necessary. 

(3) The processing times of tasks are known, and does not depend on machines to be 
used. The setup time is independent of the part sequence, and therefore is included 

recessing time. 

(4) No machine can process more than one part at a time, and no preemption is permitted. 

(5) Parts are continuously transported from one stage to another (e.g., by belt conveyer), 
and the transportation time from one machine to another is simply a function of the 
two stages to which the two machines to be used belong. 

(6) Each part has a known ready time, i.e., its processing cannot be started before this 
time. The ready time may represent the part arrival time in the system. 

(7) Each part has a known due date, and the minimization of the maximum lateness 
is sought. When the maximum lateness takes a positive value, then it is tardiness; 
when the due date is zero, then the maximum lateness is identical to the maximum 
completion time (i.e., the makes pan). 

the parallel-machine flowshop with three machine stages and four parts is 
igure 1. Part 1 and part 2 can skip stage 2 and stage 3, respectively, in this 

example. 

2.2. Not at ions 
The following notations are used to formulate problem PMFSP: 
(1) Input parameters: 

o J = {I, 2, . . . , n}: the set of n parts; 

a M = {0,1,. . . , m, m + I}: the set of rn + 2 stages including the input buffer stage 0 
and the output buffer stage m + 1 (see Figure 1) ; 

rnkl I 1 = 1,2, .  . . , h(k),k = 1,2, .  . . ,m} :  the set of h(k} identical machines 
composing stage k, where rnki is the 1-th machine at stage k with buffer Bkl; 

Jj; the set of tasks composing part j ? J; 
0 J k :  the set of tasks to be processed at stage k (k = 1,2, . . . , m). Note that 1 ~~n Jkl 5 1 

holds; 

a s(u): the stage at which task u E U g i  Jj is to be processed; 

o rj, dj: ready time and due date of part j ? J, respectively; 

0 p(u) : processing time of task u ? UG1 Jy; 
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Figure 1: An example of the parallel-machine flowshop. 

t&/: transportation time of a part from stage k to stage k' (k, k' E M and k < k'}. 
(2) Parts routing 

0 = fil x O2 x - x Om: a set of parts routings, each of which assigns each task u of 
the parts to one of machines at  stage s(u), where fik stands for allocating tasks to be 
processed at stage k to h(k) machines, i.e., let wk ?E Sk and w E 0, then 

(3) Disjunctive graph 
G = (N, A, D, P, T): disjunctive graph representing a scheduling problem under a 
parts routing (w ?E 0) ;  

0 0 Nj = {n,, nj  + 1, . . . ,723: the set of nodes, each representing a task of part j where 
ny and n; represent the ready time and the due date of the part, respectively. The 
ready time node (number) and the due date node (number) of part j are given by 

n; = ( 1  Jjt 1 + 2) + 1 and n; = zLl ( 1  Jjt 1 + 2), respectively; 

N = {O, *} U {Nj 1 j 6 J}: the set of nodes, each representing a task except that 
source 0 and sink * represent the start and the finish of the schedule, respectively; 

Aj = {(u, u + 1) 1 n; < u < n;}: the arc set representing task's order of part j ;  

0 A = {Aj 1 j = 1,2 , .  . . , n}: the set of conjunctive arcs; 

Dkl = {(u, u), (u,u) 1 u, u(# u) E wM}: the set of disjunctive arc pairs where each 
disjunctive arc represents the processing order between the tasks on the 1-th machine 
at stage k; 
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Dk = {DM 1 1 = 1,2,.  . . , h(k)}:  the set of disjunctive arc pairs at stage k;  

a D = {Dk 1 k = 1,2, . . . , m}: the set of disjunctive arc pairs; 

P = {p(u) I u E U > ~ ( N ~  - {n;, n;}) - {O, *}} U {p(0) = 0,p(*) = O }  U {p(ny) = 

O,p(n;) = 0 1 j E J}: the set of node weights representing the processing times of 
tasks; 

e T = { t (u , v )  1 (u , v )  E A} U { t (u ,v)  = 0 1 ( u , v )  6 D}: the set of arc weights where 
t(0,  n?) = rj,  t ( n J ,  *) = -4 and t (u ,  v )  = ts(Ã£)s(Ã£ 

(4) Schedule 
a St  = {(u ,  v )  1 u ,  v are nodes which correspond to two tasks assigned to machine rnk;}: 

a subsequence for machine m ~ ,  i.e., a set of disjunctive arcs selected for scheduling, 
meaning that its counterpart is discarded; 

a Sk = {Sf I 1 = 1,2, .  . . , h(k)};  a subschedule for stage k (k = 1,2, .  . . , m); 

a S = {Sk 1 k = 1,2,.  . . ,m} :  a (whole) schedule of m stages; 

a 11: the set of schedules S under a parts routing (w ? f̂ ); 
a Gs = ( N ,  A U S,  0 ,  P, T )  : a conjunctive graph, called scheduled graph, corresponding 

a schedule S E 11, where 0 means that no disjunctive arc pair exists; 

a L(u, v ) :  the longest path length to node v from node u in scheduled graph Gs; 
A 

a E(v)  = L(0,v): the earliest start time of task v. 

Input 
Stage 

Output 
Stage 1 Stage 2 Stage 3 stage 

m i 2  m2,2 

Figure 2: An example of the disjunctive graph. 
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2.3. Formulation of the scheduling problem 
Suppose that a parts routing w E 0 is given, then G = (N, A, D, P, T) is the corresponding 
disjunctive graph defined in Subsection 2.2. Figure 2 illustrates a disjunctive graph for a 
3-stages, 4-parts problem (see Figure 1, also), where solid and dotted arcs represent the 
conjunctive and the disjunctive arcs, respectively. Obviously, a sequence of tasks assigned 
to each machine is determined by selecting one arc from each disjunctive arc pair, and 
discarding the other. Figure 3 illustrates an example of the scheduled graph, which is 
generated from Figure 2. 

Input 
Stage Stage 1 

Output 
Stage 2 Stage 3 st 

age 

Figure 3: An example of the scheduled graph. 

A Given scheduled graph Gs, since E(v) = L(O, v) is the longest path length to node v 
from source 0, it is defined by 

where B(v) = {u\ (u, v) E A U S} and E(0) = 0. As defined in Subsection 2.2, E(v) 
represents the earliest start time of task v. Especially, E(n$) = 0; E ( n 3  1) and E(n',) 
are earliest starting and the earliest finishing times of processing part j ,  respectively. The 
lateness of part j is defined by 
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and the maximum lateness of schedule S is by 

Lmax = E(*) = max Lj.  
JGJ 

Thus the parallel-machine flowshop scheduling problem can be expressed by 

PMFSP : min Lmax s.t. the equation of (1). 
weasen 

3. A Shifting Bottleneck Based Heuristic 
The shifting bottleneck approach we employ is based on the idea of decomposition of the 
PMFSP into m subproblems to be solved one by one. The subproblem at each stage becomes 
a parallel-machine scheduling problem with ready times and due dates. The bottleneck 
concept plays an important role in such a heuristic approach, and a good solution on the 
bottleneck stage is expected to result in a good schedule on the whole. Adams et al. [I] 
first developed a shifting bottleneck procedure for the jobshop problem. Since then, it has 
been generalized to solve various types of scheduling problems (e.g., see Rumudhin and 
Marier [27]). Its key point to score a success is to exploit a quite efficient branch-and-bound 
procedure developed by Carlier [6] to solve decomposed one-machine scheduling problems 
exactly and to use their optimal velues as a measure of bottleneck quality associated with 
each machine. 

Unfortunately, there has not been such a highly efficient exact algorithm for our parallel- 
machine scheduling problem so far. Thus, we solve it approximately and utilize a lower 
bound for the bottleneck quality. 

The proposed heuristic algorithm consists of two phases. Phase One schedules m stages 
one by one successively in descending order of lower bounds of the parallel-machine schedul- 
ing problems to obtain an initial schedule. Phase Two locally reoptimizes each stage, being 
based on schedules of the remaining (m - 1) stages that have been the best ones obtained 
so far. This procedure is repeated until no improvement is possible. 

3.1. Parallel-machine problem 
Assume that a proper subset K of stages already has schedule SK = { ~ ~ ' l k '  K}, then a 
parallel-machine scheduling problem for task set J* at stage k $- K (denoted by PMSP(k1 K )  
is defined as follows: 

PMSP(k1 K) : {G = (N, AK, D', P, T), for all possible %}, (3) 

where An = A U {sk'1k' 6 K}. Let Gw = (N, A U SK, 0, P, T) be the conjunctive graph 
defined by SK, and let L ~ ( u ,  v) be the longest path length from node u to node v in graph 
GSK, then PMSP(k1 K )  is reduced to a parallel-machine scheduling problem of minimizing 
the maximum lateness, i.e., PI r3 1 Lmax, according to the standard classification scheme (e.g., 
see Lenstra et al., 1977), of which ready time, processing time and due date of task u Jk 
are respectively defined by 
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Moreover, let 

then the PMSP is also equivalent to a parallel-machine scheduling problem with head rk(u) 
and tail qk(u) (which correspond to ready time and delivery time, respectively). 

Obviously, a feasible solution of a PMSP(k\ M - {k}) leads to a feasible one of PMFSP 
with the same objective value. 

Define a parallel-machine scheduling problem for stage k by graph G = (N, A, 0, P, T) 
obtained by removing all the disjunctive arcs, i.e., all stages are not yet scheduled, then 
calculate ready times r k  (u), due dates dk (u), and delivery times qk(u) by using equations 
(4) and (5), and arrange rk (u), qk (u) in ascending order and dk (u) in descending order. Let 
S R  be the sum of the first h(k) ready times in the ascending order, SQ the sum of the first 
h(k) delivery times in the ascending order, and S D  the sum of the first h(k) due dates in 
the descending order, then Carlier ' s  result is stated as follows: 

Lemma 1 [7] A lower bound on the optimal makespan for the delivery time form of the 
parallel-machine scheduling problem with ready times rk(u) and delivery times qk (u) is given 

The following is straightforward from Lemma 1 and (5): 

Lemma 2 A lower bound on the optimal maximum lateness for the parallel-machine schedul- 
ing problem with release times rk(u) and due dates dk(u) is given by 

Suppose that a schedule S and the corresponding scheduled graph G = (N, AUS, 0, P, T )  
are given. We say that the stage k is critical with respect to S if stage k has some tasks 
on a critical path. In order to identify a bottleneck stage in graph G = (N, A U S, 0, P, T) 
from a different view of bottleneck concept, we measure the amount of contribution CT(k) 
of stage k to the maximum lateness. 

Now, let Cki be the set of tasks on the longest paths that are processed on machine 
of stage k, and T(k, 1) = p(u). Then, we define the maximum sum of T(k, 1) among 

uecki 
various machines of stage k as CT(k), i.e., 

CT(k) = max T(k, 1). 
l^h(k) 

In the local reoptimization of Phase Two in the propose heuristic which will appear 
in Subsection 3.3, we reoptimize the sequence of each critical stage in descending order of 
CT (k) . 
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3.2. Parallel-machine scheduling 
It is well known that the parallel-machine scheduling problem of minimizing the maximum 
lateness with ready times and due dates is NP-hard in the strong sense (e.g., see Lenstra et 
at. [20]). This implies that a polynomially bounded algorithm to optimally solve the parallel- 
machine problem is probably impossible. Thus, we propose an approximate algorithm which 
is based on the following algorithm H and on the reversibility of the problem: 

Algorithm H: At each time point ( t ) ,  a machine becomes idle again, select a task with 
the smallest due date from among all the tasks u that are available (r(u) <: t ) ,  but not yet 
scheduled, breaking ties by preferring longer processing times (breaking ties arbitrarily, if 
the processing times are also the same). 

Reversibility of the PMSP: We here omit the indexes k and K for simplicity unless con- 
fusion occurs. Let a parallel-machine scheduling problem be denoted by PMSP = (72,P, D), 
where R, P and P be respectively ordered sets of ready times, processing times and due 
dates, then problem PMSP = (-73, P, -R) is referred to as the reverse of PMSP, where 

= (-d(l), -d(2), . . . , -d(n)) and -72 = (-r(l),  -r(2), . . . , -r(n)) be respectively or- 
dered sets of ready times and due dates. Furthermore, let 71- = (rl, 71-2,. . . , TT,) be a se- 
quence of g tasks to be processed on a machine, where TT, stands for the i-th task, then 
- 
TT = (71-,, 71-,-1, . . . , T I )  is referred to as the reverse of TT,  and let S be a set of sequences for 
all machines which is called schedule, then 3 is referred to as the reverse of schedule S, if 
S consists of the reverse sequences of S. 
Theorem 1 The parallel-machine scheduling problem PMSP and its reverse PMSP have 
the same minimum value of the maximum lateness, and their optimal schedules are reverse 
each other. 

Proof: Let = (uz (I) ,  uz (2), . , uz (qz)) be a schedule on machine r n ~  of stage k, and let 
Sk = IJZ Su be a schedule at stage k. Then, the finishing time f (uz (i)) of task ui(i) is 
given as follows: 

Let the maximum lateness on machine rnkz be defined by 

then the maximum lateness of PMSP is given by 

L(Sk,PMSP) = max L(Sk,,PMSP). 
l s l < h ( k )  

(11) 

On the other hand, consider the reverse problem PMSP. For Su = (u;(l), ui(2), -, 
- 

"1 (qz)), SM = (az (I) ,  zz (2), - , ui (qz)) = (UZ (qz), uz (ql - 1), - - . , u~ (1)) is called the reverse of 
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Ski, and = ~ z f ~ ~ ~  is called the reverse of St. Then, we have 

= L(Skl, PMSP). 

Then, 

The above equation of (13) means that both the latenesses of the schedule Sk for the reverse 
problem PMSP and the reverse schedule St for PMSP are identical. 

Assume Sk is an optimal schedule for PMSP and Sk is not an optimal schedule for 
PMSP. Then, there is a different optimal schedule, say Si for PMSP, i.e., L(ShPMSP) < 
L(Sk, m). It can be seen that the PMSP and the reverse problem are one to 
one from the definition, so Â£(S",,PMSP < Â£(St,= = L(S~,PMSP). This results in 
contradiction, i.e., Sk is an optimal schedule for PMSP. 

As shown in the equation of (13), it should be noted that the PMSP and the 
have the identical maximum lateness if their schedules are reverse each other, but it does 
not mean that they yield the identical maximum lateness when an approximate algorithm 
is applied to them. 

Obviously, the reverse of a schedule obtained from PMSP is a feasible one for PMSP. 
Thus, the following approximate algorithm is significant : 

Algorithm z: Apply algorithm H to the reverse problem PMSP, and then reverse the 
schedule obtained. 

Table 1: An example of the parallel-machine scheduling problem and its reverse problem. 

(a) PMSP (b) Reverse problem 
u 1 2 3  4 

p(u) 5 2 8 4 
r(u) 0 0 3 1 
d(u) 10 9 10 8 
p(u): processing time; 
r(u): ready time; 
d(u): due date. 

P(u) 5 2 8 4 
r(u) -10 -9 -10 -8 
d(u) 0 0 -3 -1 
p(u) : processing time; 
r(u): ready time; 
d(u): due date. 
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Machine 1 

Machine 2 

0 5 10 13  Time 

(a) Schedule (2,4) and (1,3) 

Machine 1 

Machine 2 
L I I I > 
0 5 10 11 Time 

(b) Schedule (2,3) and (4,l) 

Figure 4: Gantt chart of two approximate schedules. 

As an illustration of this observation, consider a two-machine four-task PMSP and its 
reverse provided in Table 1. Two schedules obtained by algorithms H and are respectively 
shown in Figure 4. Consequently, algorithm produces a better schedule with Lmax = 1 
than a schedule with Lmax = 3 produced by algorithm H.  

On the basis of these facts, the approximate algorithm HA can be described as follows: 

Approximate algorithm HA: The better one of the schedules obtained by applying the 
algorithms H and to a given problem instance is to be selected. 

3.3. A heuristic algorithm for the PMFSP 
Algorithm A: 

(Phase One: Initial scheduling) 

Step 1 Convert the given PMFSP into a graph G = (N, A, 0, P, T). 
Step 2 Compute the lower bound LB(k} by the equation of (7) on optimal maximum 

lateness for PMSP(kl0), k = 1,2, . . . , m. 

Step 3 Solve PMSP(k1 K)  (K  is the set of stages which have already been scheduled) in 
descending order of lower bounds LB(k} for k G {I, 2, - - , m} , using approximate 
algorithm HA. An initial schedule is obtained. 

(Phase Two: Improvement of initial schedule) 

Step 4 Find critical paths and compute CT(k) (k 6 Mcs) by the equation of (8)) where 
Mcs is the set of the critical stages. 

Step 5 k' +- Arg max CT(k). Solve PMSP(k'\K) ( K  = {I, 2, - - .  , k' - 1, kt + 1, , m}) 
S M c s  

associated with stage k', using approximate algorithm HA. Mas +- Mcs - {kt}. If 
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the schedule is improved, return to Step 4. 

Step 6 If Mcs # 0, return to Step 5. Otherwise, stop. 

It should be noted that algorithm A concurrently makes the three decisions, i.e., routing, 
sequencing and timing. 

We discuss the complexity of algorithm A. Step 1 requires O(mn) time. Step 2 computes 
the longest path lengths of mn nodes for obtaining m lower bounds by the equation of (7), 
which takes O(m2n2) time as the total. Step 3 requires 0 (mn  log mn) time to solve rn 
parallel-machine scheduling problems. Step 4 takes 0 (m2n2) time per iteration. Step 5 
requires O(mn1ogrnn) time per iteration. Thus, let I be the number of iterations required 
in Phase Two, then the total computation time of Phase Two is O(Im2n2) time which 
dominates the overall time complexity of algorithm A. 

4. Numerical Experiments 
In order to examine the performance of the proposed heuristic algorithm A, two kinds of 
numerical experiments were conducted. The first is a comparison with Wit trock's heuristic 
algorithm (see Wittrock [32]) through the same problem data as that in his experiments. 

The second is a comparison with the global lower bound presented by Santos et al. [28] 
for the same problem types as that employed by them. This means that the ready times, 
the due dates and the transportation times are set to be zero, and the objective function 
reduces to the makespan. 

The program was coded in FORTRAN and run on DEC 3000 (35MFLOPS) EWS. 

4.1. Comparison with Wittrock's algorithm 
Wittrock's algorithm is decomposed into three parts: machine allocation, sequencing and 
timing. For the machine allocation, the LPT (largest processing time) dispatching rule is 
employed stage by stage. For sequencing on each machine, a heuristic algorithm (called 
workload approximation) based on an approximate DP (dynamic programming) is devel- 
oped. For timing, job ready times are determined so as to minimize the maximum queue 
on each stage without increasing the makespan. This does not mean the earliest start- time 
of each task for a given load sequence. 

Table 2 shows a comparison of the makespan between algorithm A and Wittrock's one. 
It also shows values of the Santos et  al.'s global lower bound, denoted by LBmax (which will 

Table 2: A comparison with Wittrock's algorithm (m = 3, h(1) = 3, h(2) = 2, h(3) = 3). 

Problem Makespan 
Number n algorithm A (Phase One only) Wittrock LBmx 
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be described in the next subsection). 
It is obvious from this comparison that the proposed heuristic produces smaller makespan 

than Wittrock's algorithm does. 

4.2. Comparison with Santos et al.'s global lower bound 
Santos et at. [28] developed the following stage-based lower bound for the PMFSP: 

LB(k) = Ã ‘ {  LSA(y, fc) + E p(u)  + E RSA(y, k)}, 
h(k) Y=I ui- Jk y=l 

where LSA(y, k )  is the y-th smallest value of job-based total processing times before stage 
k and RSA(y, k }  is the y-th smallest value of job-based total processing times after stage 
k. Obviously, the best possible lower bound is given by 

where LB(0) stands for the maximum value of the job-based total processing times over all 
st ages. 

They calculated the mean relative errors over 30 instances for each of 21 problem types. 
These mean relative errors were utilized to more pertinently estimate the performance of 
our algorithm as discussed below. 

Let REAO = (APP - OPT)/OPT and REoL = (OPT - LOW)/OPT be respectively 
the relative errors of an approximate value (APP) and a lower bound value (LOW) to the 
optimum value (OPT), and RDAL = (APP - LOW) /APP be the relative deviation between 
the approximate and the lower bound values. Then, 

Let 3 stands for the mean value of variable x, then we approximately have 

The results obtained are shown in Table 3. The first three columns represent problem 
types tested. The processing times were generated by random integer numbers from 1 to 10 
as in Santos et al. (281. The fourth column represents the mean relative error of algorithm A 
which is estimated by the equation of (17). They ranges from 0.9[%] to 6.2 [%] with average 
3.1[%]. On the other hand, RDAL in the sixth column ranges from 4.2[%] to 11.8[%] with 
average 7.6 [%I. 

In order to examine the effect of the reversibility (discussed in Subsection 3.2), we 
examined the performance of algorithm A', which is the same as algorithm A except that 
algorithm H is used for each parallel-machine problem, instead of algorithm HA. The results 
obtained are given in the fifth column. It suggests that the makespan can be reduced as 
much as 2[%] by utilizeing the property of the reversibility. 

The last column F Ropr represents the fraction of the problem instances tested for which 
algorithm A produced the same value as the lower bound, meaning that it optimally solved 
the problem instances. 
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Table 3: Estimated mean relative error and fraction of optimal solutions. 

Problem Type ~ A O  [%I 
Parts St ages Machines/St age A A' ~ A L  [%] FROPT [%] 

Average 3.1 5.4 7.6 26 

Table 4: Mean relative deviation RDAL [%] for medium and large sized problem instances 
(h (k )  = 2 for all stages k = 1,2, . . . , m). 

St ages 
Parts 2 3 4 5 6 

20 
30 
40 
50 
60 
70 
80 
90 
100 

Average 
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Comparison with the global lower bound was also executed for mideum and lager size 
problem instances. The mean relative deviations RDAL obtained are shown in Table 4, 
in which each stage consists of 2 machines for every instance. The results suggest that 
algorithm A have much better performance for smaller number of stages and larger number 
of parts. 

The running time of algorithm A is short. It took 0.16 [CPU sec.] on average for the 
problem instances in Table 2 and about 2 [CPU min.] for ones with 100 parts and 6 stages 
in Table 4. This fact means that the iteration number I of the Phase Two in algorithm A 
was quite limited for the 2156 problem instances tested. 

5. Conclusion 
This paper discussed a scheduling problem for a parallel-machine flowshop with m stages, 
each stage having one or more identical parallel machines, and developed a shifting bot- 
tleneck based heuristic algorithm, which decomposes the problem into rn marallel-machine 
scheduling problems to be solved sequentially. For this purpose, a new approximate algo- 
rithm utilizing the property of the reversibility for the latter problem was developed. Ex- 
tensive numerical experiments including comparisons with Wittrock's algorithm and Santos 
et al.'s global lower bound were executed. The results obtained strongly suggested that 
the proposed heuristic algorithm produces optimal or quite near optimal schedules within 
short computational time with high probability. This conclusion encourages extensions of 
the shifting bottleneck based approach to more general sysytems such as parallel-machine 
flowshops with non-identical parallel machines, precedence constraints between tasks, setup 
times and/or finite capacity of buffer storage between stages. 
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