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Abstract Assume that one day's demand for products, one day's holding cost per one unit of product 
and setup cost are expressed as increasing functions of time. Moreover assume that we are given a time 
interval under these circumstances. The aim of our study is to find the optimal inventory policy which 
minimizes the total inventory cost required during this interval. How often orders are placed during this 
interval and how much is ordered at each ordering time point are our concerns. The techniques of DP are 
introduced to  solve this problem. 

1. Introduction 
The classical EOQ theories have been often concerned with the case in which one day's 
holding cost per unit of product, setup costs and one day's demand for the product are 
constant. Under this condition the inventory policy is planned so that the one day's average 
inventory cost may become minimal. 

Many fruitful results have been obtained in this field of study. Moreover there are many 
trial studies which may modify this condition. The author have also been interested in this 
field (cf. 15, 6, 71). 

Setup costs are not always constant. For example, the study of joint replenishment 
presumes the realistic assumption that the total setup cost for multi-item products is not 
the simple sum of setup costs required for the orders of each items. Mathematically to say, 
the joint setup costs have the properties of monotoneity and convexity. With these joint 
setup costs DP techniques are applied to define the procedures with which inventory costs 
for multi-item products become minimal. See, for example, Queyranne [I l l ,  Rosenblatt e t  
al. [12] and Matsuyama [6]. 

Recently it is reported that in some case setup costs decrease gradually as setups of 
orders are repeated. About this problem a sort of learning curve is introduced. With this 
kind of setup cost, the optimal inventory policy is planned. See, for example, Neves [9] and 
Pratsini [lo]. 

About holding costs, the cost functions which depend on the inventory level are exam- 
ined. Total holding costs increase as the inventory level becomes great. But the marginal 
increase of total holding cost with respect to inventory level may not be simply regarded as 
a constant. In other words, the holding cost is not defined as a linear function of inventory 
level. Taking account of economy of scale, this assumption seems to be pla>usible. Moreover 
the quality deterioration of products due to their storage can be described as the change 
of the holding costs. In order to generalize EOQ models, various functions which describe 
holding costs are introduced. See, Baker e t  al. [I], Goh [2, 31, Goswami [4] and Weiss [13]. 
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Similar modifications are tried in respect of demand function so that EOQ models may 
be generalized. Various functions defined through the differential equation are introduced 
to  explain actual and practical problems. They depend on the inventory level. (cf. Baker 
et al. [I], Goh [2, 31, Muhleman [8].) 

Our study is concerned with the situations under which all of the demand of products, 
one day's holding cost per one unit of product, and setup cost are increasing functions of 
time. This case is often observed when the price index is not constant but increasing. In 
this meaning this paper is to generalize the problems which were studied in Matsuyama [6]. 

For example, assume that we are given a time interval during which inventory policy must 
be planned. In stead of considering minimum one day's average inventory cost, minimum 
total inventory cost required during this time interval is examined. Our aim is to find the 
procedures determining how often the order must be placed and how the ordering quantity 
is given for each ordering time point. It will be shown that DP techniques are very useful 
to  this study. Mathematical properties of these procedures will be examined. 

2. Formation of Problem 
Assume T is given. We are to plan an inventory policy for a certain commodity. The 
following symbols are introduced; 

t variable expressing time. 

[O; TI time interval during which the inventory policy is to be planned. 
C( t )  setup cost at  t. 

p(t) one day's holding cost per one unit of the commodity a t  t. 

q(t) buying cost per unit of commodity at  t. 

r ( t )  one day's demand for the commodity at t .  
Moreover, we introduce the following assumptions. 

Assumption 1 
Demand for the commodity occurs continuously. 
Shortage of the commodity is not allowed. 
Lead time is regarded as zero. 
The values of C( t ) ,  p ( a  q(t) and r ( t )  a,re always positive. 
p(t), q(t),  r ( t )  and C( t )  have their derivatives of the 2-nd order. 

q(t) > P(t). 
C( t )  > max[p(t), d t ) '  p( t)r( t ) ,  q(t)r(t)l .  

Inventory theory has been founded on certain tacit premises. 6 and 7 in Assumption 1 
are such examples. Assume 6 is not valid. Then we have ~ ( t ) r ( t )  > q(t)r(t) .  This means 
that one day's holding cost is greater than one day's buying cost. Assume C( t )  < p(t)r(t)  
is not valid. This means that one day's holding cost is greater than setup cost. Under these 
situations repeating ordering without maitaining inventory becomes more advantageous. 
The usual inventory theory does not deal with such cases. 

In the classical theories of EOQ-Model, the assumption that p(t) = constant, q(t) = 
constant, r ( t )  = constant and C( t )  = constant is introduced. Then, it is assumed that 
@(t) = 0, f i t )  = 0 and ~ ( t )  = 0. Instead of the assumption that variables are constant, 
the following assumptions are introduced. Under these assumptions variables may change 
moderately. In this meaning our analyses are concerned with more general cases than the 
cases assumed by EOQ-Model. 
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Assumption 2 

Assumption 3 

The right-sides of 1 ~ 3  of Assumption 3 are the derivative functions of time-dependent 
variables. Then, the meanings of the above assumptions are almost self-evident. Suppose 
that 3 is not valid. We have q(t)r( t )  < (d/dt)  . C ( t ) .  This brings the very abnormal 
results. Assume, for example, q(O)r(O) = C(0)/200. Then a,fter one year (that is, t  = 365))  
C ( t )  > C(0) + (365/200)C(O) w 2.8. Setup cost becomes almost three times as large as 
initial one after one year. This can not be observed ordinarily. 

Let R(t )  and Q(t l ,  t 2 )  be defined by 

when ti < t2 .  Q( t l ,  t 2 )  denotes the total amount of demand which arises during the period 
[t ; b] .  We can easily verify that 

Assume that  the order is placed once during [ti; t2] .  The total buying cost is 

Therefore, the total inventory cost during [t l ; t2]  when the order is placed once is easily 
given. 

Definition 1 For any positive numbers t  and t2 ,  the function f ( t  t 2 )  is given by 

Definition 2 For afny positive t ,  we define Fn(t) recursively by 

and 
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In Definition 2 ,  Fn ( t )  denotes the minimal total inventory cost required when order is 
placed n times during [O; t ] .  It is easy to show 

And 

It should be noted that in the above equation we have 

The equation (2.4) will be applied in many cases. Considering (2.1) - (2.3), the following 
definitions are obtained by DP; 

Definition 3 We define Fi ( T ) ,  ti.i and by 

And we define F2(T) and t2.2 by 

where G2 ( t ,  T )  is given by 

We define t2.i and t2.3 by 
t2,1 = o7 t2.3 = T. 

When Fn(T) is defined, Fn+i (T) and tn+i.n+i are defined by 
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where 
Gn+l(t, T )  = fn(t) + f ( t , T ) -  

Moreover the followings are defined; 

It is easy t o  show that  

when T is given. Therefore, when T is given, we have 

lim FJT) = 00. 
nÃ‘>o 

Definition 4 For the given T ,  the total inventory cost FIT) required during [O; TI is given 
by 

F (T) = min[Fl (T)  , F2 (T)  , F3{T), - . -1. 

In Definition 4, Fi(T); i = 1,2,3,  - - - denote the (imarginary) total costs which are 
expected when the inventory policy is planned a t  t = 0. It should be noted that  only finite 
series of Fl (T),  F2(T),  Fs[T), - , Fn(T) may be examined. As limn+oo Fn(T) = oo, a proper 
no (no < [TI + 1 in ordinary case) times of ordering must be considered. And Fnn(T) is 
actually realized. 

Definition 5 Assume T and n are given. Moreover assume that Fi(T) is defined for any 
integer i satisfying 2 < i < n. Once tn.n is defined, tn.n-1 is defined so that it may satisfy 

Moreover, when tnenFi (0 5 i 5 n)  is defined, tn,n-i-l (n - i - 1 > 2) is defined by 

It is needless to say that  tnez (1 < i < n)  is the i-th ordering time point when T and n are 
given. We must regard tn.i (0 < i < n)  as the function of T .  But in order to simplify our 
description, the notation tn.i is used instead of tnei (T). 

3. Properties of Inventory Cost 
In this section we consider the relationships between the interval 
results of our consideration will show that our definitions about 
reasonable. 

Theorem 1 
d 

-Fn(T) > 0. 
d T  

Proof A s s u m e n = 1 .  From(2.5), 

Assume n 2 2. Fn(T) is defined as 

Fn (T) = m h  Gn ( t  , T) = Gn (fn.n, T )  . 

[O; TI and Fn(T). The 
the inventory cost are 
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In other words, tnan is defined so that  it may satisfy 

It should be noted that  tn.n is determined by T .  But in stead of denoting t n . n ( T ) ,  tn.n is 
used hereafter. 

From (2 .4)  it is shown that 

The equation (3 .2 )  defines Fn(T) by 

Differentiate 

Substituting 

F n ( T )  = Fn-1 (tn.n) + f (tn.n7 T ) .  

the both sides of the above equation with respect to T .  Then 

(3 .3 )  and (3 .4)  into (3 .5 ) ,  

Therefore the theorem is proven. 

Theorem 2 
d d 2  
% r ( t )  > 0 ==+ = F n ( T )  > 0. 

Proof Assume n = 1. From (2.1)  and (3 .1 )  we have 

Assume n > 2.  Differentiate the both sides of (3 .5 ) ,  

Differentiate both side of (3 .3)  with respect to T ,  and we have 

By substituting (3 .7)  into (3 .6 ) ,  we have 
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The equation (3.4) shows 

Therfore the theorem is proven. 

Theorem 3 T < T' ===+ F ( T )  < FIT'). 
Proof From Theorem 1, 

Let F ( T )  and F (Tf )  be given by 

In the general case, there is no reason why n = n' is supposed. As T < TI, 

Therefore, 
F ( T )  = FJT) 5 Fn/(T) < Fn1(T1) = F(T1). 

Now consider the function defined by 

The variable t ,  which appears in the above equation, is not tn.n defined in Theorem 1 ~ 2 .  
The variable t can vary freely in the domain 0 < t < T. Assume that &.n is defined under 
the condition that T is fixed and t varies freely. Then 

Assume that d/dt r (t) > 0. Then from Theorem 2 we have 

The possibility that d2/dt2 Gn(t,  T )  < 0 is valid depends on the sign of d2/dt2 f ( t ,  T). For 
example, if 

d2 d 
- f ( t , T ) > O  and -Gn(t,T)1t=o>O7 dt2 dt 

we can not define tn.n. Under Assumption 1 ~ 3 ,  (2.5) results in 
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It should noted that -{R(T) - r(t)} is an increasing function of t .  

Lemma 1 Assume that 

is increasing with respect to t. Then for n > 2 there exists at the very most one t* satisfying 

d d2 
-G& T)Itxt* = 0 and -G& T ) ^  > 0. 
dt dt 

Proof 

is an increasing (non-decreasing) function of t. From Theorem 1 and 2, 

The equation (3.8) shows that d/dt f ( t ,  T )  < 0. Assume that at t = t* it is valid that 

and 

Applying (3.9) and the assumption of this lemma, we have d2/dt2 Gn(t,  T)  > 0 for any t 
satisfying t > t*. Moreover, if t > t* it is easy to show that 

In other words, if t > t*, 

d2 d 
-Gn(t7 T) > 0 and -Gn(t7 T )  > 0. 
dt dt 

Corollary 1 Assume that tn,n is defined for n. Then 

4. Ordering Time Points 
In this section the fundamental properties of the ordering time points will be examined. 
Analyses on these properties will be presented in some theorems. As a result the meanings 
of the general EOQ model will be clarified. 

Theorem 4 Assume that tn.n is defined under Assumption 2. Then 
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Proof Applying (2.4) and (2.5), Gn(t, T )  is expressed by 

Gn(t7 T )  = Hn(t) + rT(t)? 

where 

T t 
rT( t )  = R(T) f T  p(r)dT - f p ( ~ ) R ( ~ ) d r  - R(T) f P ( ~ ) d r  + q(t)R(T)- @ m 2 )  

0 0 

It should be noted that t does not appear in Hn(t). At t = tn.n, 

d d2 
-G&, T )  t=tn,n = 0 and -Gn(t1 T )  It=tn,n > 0. dt dt 

In the above, tn.n satisfying these conditions is unique. Therefore, 

and 

In other words at t = tn.n, d/dt Hn(t)  is increasing and d/dt rT( t )  is decreasing. We have 
R(t) < R(T*) for any T* satisfying T < T*. From (4.4), 

Assume that for a proper t:.n 

Then, it is easily shown that tLn > tnen. As (p(t) - q ' o )  is an increasing function, 

According to Lemma 1, t t ,  that satisfies these properties, is unique, even if gn  exists 
and is defined. Moreover, t t n  always exists whenever tnan exists. Therefore we have T < 
T* Â¥== tn.n < c.n, if tnen can be defined. In other words we have proven that d/dT tnSn > 0. 

Lemma 2 

Proof The proof is self-evident. 
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Lemma 3 Under Assumption 1-3, we have 

Proof tnOn is a function of 7'. And the relationship between tn.n and T is given by 

Differentiating the both sides with respect to  T ,  

Moreover) we have 

where tn-\ signifies tn-i,n-l which is obtained through assuming T = tr.n. 

Substituting these into (4.6)) 

Therefore the theorem is proven. 

Theorem 5 Assume t2.2, t 4 4 i  . - . are defined under the assumptions introduced in 
Lemma 3. Then, 

tn.n < ̂ n + ~ . n + ~ ;  n = 1,273, * . 

Proof When n = 1, the theorem is self-evident, for t l , l  = 0 from the definition. 

Assume that the theorem is proven when n = m. From definition, 

Let Frn(trn+i.rn+l) be given by 
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where t' is defined so that it may satisfy 

In other words, we have 

Therefore 

With the results of Corollary 1 ,  theorem is proven when n = m + 1.  

Corollary 2 Assume that t 2 . 2 ,  t3.3, t4.4, . are defined. Then 
1. t2 .2  > t 3 .2  > t 4 . 2  > t 5 .2  > ' . * 
2. ^3.3 > ̂ 4.3 > '"5.3 > ̂ 6.3 > ' ' 

3. tn.3 > tn-1.2 ; n 2 3.  
Proof Express the function, which determines tn,n from T, by tn.n = Y ~ . ~ ( T ) .  With this 
function, corollary is proven. 

1 It is shown that T > t 3 , 3 .  From Definition 3 and Theorem 4, 

More generally 

2 is proven in the similar way. 
3 t3.3 > tzs2 is self-evident from Theorem 5. Moreover Theorem 5 shows t4.4 > t3.3. From 

Theorem 4 and Theorem 5, 

In the same ways, 
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5 .  Time Interval and Frequency of Orderings 
In this section, the relationship between the length of time interval and the number of times 
of ordering will be examined. Let 4(r17 r2) be defined by 

for any 7-1 and 7-2 satisfying 0 5 7-1 5 7-2 T. Then, for any t (0 5 t 5 T ) ,  

Suppose tn.2, tn.3, - . ,  tn.n-l and tn.n are those which are defined by Definition 5, then 

We have 

From definition, 

Moreover from (5.1) it is easily shown that 

Using these results, the following theorem is proven; 

Theorem 6 For proper L17 L27 L3. - .  ., which satisfy 0 < Ll < L2 < L*. - we have 
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It is shown that  

When T = O,t = 0. As $(0,0) = C(0) > O,$(t,T) > 0 for relatively small T .  In this 
case min < ,̂ T )  > 0. As T becomes large enough, $(t, T )  < 0, in other words it is shown 
min $(t, T)  < 0. 

Let and t2 be defined by 

Then, it is easily shown that  

According to the continuity of real numbers (Dedekind7s axiom about the cut of real num- 
ber), there exists a proper number Ll satisfying 

T > L l  3 F l ( T ) > F 2 ( T ) .  (5 .9)" 

Assume T < Ll.  Then m) < F2(T) =+ mino5t5T $(t, T )  > 0. 
As (3.3 < T, 0 2 mino<t<r $(t, T) <: minost5t3,3 $(t, t3.3). Therefore, from (5.7)', T < 

LI =+ F2(T) < F3(T). ~ r o m  Corollary 2, (3.3 > (4.3 > t5.3 > . .. So, from (5.8)', 

In other words, 

Now, consider (5.7) and (5.7)'. When T is relatively small, t3.3 is small. Then mino<t<t,,3 - - 

$(t7ts.3) > 0 =+ F3(T) > F2(T).  But when T becomes large enough, t2.2 becomes large. In 
this case, m i n ~ < ~ < ~ ~ , ~  - - $(t, t2.2) < 0. 
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From (5.7), F3(T) < F2(T). Speaking more exactly, almost similar procedures which are 
applied to Fl (T)  and F2(T) show that there exists a proper number L2 satisfying 

Moreover, it can be proven that Ll < L2. Assume, for example, L2 < L1. Then from (5.9) for 
T* satisfying L2 < T* < Ll, L2 < T* 3 F2(T*) < F3(T*), T* < Li * F3(T*) < F2(T*). 
This ia a contradiction. So, we must assume that Ll < L-). 

For T satisfying Ll < T < L2, 

From (5.10), (5.11) and (5.12), for any T satisfying Li < T < L2, 

In order to complete the proof, the entirely same procedure is applied. 
Moreover, we can easily show 

Corollary 4 T < T', F ( T )  = Fn(T),  F ( T f )  = Fn'{Tf) => n < n' 

6. Conclusions 
The classical EOQ theories have successfully defined ordering cycle which minimizes one 
day's average inventory cos t  when one day's demand for products, one day's holding cost 
per unit of product and setup cost are constant. But when they are not constant, it is 
not easy t o  define ordering cycle with classical EOQ theory. This is because under such a 
condition one day's average inventory cost depends on the time point from when the average 
is calculated. 

Assume that one day's demand for the products, one day's holding cost per a product 
and setup costs are expressed as increasing functions of time respectively. Moreover assume 
we are given a time interval during which the optimal inventory policy is planned. Instead 
of considering the minimum one day's average inventory cost, we investigated the minimum 
total inventory cost required during this interval. 

For the given time interval the total inventory cost was defined recursively in respect of 
the frequency of orderings. The frequency of orderings, which minimizes the total inventory 
cost, was selected to define the minimum inventory cost required during this interval. 

The procedures, with which frequency of orderings and total inventory cost are defined, 
could be given recursively with the techniques of DP. Exact analytical forms of functions 
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were not necessary to apply DP. Only the values of functions are sufficiently calculated in 
some ways. 

For the given time interval, ordering time points and ordering quantities were determined 
recursively. Moreover a few mathematical properties of our procedures were examined finely. 
As the interval becomes longer, the total inventory cost required becomes greater. As the 
interval becomes longer, the number of time of ordering becomes greater. If DP  is applied, 
the optimal inventory policy is defined effectively with the electronic computer. 

In this paper, exact analytical expressions of functions were not assumed. If these are 
given, more concrete and fruitful results will be obtained. We assumed that the one day's 
demand for products and one day's holding cost per unit of product are increasing functions 
of time. Similar procedures will be easily defined even if they are not increasing functions. 
But rather different conclusions will be obtained under this condition. . 
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