
Journal of the Operations Research 
Society of Japan 

Vol. 44, No. 2, June 2001 

PERFORMANCE ANALYSIS OF A TWO-QUEUE MODEL 
WITH AN (M, N)-THRESHOLD SERVICE SCHEDULE 

Wei Feng Masashi Kowada Kouichi Adachi 
Nagoya Institute of Technology Sugiyarna Jogakuen University Nagoya Institute of Technology 

(Received March 11, 1999; Final November 24, 2000) 

Abstract In this paper, we consider a polling system consisting of two-parallel queues and a single server 
under an (M, N)-threshold nonpreemptive priority service schedule. Two thresholds M and N (0 <: M < N) 
are set up  in one of two queues, say, the second queue. At each epoch of service completion, the server 
decides which queue is to be served next according to the control level reached by the number of customers 
in the second queue. For the queueing model, we carry out the performance analysis by using the transform 
method and propose an algorithm to compute the generating functions of the stationary joint queue length 
distributions a t  service completion instants. We also determine the Laplace-Stieltjes transforms of the 
waiting time distributions for both queues, and obtain their mean waiting times. 

1. In t roduct ion 
Polling systems used for modeling distributed multiqueue systems sharing a single server 
such as a communication channel or a processor, have received a considerable amount 
of attention in the recent literature. Examples of such systems are local area networks 
(LAN), high-speed Asynchronous Transfer Mode (ATM) networks, multiprocessor systems, 
distributed computation, and so forth. An excellent survey may be found in Levy and 
Sidi[23]. See also the detailed discussion and references in Takagif31, 321 on this sub- 
ject. The polling system, in particular, consisting of two queues and a single server has 
an important application for modeling communication network systems with two differ- 
ent types of traffic: real-time traffic (such as voice and video) and non-real-time traffic 
(such as data), for example, hybrid switching voiceldata transmission systems, and packet- 
switched voiceldata transmission systems[5]. In order to be able to meet the quality of 
service requirements for different types of traffic, the model has been extensively studied by 
many researchers under various service schedules, such as the exhaustive, semi-exhaustive, 
gated, K-limited, Bernoulli service schedules or mixtures of these service schedules (see 
[1,2,3,6,7,10,11,12,14,15,18,20,21,22,24,26,28,30]). 

Threshold-based service policies have been applied by many researchers to queueing 
systems with a single queue as policies to control service rate, number of servers or vacation, 
and proved to be optimal to some queueing systems ([17,19,25,27]). Especially in Nishimura 
and Jiang[27], two thresholds n~ and n~ have been used to control the service rate in an 
M/G/ l  vacation model. Recently, such threshold-based service policies have been applied 
by some researchers to the polling system consisting of two queues and a single server. Lee 
and Sengupta[20] have analyzed a threshold-based polling system, where a single threshold 
was set up in the high priority queue. If the queue length of the high priority queue exceeds 
the threshold, the server switches the service to the high priority queue, otherwise, the server 
serves two queues with a 1-limited service schedule. Boxma and Down[4] have considered 
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a similar threshold-based service policy which is different from the one in [20] only when 
the queue length of the high priority does not exceed the threshold, the server serves two 
queues with a exhaustive service schedule. 

In the present paper, we analyze a polling system consisting of two-parallel queues and a 
single server controlled by two threshold levels M and N(O < M < N).  The service schedule 
is described in detail in Section 2. In modern communication network systems which employ 
the fixed packet sizes of ATM technology, different types of traffic have different requirements 
for quality of service. Sometimes these requirements vary according to the system state, and 
not anyone of these traffics has absolute priority. For example, in a voiceldata multiplexing 
system, or a hybrid switching voiceldata transmission system, the voice traffic and the data 
traffic should have their own priority segment. That is, according to variety of the system 
state, sometimes the voice traffic has a higher priority over the data traffic, and sometimes 
contrary. As will be seen, the (M, N)-threshold service schedule provides such a priority 
scheduling strategy. Qi has a priority over Q2 in the segment 10, M ) ,  Q2 has a priority over 
Qi in the segment (N, oo), and the segment [M, N] is a non-priority part in the sense that 
server does not switch its service to another queue when the queue-length of Q2 is in this 
segment. Furthermore, if we choose N = oo, then Ql has an absolute priority over Qy, and if 
we choose N = 1, then Q2 has an absolute priority over Ql. These considerations motivate 
us to consider such an (M, N)-threshold service schedule for the polling system. To the best 
of our knowledge, analysis of such a model has not been studied before. 

The organization of the paper is as follows. In Section 2 the model is described in detail, 
and the system equations of the generating functions of the stationary joint queue-length 
distributions are established. In Section 3, utilizing singularities of the coefficient function 
and the coefficient matrix, these equations are transformed into a matrix equation in the 
boundary probabilities. An algorithm to compute the generating functions is proposed. The 
Laplace-Stieltjes transforms of waiting time distributions, and the mean waiting times are 
given in Section 4. Finally in Section 5, some numerical results are included. 

2. The Model and the Generating Function Equations 
We consider a polling system consisting of two-parallel queues Qi and Q2 with infinite buffer 
capacities, and a single server. The arrival processes of customers a t  Ql (corresponding to the 
real-time traffic) and (^(corresponding to the non-real-time traffic) are Poisson processes 
with rates Al and A2,  respectively. The service times at Qi are independent, identically 
distributed sequences with general distribution Eli(-). Their first moment, second moment 
and LST (Laplace-Stieltjes Transform) are denoted by bw bi2), and B,(-) ,  and assumed to 
be finite. Two thresholds M and N(O < M < N )  are set up in Q2. The server serves 
two queues in accordance with an ( M ,  N)-threshold nonpreemptive priority service schedule 
described as follows: 

(1) At each epoch of service completion in Ql at  which the queue is not empty, if the 
queue-length in Qy exceeds threshold N ,  the server switches the service to Q  ̂otherwise it 
continues to serve the customers in Ql.  

(2) At each epoch of service completion in Q2, if the queue-length in Q2 is less than or 
equal to threshold M ,  and Ql is not empty, the server switches the service to Ql ;  otherwise, 
it continues to  serve the customers in Q2. 

(3) Whenever the queue being served becomes empty at  an epoch of service completion, 
if the other queue is not empty, the server switches the service to that queue; otherwise, the 
server remains idle at  the present queue until the arrival of the next customer in either Q-[ 
or 0 2 .  
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The service is first-come-first-served within each queue and nonpreemptive. The server 
experiences a switching time in its transition from one queue to another. The successive 
switching times from Qi form independent, identically distributed sequences with the eneral 
distribution Si(-}. Their first moment, second moment and LST  are denoted by si, SF), and 
~i{-) ,  and assumed to be finite. The service and switching times and the arrival process are 
all assumed to be mutually independent. 

We introduce the following notations. 
A 5 Al + A2; 

Then pi is the utilization at  Qi and p is the total utilization of the server. s and d2) 
are respectively the first moment, second moment of the total switching time during one 
cycle. For periodic polling systems with a mixture of various service schedules, Fricker and 
Jai'bi[13] have presented a necessary and sufficient condition for stability. Especially, the 
condition can be written as follows for a polling system consisting of two queues. 

where LT is the maximum expected number of customers served in Qi during one visit 
cycle. Appealing to this result we give a sufficient condition for the stability o f the  model 
considered here. Since M is finite, the service schedule in Q2, in fact, is a exhaustive-type - - 

one. Especially, when M = 0, it becomes a pure exhaustive service schedule. Hence, we 
have that L*, = oo. On the other hand, the server can serve a maximum number of the 
customers in Ql if the number of the customers left in Q2 when the server switches the 
service from Q2 to Ql is zero. That is, let S2 be a generic switching time from Q2 to Ql ,  A; 
and Bi, for each j ,  generic interarrival times and service times in Q2 and Qi respectively. 
Let 

n  N 

r=min{n ,  s ~ + ~ B {  > EA;} .  
J=l j=1 

(2.3) 

We have that LT = E[r]. Then we obtain a sufficient condition of the stability 

This is consistent with the condition given by Boxma and Down[4]. Throughout the 
paper, we assume that the condition (2.4) holds. 

Let I tk ,  k > l} be the successive moments of service completion, x', i = 1 ,2 ,  k > 1, 
the number of customers at  Qi at  instant immediately after tk,  and Ji, k 2 1, the type 
of the departin customer at  tk ,  i.e., Jk = i if the kth departing customer is from Qi. 
Then {(x?, X h ,  Jk)}k>1 forms an imbedded vector-valued Markov chain. Let I.'$ denote 
the number of the arriving customers in Qi during (th tk+i}- Note that when the both 
queues are not empty, ti+l - tk = Bj if Jk = Jk+1 = j, and tk+l - tk = Si + Bj if 
Jk = 2 ,  Jkn = j, and i # j .  According to the service discipline, the relations between 
(XW , X f ) ,  Jk) and (x&, XZ,, JI,+l) may be described as follows: for i ,  j = l , 2 ,  if Jk+i = i, 

then X"  = [xP - 1]+ + v(') k+l and U) = Xk (3) + Vk+l;j U }  # 2, where x+ = rnax{O, x}. Let 

{ T ~ , ~ , G  n,  rn >_ 0, i = 1,2} denote the equilibrium probabilities of {(x!), x?, Jk)}k>ii - 

namely, 
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For 1 zl 1 < 1; 1 z2 15 1, define the two-dimensional generating functions 

Considering the transition probabilities of the Markov chain during two successive service 
completion epochs and using the above relations, we derive the following equations for 
d l )  (z l  22) and (zl , 22) 

For clarity, define for i = 1,2,  

Furthermore, for 1 21 15 1, define the one-dimensional generating functions of the joint 
equilibrium probabilities { rn,rn, l ;  n 2 O}, 0 5 m 5 N and { G , ~ , ~ ;  n > O}, 0 5 rn M ,  

We have 

In particular, 
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Using these notations and relations, the equations (2.7) and (2.8) can be rewritten as 

As has been seen, t ~ ' ( ~ ) ( z ~ ,  a) and @2)(zl, z2) are completely determined by the one- 
dimensional generating functions ipm (zl), 0 <: m < N and i/im(z1), 0 < m < M. In order 
to solve vm (xi), 0 < m 5 N and &(zl), 0 < m < M ,  we need to derive more equations 
about these unknown functions. This can be done by considering the equilibrium balance 
equations for {Tn,m,l; n 2 O}, 0 < m < N and { T ~ , ~ , ~ ;  n > O}, 0 < m 5 M .  First, for 
every m, 0 < m < N ,  we have 

n+l m n-i+1 
x e - ' 1 t ~ e - A 2 t d ~ s 2 + B l  (t) + f 

m ! ;=1 j=o (n - i + I)! (m - j)\ 

where FS2+Bl (-) denotes the distribution of the sum S2 + Bl. From (2.16), multiplying the 
nth equation by zy and summing yields 

Next, for every m, 0 < m 5 M - 1, we have 
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m+1 
X- (A2t)m e - ^ d ~ s ~ + ~ ~  (t) + 

m! j=l n! (m - j + I)! e A 2 t d ~ 2  (t) 

where FSl+B2 ( - )  denotes the distribution of the sum Sl + B2. In particular, 

iw e(-A1+Az)t dB2 (t) + 7r0,0,2r2 Lw e(-A1.+A2)td~2 (t). (2.21) 

From (2.20), multiplying the nth equation by z D n d  summing yield 

and from (2.21) we have 

$0 (0) = (r2yio (0) +pi (0) )ff2,o (0) + (r2-i/)o (0) +$I ( 0 ) )~2 ,o  (0). 

3. Determination of the Generating Functions 
In this section, we derive the generating functions <&(I) (21, z2) and (zl , 22). The equations 
(2.14) and (2.15) show that <&(I) (zl , z2) and <SfW (,q, z2) can be obtained after pm (zl); 0 < 
m < N ,  and $ ~ ~ ( z ~ ) ;  0 < m < M are determined. Therefore, the main aim here is to deduce 
system equations about these one-dimensional generating functions by using (2.15), (2.17) 
and (2.22), and obtain their solutions. First, we consider the equation (2.15). According to 
Takiics Lemma([8] pp.653), we have that for every fixed zl with 1 zl \< 1, the equation 

has exactly one root in the region 1 z2 {< 1. Actually, the root satisfies 

where ~ ( s )  is the LST of the busy period distribution of an M/G/l  queue with arrival 
rate A2 and service time distribution B2(-).  Denoting this root by z2 = q(zl), we have 
q(z1) = ~ ( \ ^ ( l  - zl)). Furthermore, ~ ( 1 )  = 1, and 

Since (zl , a)  should be regular for 1 z2 1 < 1, and continuous for 1 z2 \ <_ 1, for every 
fixed 21 with 1 zl 15 1, the numerator of (2.15) must vanish at  22 = q(zl). As the equations 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



Performance Analysis o f  a Two-Queue Model 107 

discussed hereafter are mainly those about the argument zl, we write z instead of zl for 
simplicity in this section. Substituting the root 3 = q(z} into (2.15), we have 

Next we rewrite (2.17) as follows 

xv). (0) + ( ~ 1 2  - l ) G , m ( M O )  + rizHl,m(z)+o(O), O 5 VI < N.  (3.5) 
Define the vectors 

Then the equations (3.5) can be represented by matrix form 

where A1 (z) is the ( N  + 1) x (N + 1) matrix 

Hl(z)  is the (N + 1) x (M + 1) matrix 

Gl(z) is the ( N  + 1) x (N + 1) matrix 
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Moreover, note that  (2.22) holds for all z  with 1 z  1 < 1. We get Tpm ( 0 )  by substituting z  = 0 
into (2.22),  

0  5 m 5 M-1. (3.8) 
Hence, we have 

In order to  derive a complete expression of the vector ẑ{z) - +(0)  by the vectors y ( z ) ,  
y ( 0 )  and t / ? ( O ) ,  we also need an equation for the function q M ( z )  - T p M  ( 0 ) .  This can be 
obtained from (3.4) and (3.9). Since z  = 1 is the unique, simple root of the equation 
z - B * ( z , q ( z ) ) S ; ( z , q ( z ) )  = 0  and q ( z )  + 0  for all z  with 1 z  \< 1,  substituting & ( z )  - 
g m ( 0 ) ,  0 < m <_ M - 1  in (3.9) into (3 .4) ,  we get after a long calculation that  for z  with 
I I< 1, 

and for z  = 1, 
1 - P i  - P2 

a ( 1 )  = lim a ( z )  = - 
zÃ‘i- 1  - P i  - p2 - A1s1' 
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M-1 

k j  (1 )  = lim k j  ( 2 )  = " (1 )  + Em=j-l (ff2,m-~'+l(l) - ff2,m-~'+l ( 0 ) )  if 1 5 j 5 M 
z-rl i f M < j < ,  N ,  

1 -7 -2 (P1+ P2)  
M-1 

A ( 1 )  = lim pi ( z )  = 
z- t l  1 -  PI  - p2 - Aisl - 2 m=o Y (H2,m-,+l(l) - H2,m-J+l(0)) 

/32 (1 )  = lim p2 ( z )  = ri(pi  + p2 + Ai(s1 + s2)) 
M- l  

Z - ^ 1  I - P i  - p i  - ̂is1 - r2 m=0 x (G27m-j+iW - G2,m-j+1 ( 0 ) ) .  

Writing (3.9) and (3.10) in matrix form, we get an expression of i/Ãˆ(z - i /Ã ( 0 )  as 

*) - @(0)  = A2(2)<^) + H2(4P(O) + G2(^)^ (0 )  (3.17) 

where A 2 ( z )  is the ( M  + 1) x ( N  + 1) matrix 

where 0 denotes a zero matrix. H a ( ^ )  is the ( M  + 1) x ( N  + 1) matrix 

and G 2 ( z )  is the ( M  + 1) x ( M  + 1)  matrix 

% (G2,o ( 2 )  - G2,0(0)) G2,ok) - G2,o (0 )  

Furthermore, we rewrite (3.8) as follows: 
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holds, where J = (IM+1, 0) is the ( M  + 1) x (N + 1) matrix, and IM+1 is the ( M  + 1) x ( M  + 1) 
unit matrix. Then from (3.18) we get the matrix expression for ip(0) as 

where G(0) is the M x M matrix 

H(0) is the M x ( M  + 1) matrix 

and v is the ( M  + 1) x 1 vector 

Remark 3.1. In (3.21) we have assumed the case where the matrix G(0) is invertible. 
Actually this assumption is not essential. Note that G(0) is a semi-down-triangular matrix, 
and 1 - ~ G 2 , ~ ( 0 )  > 0, 1 - Gz,l(O) > 0, and G2,0(0) > 0, the rank of G(0) is M - 1 at  least. 
That is, the first M - 1 rows of G(0) are linearly independent at  least. Thus when G(0) 
is not invertible, $JM-l (0) is a linear combination of $0 (0) , (O), , (0). From this 
linear combination and (3.18), qM-1 (0) can still be represented by y(0)  and $ J ~  (0). Again 
we have an expression for 4 (0) similar to (3.21). 

Especially from (3.21), there exist a row vector u = (uo, ul,  - , uN) and a constant a 
such that 

$0 (0) = up(()) + a - 0 ~  (0). (3.22) 

Furthermore, using 4 ( 0 )  and $ I ~ ( O ) ,  we can represent the vector G2 (z)@ (0) as follows 
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where ~ ~ ( z )  is the (M + 1) x M matrix 

and ~ ~ ( 2 ; )  is the (M + 1) x 1 vector 

Substituting (3.21) into (3.23), and then substituting (3.23) into (3.17), we have 

^(z) - ̂ (o) (3.24) 

= A 2 ( z ) ~ ( z )  + H 2 ( z ) ~ ( o )  + G ~ ( ~ ) [ G ^ ( O ) H ( O ) ~ ( O )  + ' $~(o)G-~(o)v]  + m ( z )  

= A2(z)p(z) + (H2(z) + G , ( z ) ~ - ~ ( o ) ~ ( o ) ~ ) y ( o )  + ̂ ( 0 ) ( ~ 2 ( z ) ~ - ~ ( 0 ) v  + v2f.z)). 

Moreover, substituting (3.24) and (3.22) into (3.7) yields 

x G-I ( 0 ) ~  + ~ 2 ( z ) ) }  + Gi (z)p(O) + (W(0)  + a$~(O))vi(z) .  (3.25) 

Since the vector uy;(0)vi(z) can be represented as uy(0)vl(z) = L(z)y(O), where L(z) is a 
(N  + 1) x (N  + 1) matrix 

we obtain the final matrix equation: 

where M (z) is (N  + 1) x (N  + 1) matrix, m(z) is (N  + 1) x 1 vector: M ( z )  = HI  (z) (H2(z) + 
Gi ( 2 ) ~ - I  (o)H(o) J) + G I  (2) + L(z), m(z) =: HI (z) (G~(z)G-' (0)v + v2 (z)) + avl (z), and 
N(z )  is the ( N  + 1) x ( N  + 1) matrix 

and Ni(z),t = l , 2 , 3  are the M x M, ( N - M + l )  x M , ( N - M + l )  x ( N - M + l )  matrices, 
respectively, 
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Whenever N ( z )  is non-singular, the solutions of (3.26) are given by 

4 2 )  = N - l ( ~ ) { M ( z ) v ( 0 )  + fc(O)m(z)}  = 
[adjN(z)I{M(z)v(O) + i / ;~(O)m(z)} .  (3.27) 

det N (z) 

Since we seek p ( z )  which is analytic in 1 z I <  1, and continuous in 1 z \< 1, the numerator of 
the right-hand side of (3.27) must vanish with sufficient order at  the zeros of det N ( z )  in the 
unit disk. This will give us a system of equations characterizing the constant vector y(0) .  
Thus a first step in solving (3.26) is to identify the singularities of the matrix N ( z ) ,  i.e., 
determine the number of zeros of de tN(z) .  To do this, note that N1(z) is a triangular 
matrix, det Nl (z) = (2 - ~ ~ , ~ ( z ) ) " .  We have that det N ( z )  = det Nl (z) det N3(z) = 

(z - det W z ) .  For z with 1 z \= 1, 

An easy application of Rouchk's theorem shows that the equation z - G l o  (z) = 0 has exactly 
one root, say ZQ, in 1 z 15 1. Furthermore since ] G\̂ {z} I< 1, 1 ZQ 1 < 1. The following 
lemma holds. 

Lemma 3.1. zy is a multiplicity M zero of de tN(z )  in the open unit disk 1 z \<  1 . 

Next we consider the singularities of the matrix N3 (z) . Note that G l j  (z) , j=0, - - - , N ,  
f i f ( z )  = Gl,o(z)S^{z, 0) and ~ ( z )  get their maximum norm at  z = 1, and 1 Hl,o(l) l<l 
EZ;" Gl,.j (1) I < EEo ./r (A2 

t)'/i!e-^'dB1(t) = 1 and ~ ( 1 )  = 1. Moreover, a(2) also gets its maximum norm at  z = 1, 
and a(-1) < 1, ~ ( 0 )  = 1 and a(1) = (1 - pi - pi)/(l - pi - p2 - Alsl) > 1. Therefore, 
there is a possibility that EgoM G1,,(l) + (N - M + l)a(l) Hiy(l) 5 1 from choices of the 
parameters of B&), Si(-) and \i for z = 1,2.  In this case, the number of zeros of det N3(z) 
in the unit disk is easy to be determined by the homotopy type of argument(see [16] for the 
details). 

Theorem 3.2. If zSM G 1, (1) + ( N  - M + l)a(l) Hlyo (1) 5 1, then det N3 (z) has exactly 
N - M + 1 zeros (counting multiplicities) in the open unit disk 1 z < 1 and no zeros on 
1 z = 1. 

Proof. Write det N3 (z) = zIN_M+l - M3(z )  and define det Ni(-z:) = z I ~ - ~ + ~  - t M 3  (z) ,  0 < - 
t < 1, where INVM+i denotes the ( N  - M + 1) x ( N  - M + 1) unit matrix. Then 
tM3(z)  is analytic in 1 z < 1 and continuous in 1 z 15 1 according to the correspond- 
ing properties of N3(z). The kth row sum of the entries of tM^{z) is t['^,kzo Gl^{z) + 
a(z)Hi,o(z) ~p $ ( z ) ] ,  ,k = 0,1, - . - , N - M. For 0 5 t < 1, these sums are strictly 
less than 1 absolutely value for all 1 2 I< 1 because G1,,(l) > 0, a(l)Hljo(l) > 0 , and 
t I ELO G ~ , j ( z )  + ~(z )H i , o ( z )  E s M $ ( z )  15 Efs0 Gi,,(l) + ( N  - M + l )a( l ) f f i ,o( l )  < 
EY GI,̂ !) + ( N  - M + l)a(l) Hl,o(l) 5 1. For t = 1, the matrix M3 (2) has spec- 
tral radius less than 1 when z with I z I= 1, since the maximum row sum of the absolute 

N-M+l(z) does not exceed those of ~t[-"+'( l) ,  and these also value of the entries of M3 
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are strictly less than 1 because M3(1) is irreducible substochastic under the condition 
E,";̂ GI,, (1) + (N - M + l)a(l) Hl,o(l) 5 1. Thus n(t) , the number of zeros of det A/l(z) 
in 1 z I< 1 counting multiplicities, is a continuous integer-valued function o f t  for 0 < t < 1. 
There fo re ,n ( l )=n( t )=n(O)=N-M+1.  0 

In the general case, it is hard to determine the number of zeros of det (z) in 1 z \< 1 
by a direct method because the verification of the conditions needed to apply Rouch6's the- 
orem is quite difficult. This can be seen from the following result of the function detN3(z) 
obtained by a direct calculation. We present it here because the resulting formula is very 
useful in understanding the construction of det N3(z) and determining its zeros numerically. 
Let 

Lemma 3.3. (i) det # (z) = (z - (z)) det ~ ( ' - l ) ( z )  - a(z )  ~ 1 , ~  (z)rf (z) det B(') (z), 
(ii) det B(') (z) = xi,"" (z), where x}," (z) = 1, Ã = 0,1, . , 1, and for k = 0,1, - - . , 1 - 1 

1-1 (o)(z) (iii) det f l  (z) = (z - Gm(z))'^ - a(z )  Hl,o(z){(z - Gl,o(z))' - q(z) (2 - G I , ~ ( Z ) )  xII 
- . . . -  ,,'-I (2) (z - GI,oM)  x ( ~ - 2 )  (,-I)(,-1) (2) - rf (z}~(i-~)(z)}.  

Proof. (i) Using the linear decomposition property of determinant, we can write det Â  (2) 

as follows: 

For the second term, multiplying the lth column by a(z)Hl,o(z)qz(z), and then adding it 
to the zth column for z = 0 , 1 , - - - , 1  - 1 yields a{z)Hi,o(z)qL(z)det~(L)(z). Then, taking 
the Laplace expansion along column I in the first term, we get (i). (ii) can be derived by 
repeating the following procedure: (1) multiplying the first column by - (z - Gljo ( z ) ) '  , and 
adding it to the lth column; then taking the factor (z - G l o  ( z ) ) l  out from the lth column, 
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(2) multiplying the second column by (Gl1(z) + (z - Glo(z)) ) (z  - G110(2))1,  and adding 
it to the Ith column; then taking the factor (z - G1lo(z}}l out from the lth column, etc. 

(fc-1) (z) column of B(')(z), and the calculation procedure is same, it holds that x p  (z) = xlk 
Furthermore, repeating the result (3.28) and rearranging the terms, x $ ' ( z )  can be deter- 
mined directly by the following Lemma 3.4. 

Finally, note that 

(fc-1) Note that A/^) = AN-"'(z). Substituting x ( ~ _ ~ ) ~ ( z ) ,  k = 0,1, , N - M into 
det A(^") (2) in Lemma 3.3 (iii) , we obtain det N3 (z) . 

det N ( z )  = 

Theorem 3.5. 

2 - GllO(~) - a(z)H1,o(z) -a{z)H1,0 (z)Tl(z) 
-Gl,l(z) - a(z)H1,0(4 2 - G , O ( ~ )  - a(z)Hl,o(z)n(z} 

Substituting (ii) into (i) and repeating it, we get (iii). 0 

Since for any k < I ,  the submatrix consisting of the first k - 1 row and the first 
column of B^(z) is the same as that consisting of the first k - 1 row and the first 
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N-M 
+l)(z)~l,2(z)6{N-M>2}} (z - Gl,O(z)) - a ( ^ ) ~ l , O ( z ) 7 ~ - ~ ( z } G l , l  (z), (3.29) 

where bA denotes the indicator function of the set A. 

Corollary 3.6. z = zo is not a zero of det N3(z), and z = 1 is not always a zero of det Af^(z). 

Proof. Recall that z = ZQ is the zero of z - Glo(z).  Substituting it into (3.29) yields that 

which, obviously, is not equal to zero. For z = 1, we claim that depending on the choice of 
parameters, it might not be a zero of detN3(z). First from Theorem 3.2, we have seen that 
in the case GM GIJ( l )  + ( N  - M + l ) ~ ~ ( l ) H ~ , ~ ( l )  5 1, det N3(z) has no zeros on \z\ = 1. 
Hence, z = 1 is not a zero of det N3(z). In the case x:cM G1,i(l)+(N - M+l)a ( l )H l , o ( l )  > 
1, if G l o  (1) + ( N  - M + l)a(l) Hio(l) > 1 also holds, substituting z = 1 into (3.29), we 
have 

Therefore, only when 0 <: 1 - Gl,0(l) - (N - M + l)a(l)Hl,o(l) < z,".yM G l , ~  (1), z = 1 
might becomes a candidate zero of det N3(z). 

Since det N3(z) is analytic in 1 z 1 < 1 and continuous in 1 2 15 1, and 1 det N3 (-so) 1 > 0, 
we conclude that detN3(z) has finitely many zeros in the unit disk(otherwise the analytic 
function det N3(z) must be vanished in the unit disk). Let zl, z2, , z. be the distinct 
zeros of det N3f-s) and di the multiplicity of zi. Then detN(z} has zeros -so, zl, , 2. 
with the multiplicities do, dl, . , dK, where do = M. From the analyticity of y (z ) ,  the 
numerator of the right-hand side of (3.28) must become zero with sufficient order at  these 
zeros ZQ, 21, . , z,e. Therefore, for i = 0,1, + . . , K we have 

Define (N + l )d j  x ( N  + 2) matrix C(zi), i = 0,1, , K as 

and C = [C(ZO), C(q), . , C(^)lT. Then, we can write the systems (3.30) as 

Theorem 3.7. (i) For each i = 0,1, - . - ,  K,  the rank of C(zi) is exactly d,. 
(ii) The rank of C is exactly x?=o di = M + E^=l di. 
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Proof is omitted here because of the space limitation. A similarly detailed proof can be 
found in [16], Sees. 5 and 6, where the relation of the spectral basis and singularities of 
N ( z )  is used to determine the ranks of C(zi) and C(note that f^(z), C(%) and C respec- 
tively correspond to A(z), C ( 6 )  and B there). From (3.32), hence, we can only obtain 
M + di linearly independent equations with respect to N + 2 boundary probabilities 
ipi (0) , 2 = 0,1, - , N and gM (0). Utilizing the analyticity of the function <p(z) and the fact 
that z, is a zero of detN(z} with multiplicity di, we have obtained the conclusion that z, 
must be a zero of the numerator of the right-hand side of (3.28) with the same order dz. 
Again from these facts, we have the following corollary. 

Corollary 3.8. For j = 0,1, - - , di - 1, the matrix equation dj/dz$djN(z)M(z), adjN(z) 
rn(z)]z=zi [p(O), qM (0)lT = 0 only gives one linearly independent equation. 

Proof. Write K(z} EE [adjN(z)M (z), adjM'(z)m(z)] and lC(j)(z) EE dj/dz'[adjN(z)M (z) ,  ad] 
Af(z)m(z)]. By the definition of N ( z ) ,  M (z) and m(z)  , the every entry of K(z) is analytic 
in 1 z \< 1 and continuous in 1 z \< 1. We first consider the case 1 zi \< 1. Suppose that 
for some a number j < d^ the rank of the matrix fC^(zd is larger than 1. Since Ci has ex- 
actly the rank di, there must exists a number I < d; such that fC^(zi) = x i = l  CfeK^^)(zi), 
where Ck is a constant matrix and jk < I for k = 1,2,  a , I .  By the analyticity of the 
entries of K(z),  we have that there exists a neibourhood U(zi) of -zi such that for all 
z E U(zi), IC(')(z) = u l C ( j k ) ( z ) .  Then for z E U(zi), K.W(z) = d1/dz'(X:(') (z)) = 
d 1 / d z ' ( ~ L l  ckllC(jki) (2)) = x k l  ck1djkl /dzjkl (lC(')(z)) = E & = ~  x & = l  Ck, ~ ~ ~ ~ ( 3 ~ 1  + h 2 )  (2). 

~ ~ ~ l C ( j k l + - ' ~ l  + j k 3 ' )  (4. Hence, repeating this pro- If jki + 3i, > I ,  then IC^'k2)(z)  = xk3zI 
cedure, we obtain ~ ( ~ ' ) ( z )  = ~ f o = ~  - xLz1 CkiCk2 - . a C k  rn ~ ( j k l + j k 2 + - + - ' k m - ( ~ - ~ ) ' )  (2) 
for z E U(z& where 0 5 Jkl +& + +jL - (m - 2)1 < I for all k 1 , k 2 , - - . , & .  Sub- 
stituting z = zi and using the fact that w ( z i ) [ p O ,  gM(0)IT = 0 for j < di yield that 

(xi) [ d o ) ,  gM (O)IT = 0. By inductive reasoning, we can obatin IC(~ ' )  (zi)^lft(0), 'ifJm = 

0 for any n > 0. This is contradictory to the fact that zi is a zero of the numerator of the 
right-hand side of (3.28) with order di. The conclusion in the case 1 zi \= 1 can be proved 
similarly. 

In general, which row should be chosen in determining M + di linearly independent 
equations, depends on the concrete formation of the matrix d3/dzj[adjJ^'[z)M(z), adjN(z) 
r n ( ~ ) ] ~ = ~ ~ .  Here, without loss of generality, suppose that for zi, the i th  row of di/dz-'[adjN(z) 
M (z), adjN(z)rn(zi)]z=zi is what we need. Let ei = (0, ,1, . , O),  i.e., the entry in zth 
position is 1, others are zero. Define ( M  + z = l  di) x (N + 1) matrix 7 and ( M  + di) x 1 
vector Â by taking the z row of the matrix d ~ / d z j [ a d j N ( ~ ) M ( z ) ] ^ , = ~ ~  and the zth entry of 
the vector d j / d z j [ a d j N ( ~ ) m ( ^ } ] ~ , ~  for j = 0,1,  , di - 1; z = 0,1,  a . , K ,  namely, 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



Performance Analysis of a Two-Queue Mode1 117 

Then, M + di linearly independent equations from (3.32) with respect to <A(O),  z = 
0,1, - , N and qM (0) can be expressed as 

In the case ~r Gljj (1) + ( N  - M + l)a(l) Hl,o(l) < 1, we have proved that det X ( z )  
has exactly N + l  zeros(counting multiplicity) in the open disk, namely, M+'&i dj = N+ 1. 
Also note that z = 1 is not a zero of det N ( z )  in this case. For every I />M (0) fixed, therefore, 
(3.33) gives exactly N + 1 linearly independent equations to determine pi (0) , 8 = 0,1, , N .  

Remark 3.2. In the case xgiM GI,, (1) + ( N  - M + l)a(l) Hl,0 (1) > 1, determining the 
value of E=l di by a direct method still is an opening problem. Here, basing on our nu- 
merical calculation results and the fact that under the ergodicity condition, the inherent 
Kolmogorov equations for the stationary state probabilities have an unique, absolutely con- 
vergent solution, we conjecture that the analytic function det N3(z) has the specified number 
of zeros in the required domain (see [4,9] for the detailed arguments). That is, when 2 = 1 
is not a zero of det N3(z), z.l di = N - M + 1, and when z = 1 is a zero of det N3(z),  

di = N - M + 2(in this case, there exists a equation equivalent to the normalizing 
condition ^)( l ,  1) + Â¥1'(~)(1,1 = 1). Indeed, the Kolmogorov equations for the equilibrium 
distribution of the Markov chain {(XW?, J t ) } k > l ,  - along with the normalizing condition 
t]'(l) (!,I) + d2) (1,l) = 1, have a unique absolutely convergent solution, and using generat- 
ing functions, we have transformed those Kolmogorov equation into the ( N  + 1)-dimensional 
matrix equation (3.26), plus the normalizing condition. Hence, if M + z=l di + 1 = N + 2, 
i . .  , El di = N - M + 1, then as there exists an unique solution, the equations (3.33), plus 
the normalizing condition must be independent. Now suppose that di < N - M + 1. 
Then we would obtain too few equations to determine all N + 2  unknown constants uniquely, 
and we would find multiple solutions for them-which seems to be impossible. Finally, if 

di > N - M + 1, then we would find too many equations for the N + 2 unknown 
constants. Again from the fact that there is a unique solution, there must be exactly N + 2 
independent equations amongst those (3.33), plus the normalizing condition. 

According to the above arguments, in practice, the matrix F is made up of N + 1 linearly 
independent rows. The remaining work is to determine the unknown constant QM (0). First 
we write (3.33) as 

0) = VM(O)^  (3.34) 

where { = ((0, , (,N)T s F 1 Â £  For 1 z \< 1, define p (z )  by substituting (3.34) into (3.27) 
as 

Then p(4 is clearly analytic in 1 z \< 1 except on the zero set of d e t w z ) .  Since the 
equation (3.34) holds, the numerator of (3.35) vanishes on the zero set of de tN(z) .  Thus 
if(z) may be extended to a function which is analytic in 1 z \< 1 and continuous in 1 z I<: 1 
by Riemann removable singularity theorem. For simplicity, we still use the notation y ( z )  
to denote the extended function. When z = 1, in particular, we have, 

Hence 
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Substituting z = 1 into (3.24), and then substituting (3.34) and (3.36) into the resulting 
formula, we have 

Substituting 21 = 1 and z2 = 1 into (2.14), we have 

Substituting zl = 1 into (2.15) and subsequently letting zy, Ã‘ 1, we have 

Therefore, using the normalization condition: 

the relations (3.37), (3.38) and Vo (0) = uy? (0) + aVM (0) = $JM (0) (ut  + a ) ,  PO (0) = $M (O)<O,  
the unknown constant VM(0) may be determined by 

here, K = [7-i(l-~2+~2bi)+~2]~o+[~i(l-p2+~2(bi+~l+s2))+r2](u$+a)+(l-~~+~~b~) < 
wv,  1 > + ( I  - p2 + h(b1  + s ~ ) )  < w$, 1 >, where < ., > represents the internal product 
of vectors, and 1 the unit vector. 

Algorithm 

1. Determine all zeros of det N ( z ) :  
(i) Note that  the unique zero z0 of the function f [z )  = z - G1,0(2) is real, and f (- I )  < 

0, f (1) > 0. Calculate the value of ZQ by using bisection method in the interval 
(-171). 

(ii) Choose lattice points on the unit disk by a suitable interval e. And solve the equation 
det Ns(z)  = 0(1 2 15 1) by using these lattice points as the initial values of Newton's 
method. Namely, setting yo as one of these lattice points, we get the sequence {yk} 
such that  

Y k + l  = Y k  - 
det N3 ( ~ k )  

Â¥" d z  det N3 (2) 1 z=yk ' 

Here, calculate the values of det A/3 (yk) and 2 det M3 (F) \sZyk by using (3.29). 
(iii) If the number of zeros of det&(z) in the unit disk obtained a t  step (ii) is less than 

N - M + 1, narrow intervals of lattice p0intsfe.g. put e -+ â‚¬1 and return to step 
(ii) . 

2. Calculate the boundary probabilities (p{0), VM(0): 
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(i) For i = 0,1, , K ,  calculate 

where ei = (0, .. ,1 ,  . - +  ,0) .  
( i )  Calculate fliM(0) = (1 - p 2 ) K 1 ,  and solve the system of N + 1 linearly independent 

equations: 
K F q ( 0 )  = (1 - p)Â£ 

4. Waiting Times 
In this section we consider the LST of the waiting time distributions and the mean waiting 
times at  Q,, i = 1,2. Let Wi represent the waiting time at  Q,, and a ( s )  its Â£S for 2 = 1,2.  
Since the customers present in Qi just after the instant of service completion of a type i 
customer are just the customers who had arrived during the waiting time and service time 
of that customer, we have the following relations: 

Substituting = 1 into (2.14), and then differentiating in zl , we get 

(4.4) 
Next, substituting 21 = 1 into (2.15), we get d 2 ) ( l ,  3) = l,(z2)/v(z2) where 

A 

*2) = Z^ - Bz(A2(1 - 22)) 

Since u(1) = [ ( l )  = 0, using L'Hospital's rule, we get 

where vl ( l )  = 1 - h, v l ( l )  = and 
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As shown in (4.4), the differential values q~;(l), 0 <: m < N ;  $-(I), 0 5 m < M are 
necessary t o  obtain d@^)(.zl, l ) /dzl  lzFl. From (2.22), one can easily calculate $;(I) as 

1 < m < M - 1 .  (4.6) 

Furthermore, differentiating (3.11) in 2 and then letting z + 1, one can get $'/̂ (l) 

where 
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Finally, differentiating (3.33) in z and then letting z -+ 1, we can get d/dzv(z) lZ=l as follows 

5. Numerical Results 
In this section we present some numerical examples for varying values of the threshold M and 
N to illustrate their effects on the mean waiting times and the tail distributions of the queue 
lengths. In these numerical examples we assume that service and switching times of both 
queues are exponentially distributed. First we consider a symmetry case. The parameter 
values are Al = A2 = 1, bl = b2 = 1/3 and sl = s2 = 0 (the case that switching times 
in both queues are zero). The mean waiting times EIWl] and E[W2] are given in Figures 
l (a)  and 1(b), respectively. The results show that EIWl] is monotonically decreasing, and 
E[W2] is monotonically increasing in N and M. But for sufficient large values of N and 
Ad, the variation of these values becomes small because the utilizations pl = p2 = 113 in 
this case are relatively small, and the queue Ql is essentially behaving as one served with 
exhaustive service schedule for sufficient large values of N and M. Therefore, small values 
of the threshold N and M should be considered when the utilizations are relatively small. 

aJ 
5 0.3 8 t 

0 1 2 3 4 5 6 7 8 9 1 0 1 1  

number of the threshold N 

Figure l(a) 

0.3 0.4 4 
0 1 2 3 4 5 6 7 8 9 1 0 1 1  

number of the threshold N 

Figure 1 (b) 

In the second case the parameter values are Al = A2 = 1, bl = 114, b2 = 112 and 
sl = s2 = 1/10. The mean waiting times EIWl] and E[W2] are given in Figure 2. There are 
a relatively small utilization pl = 1/4 in Ql and a relatively large utilization p2 = 112 in Q2. 
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The result indicates that the effect of N and M on E[W2] is greater than that on EIWl]. 
In this case7 therefore, the small values of N and M should be considered. The results of 
case 3 are shown in Figure 3. The parameter values are Al = A2 = 1) bl = 112) b2 = 114 and 
sl = 's2 = 1/10. Contrary to the case 2) adjusting the values of N and M gives a greater 
effect on 8[Wl], but not on E[W2]. So the large values of values of N and M should be 
considered in this case. 

4 r 

number o f  the threshold N number of the threshold N 
Figure 2  Figure 3 

In Figure 4) we show the tail distributions of the queue-lengths of both queues. The 
parameter values are set to be the same as those in the case 3. Here N = G 7  M = 0 and 
A4 = 3 respectively. When the value of M becomes larger, the tail distribution of the queue- 
length in Ql decreases) and the tail distribution of the queue-length in Q2 increases. As one 
can expect, the above results show that the mean waiting time and the tail distribution of 
the queue-length in Ql are decreasing) and those in Q2 are increasing in the values of N 
and M .  This is because that for the large value of N and M ,  the queue Ql gets a higher 
priority over the queue Q2. 

- the tail distribution of Q l  
----- the tail distribution of Q2 

0 1  2 3 4 5 6 7 8 9 1 0 1 1 1 2  
number of the queue 

Figure 4 
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