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Abstract We present an approximation for the stationary distribution T of a countably infinite-state 
Markov chain with transition probability matrix P = (pq) of upper Hessenberg form. Our approximation 
makes use of an associated upper Hessenberg matrix which is spatially homogeneous one P ( ~ )  except for a 
finite number of rows obtained by letting p q  = pj-i+l, i > N + 1, for some distribution p = {pj } with mean 
p < 1, where p- j  = 0 for j > 1. We prove that there exists an optimal p, say p*(N) with which our method 
provides exact probabilities up to the level N .  However, in general to find this optimal p*(N) is practically 
impossible unless one has the exact distribution v .  Therefore, we propose a number of approximations to 
p* (N)  and prove that a better approximation than that given by finite truncation methods can be obtained 
in the sense of smaller li-distance between exact distribution of its approximation. Numerical experiments 
are implemented for the M/h4/ l  retrial queue. 

1. Introduction 
This paper is concerned with the approximating the stationary distribution v = {T,} of a 
count ably infinite-st a te  Markov chain with transition probability matrix P of upper Hes- 
senberg form, i.e., P = (pi.) with p~ = 0 for i > j + 1, which are frequently encountered 
in variety of application areas, especially in queueing models. When the structure of P is 
propitious, the stationary distribution can be determined analytically. However, as far as 
we know, there are no explicit solutions provided in the literature to  the stationary distribu- 
tions of the Markov chains with upper Hessenberg transition probability matrices. Instead 
of determining the stationary distribution from the infinite matrix, one usually reduces the 
dimensions of the matrix and make it finite. To do this, several authors have presented 
augmented truncation methods: one truncates the chain to the first N states, makes the 
resulting matrix stochastic and irreducible in some convenient way, and then solves the 
finite system (eg. see Gibson and Seneta[3], Wolf[9], Heyman[5], Tweedie[8] and the refer- 
ences therein). Zhao and Liu[ll]  showed that the censored Markov chain provides the best 
approximation among finite truncation methods in the sense of minimal li-sum of errors 
between the exact distribution and approximation. However, the truncation method uses a 
Markov chain with a finite state space. So, if the stationary distribution of the infinite-state 
Markov chain has a long tail, and averages and variances are heavily affected by truncation, 
the truncation level may have to be very large to get a good approximation. 

In this paper we present an approximation method which utilizes an appropriate Markov 
chain with infinite state space and prove that our method provides the better results than 
those of censored chain. Our approximation makes use of an associated upper Hessenberg 
matrix which is spatially homogeneous one P ^ )  except for a finite number of rows obtained 
by letting p̂  = p J - % + ~ ,  i > N + 1, for some distribution p = {py} with mean p < 1, where 
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p-J = 0 for j 2 1. We prove that there exists an optimal p, say p*(N) with which our method 
provides exact probabilities up to the level N. However, in general to find this optimal p*(N) 
is practically impossible unless one has the exact distribution TT.  Therefore, we propose a 
number of approximations to ,o* ( N )  and prove that a better approximation than that given 
by finite truncation methods can be obtained in the sense of smaller 11-distance between 
exact distribution of its approximation. 

The rest of this paper is organized as follows. In Section 2, we give our basic assumptions 
for ergodicity of P and review the basic results of the censored Markov chain. In Section 
3, we present our approximation. In Section 4, we propose some approximations for the 
optimal p*(N). Numerical examples are presented in Section 5. 

2. The Censored Markov Chain 
Consider a discrete time Markov chain with state space S = {O, 1,2, - - } and transition 
probability matrix P = (pi-) of upper Hessenberg form i-e., pi? = 0 whenever i > j + 1. Let 

Since we are only interested in the stationary distribution of the Markov chain, we will not 
distinguish between the Markov chain itself and its transition probability matrix. Through- 
out this paper we assume that the matrix P is irreducible. It follows from Crabill[l] that a 
sufficient condition for the Markov chain P to be positive recurrent is 

lim sup pi < 1 
i+cm 

and pi < oo, i 2 0. We also assume the ergodicity condition described above and let 
Â¥T = {7ri}E0 be the stationary distribution of P. 

The censored Markov chain of P with censoring set E c S is defined as the stochastic 
process which records transitions of P during visits E. In other words, the sample paths of 
the censored chain are obtained from the sample paths of P by omitting all those portions 
which are in the complement of E. It is well-known that the stationary distribution of 
censored chain is proportional to that of the original chain and the proportional constant is 
the inverse of the truncated sum in the censoring set of the stationary distribution of the 
original Markov chain (eg. see Zhao and Liu[ll]). The following lemma is a mathematical 
representation of this statement for a special censoring set. 

Lemma 2.1 The censored Markov chain obtained b y  censoring the Markov chain P on the 
states {j, 0 5 J 5 N} has the transition probability matrix 

where pa; = x î; pi?. The stationary distribution v~ = { v ~ } ~ ~  of Q^ is given b y  

N where P(N)  = = = o  7i-; is the truncated sum of ir up to N .  
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For the 11-sum of errors between the exact distribution and its approximation, we define 
the 11-distance 1 lu-ul l l  and the truncated 11-distance 1 I ~ - v l l ~ ~ )  between two infinite vectors 
u = ( u Q , M ~ , ~ - - )  and v = ( U ~ , V ~ ; - - )  by 

The next lemma due to Zhao and Liu[ll] shows that the censoring method provides the 
minimal Zl-sum of errors among the augmented truncation methods for the Markov chain 
with upper Hessenberg transition matrix. 

Lemma 2.2 Let { ~ : , j  = 0,1, - - , N }  be a stationary distribution of the Markov chain 
obtained by the augmented truncation method from P with truncation level N .  Then the 
following holds: 

(N) where vW = (^N}, v!"), . . - , + , 0 ,0 ,  . a ), and similarly for f i W .  

3. Approximations 
The first step of our method is to modify the spatially inhomogeneous matrix P to be 
homogeneous one P ( ~ )  = (pi") except for the first N + 1 rows with 

for some a probability distribution p = { p d ~ o  satisfying po > 0 and p = xEo kpk  < 1. 

Since P is ergodic, P ( ~ )  is ergodic. Let Ã (̂" = {dN)} be the stationary distribution of 
P ( ~ ) .  

In the following, we represent T^ in terms of T,  and discuss the li-distance between 
dN) and IT. Let p(z) and Tl(N)(z) be the generating functions of p and T^, that is, 

and define 
EFo poj2j7 for i = 0 

P@) = 
= o  ~ i , ~ + i - i z ' ~  for i 2 1 f 00 

Then it is easily seen that p',(l) = pi, i > 0 and p l ( l )  = p. We have from the definition of 
P ( ~ )  and the equation i i ' (N)~(N)  = f l  that the following relation 

TTv) 3 = i f O < j < N - 1  
p j+~- i ,  i f j  2 N. 

Routine calculation yields the generating function 
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Proposition 3.1 The stationary distribution TT^ of P(*^ is given b y  

where 
N 

I - / '  
- P '  w ,=o 

and 

(NI (NI (NI Proof. Since p,, - Q,, , 0 S i < N ,  0 < j < N - 1, where Q,, is the (i ,fientry 
(NI of the matrix ~ ( ~ 1 ,  the vector (r0 , - m - ,TT'̂ ) is a left invariant vector of the augmented 

matrix Q^ and hence we have 

where C^ is a constant. The constant C^ is obtained by normalizing condition 

where we used (3.5) and (2.3). D 

(NI In order to stress the dependence on N and p, we write T T ' ( ~ )  and c ^ l ( p )  instead of TT, 

and C^), respectively. 
Proposition 3.2 For each 0 < p < 1, limN.+OO = 1 and hence 

Proof. It is clear from the definition of P (N)  that limN.+OO P ( N )  = 1. Thus it suffices 
to show that limN.+OO S(N) = 1. It is easily seen that the stationary distribution TT of P 
satisfies 

Multiplying both sides of (3.6) by ~ , , J - I _  and summing over j yield 

By noting from the definition of pi in (2.1) that 
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and &,,-I + & = 1, (3.7) becomes 

Y. W. Shin 

which shows that limNm S(N) = 1. 

Proposition 3.2 also shows that the convergence of ŵ  to -JT does not depend on the choice 
of the probability distribution p. 

In the next proposition, we show that there exists an optimal p in the sense that the 
truncated 11-distance between TT and ir^ is 0. 

(N) Proposition 3.3 There is a p*(N) satisfying TT, (p*(N)) = TT,, j = 0,1 ,2 ,  - . - , N, and it 
is given b y  

Proof. Since ~ ( ~ ) ( p )  = xf^p) < 1, we have K ( N )  > 1. By differentiating 
with respect to p, it is easily seen that ~ ( ~ ) ( p )  is a strictly monotone decreasing function 
of p, 0 5 p < 1, for each fixed N.  Since 

(N) there exists a unique p*(N) satisfying TT- (p*(N)) = T T ~ ,  0 <_ j 5 N. The formula (3.8) is 
obtained by solving CW(p)  = ,O(N) for p. 

Corollary 3.4 If p satisfies 

then 

Proof. Since ~ ( ~ ) ( p )  is a decreasing function of p ,  C^)(p) < P ( N )  and hence we have 
lir - TT(N)(~)I ]$")  = ,O(N) - cW(/}). We note from 1 1 ~  - v(*)H\"' = 1 - P ( N )  that (3.9) is 
equivalent to 2/3(N) < 1 + C^(p). Thus the corollary is proved by the fact that 

and ~ ( ~ ) ( p )  is a decreasing function of p. 

Proposition 3.5 We have, for each 0 < p < 1, that 
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Proof. 

Corollary 3.6 ( i )  If cW{~)  2 /3(N), that is, p < ,o*(N), then the following hold: 

(ii) When ~ ( ~ ) ( , o )  < (3 (N) ,  that is, p > p*(N) ,  a necessary and sufficient condition for 

is that p satisfies 
00 

Before closing this section, we note some useful results relating to the moments and the 
recursive formula for the probabilities T T . : ,  j > N + 1. 

Once the probability distribution p is given, one can easily calculate the approximation 
of moments by differentiating the generating function W v z )  at z = 1. We provide formulas 
for mean L ( ~ )  and variance of dN)  as follows: 

where 

For the calculation of TT^, one has to solve the linear equation v^~^^ = v/v with 
v ~ e  = 1. There are several ways of doing this, e.g. see Grasmann[4], Latouche et al.[6] 
and Zhao and LiflO] . Once V N  is obtained, one can calculate T T ; ,  0 < i <  ̂ N using (3.4) 

in Proposition 3.1. The remaining probabilities T T ; ,  j 2 N + 1 can be calculated by the 
recursive formula (e.g. see Ramaswami[7]) 
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4. Approximations for p* ( N )  
The optimal p*(N) given in (3.8) is determined by {T,, 0 < j < N}, which are unknown 
in general. We therefore suggest approximations $(N) of p* ( N )  with which T ^ ) ( ~ ( N ) )  
provides the smaller Zl-dist ance or truncated Zi-distance from the exact distribution than 
that given by the censored chain. 

We introduce three approximations for p* ( N )  as follows: 

p1{N) = sup pj, p x N )  = ,^ / i j ,  P ~ ( N )  = m+m 
3>N+1 2 

Remark. If {pn} is monotone increasing (decreasing, respectively), except possibly for 
finitely many terms, 0) = limwoo pn (6 ( N )  = limn+oo respectively). 

Now we investigate the conditions under which each of p^(N) provides better approx- 
imations than those of censored chain. It is clear from the definition of p*(N) in (3.8) 
that 

Thus we see from ( 2 )  of Corollary 3.6 that 

Let 
p' = lim sup ,on = lirn (n) ,  p = lim inf = lim ,o;(n). 

nÃ‘fo n+oo n-4-00 n+oo 

If 2p^ <  ̂ (1 + p ) ,  then p"\ N )  satisfies the condition (3.9) for large N and hence we have 
from Corollary 3.4 that  

It is immediate from (4.1) that either p;(N) < p*(N) or p m )  satisfies the condition (3.9) 
for N with p^{N) < 1. 

Now we consider the way of choosing a probability distribution p*(N) with mean ,o!(N), 
i = 1,2 ,3 .  If one can easily find Ni 2 N such that p^(N) = p ~ ,  then one takes p^(N) = 

( p ~ ~  . ~ i - i ,  p f i  ,N- ~ , i v l + ~  . - - ), the nonzero part of the Nith row of P. If it is difficult to 
find such Nl,  then one can take (pM,pM) as (p'[(N),p'[(N)), where M  = M(e) is an integer 
satisfying \pM - P U N ) \  < e with M  2 N for a given e > 0. We can choose p,*(N), i = 2 , s  
similarly. 

Remark. Based on some numerical experiments, we suggest the following criteria for 
(p (N) ,p (N) )  : If {pn} is monotone, use (pw+i,pN+l). If {&} is not monotone, use (p',(N), 

PO?). 

5. Numerical Example 
Here we consider the  M / M / 1  retrial queue whose behaviors are as follows. Customers 
arrive according to a Poisson process with rate A and service times which are exponentially 
distributed with mean ]-. Each arriving customer checks the state of the server. If the 
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server is idle, the customer seizes the channel and his service begins. If the server is busy, 
the customer joins the retrial group and starts generating requests for service according to 
a Poisson process of rate 6 until he finds a free server. For comprehensive surveys of retrial 
queues, see Falin and Templeton[2]. Let Xn be the number of customers in the system at 
the instant of nth service completion, n = 1,2, - - - . Then the Markov chain { X n }  is ergodic 

A 
if p = - < 1, and the transition   rob abilities p~ = P(Xn^ = j\Xn = i )  of {Xn} are given 

u 
by 

i > j + 1  
i = O , j ^ O  
i > l , J = i - 1  

-spI'-i + &p'f-i+17 i ^ 1, j ^ i ,  

1 
where p = - , q = 1 - p .  The pi, i > 0 are given by 

1 + P  

The generating function 11(z) of the stationary distribution TT of P is given by 

where c = 2. By taking the Taylor series expansion of 11(z), we have that 

Hence we get the recursive formula 

with a0 = (1 - ,o)'+l. 
In Table 1, we list the 11-distances E ~ ( U ( " ) )  = 1 I T T  - u(n)lll and ~ r ( i r ^ l )  = 1 I T  - dn)1 l l  

for various truncation levels n and system parameters p and 0 with A = 1.0. Since {pn, n > 
1} is monotone decreasing, we use ~ ( ~ ) ( ~ ' , ' ( n ) )  with p = (pn+l,n, pn+lln+l , - - - ) to 
approximate TT for each level n. From Table 1 we see that as p increases and 0 decreases, 
that is, the tail of TT becomes heavier, our approximation becomes more effective than the 
truncation method. Table 1 also shows that rn^ converges more rapidly to TT than dn) when 
6 increases. A reason why this happens is the differences \pij - pn+llj 1, 2 2 n + 1, becomes 
smaller as 0 increases. 
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