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Abstract Saaty proposes the analyzing methods for AHP using the principal eigenvector of the compar- 
ison matrix, and for ANP (analytic network process) using the limiting process method of the powers of 
the supermatrix. These methods are based on the irreducibility of the evaluation matrices. We develop the 
unified method solving both AHP and ANP based on Frobenius min-max theorem. Further this method is 
extended to the solving method of the general (not necessarily irreducible) evaluation matrix, by the graphic 
decomposition process. 

1. Introduction 
The eigenvector method in AHP (Analytic Hierarchy Process) is to evaluate the weights of 
objects (criteria and alternatives) by a comparison matrix C ,  and ANP (Analytic Network 
Process) analysis is to evaluate the weights of objects by the so called supermatrix S. 

Each element of C is obtained by paired comparison of objects and Saaty [3] proposed 
the estimation method of weights of objects by the elements of the principal eigenvector of 
C. Sekitani and Yamaki [5] gave the mathematical foundation of Saaty's eigenvector method 
through Frobenius min-max theorem and developed the several mathematical programming 
models whose solutions are equivalent to the principal eigenvector of C.  

In order to calculate the weights of objects in ANP, Saaty [4] uses the limiting process 
limu+oo Sul but it is clear that the weight vector u of objects in ANP is the solution of the 
equation S u  = u if S is a stochastic matrix (see for details in section 3.1), which is always 
required in ANP. So the principal eigenvalue of S is unity, and we can regard the solution 
u of Su = u as the principal eigenvector of S. 

Thus in AHP and ANP we estimate weights of objects by the principal eigenvector of C 
and S, respectively. In our general evaluation model we extend C and S to the total evalu- 
ation matrix A, whose principal eigenvector is also a basic tool in our analysis. In ordinary 
sense the off-diagonal entries of C are obtained by the direct pairwise comparisons but those 
of S are mainly obtained through several steps of calculation. Hence S is considered to be 
a higher level matrix than C (The name "supermatrix" itself reveals the fact). But we do 
develop the the same unifying method which is applicable to both AHP and ANP. 

In general the comparison matrix C in AHP is required to be a reciprocal matrix and 
the supermatrix S in ANP must be a stochastic matrix. Furthermore in both cases C and 
S must be irreducible. Considering the arc (i, j) if and only if (i, j) element of a matrix 
is nonzero, we have a directed graph corresponding to the matrix. Then irreducibility of 
a matrix is equivalent to strong connectivity of its graph. (Saaty [4] treats the case of the 
general (not necessarily irreducible) S ,  but the results are not perfect and not acceptable). 

Here we propose a new model of the general evaluation including AHP and ANP. It is 
free from the above mentioned various restrictions imposed on the matrices C and S. The 
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only restriction of our total evaluation matrix A is nonnegativity, that is, all entries a^ of 
A = [aij] are nonnegative; a,, >_ 0. 

Our main analyzing method is to decompose the graph corresponding t o  A into some 
strongly connected components, (each of those is called a cluster of objects), and then to 
apply the principal eigenvector method to  each cluster. 

To unify AHP, ANP and their variations, we reconsider both the standardization of 
their evaluation matrices and their structures of evaluation in section 2. In section 3 the 
analysis of the case that  structure of evaluation is strongly connected, that is, the evaluation 
matrix is irreducible, are stated. In section 4 the general method is stated, which is the 
main purpose of this research. To illustrate the effect of the general method, we show two 
examples in section 5. 

2. Evaluation Matrices of AHP, ANP and Their Variations 
We place this section for preliminary discussions for the following sections. In section 2.1 we 
explain the concept of the standardizing problem which plays important role in the general 
solving method of ANP stated in section 4. In section 2.2 a graphics representation of 
evaluation structures is stated. If the graph of an evaluation structure is strongly connected, 
then the solving method is very simple (see the details in section 3), but there are many 
practical problems without the strongly connected structure. These examples are shown in 
section 2.2. 
2.1. Standardizing problem , 

The analysis of AHP is based on the comparison matrix C = [cy] ,  whose (i, j )  element cu 
is considered to be the ratio evaluation of the ĵ object to the ith object. Furthermore, it 
can be said that the j^ object is evaluated by the ith object based on a criterion and its 
result value is cy. 

In AHP the reciprocal condition 
1 

is commonly assumed, but here we do not assume this condition. Because generally the 
evaluation value of the ith object by j does not necessarily coincide with that  of j by i .  
Further in conventional AHP we have cii = 1, but here we can assume that = 0. When 
all diagonal elements of the matrix C are 1, the matrix C has the same principal eigenvector 
as the matrix C whose diagonal elements ci, are replaced with 0. As for ANP, there are 
many types of structures of evaluation. So here we select the simplest one like the following 
example in [4], and discuss this as a typical type of ANP. 

Example 1 In  USA there are three big fast-food companies, McDonald's(M), Burger King(B) 
and Wendy's(W). Assume that they are evaluated by two criteria advertisement(A) and ser- 
vice(S) like Table 1, and each of M,B and W has its management policy with weights for 
A and S like Table 1. In a word (A,S)  evaluate (M,B, W) and at the same time (M,B, W )  
evaluate (A,S). The evaluation matrix of (M,B, W )  by (A,S) is 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



A Unified Mode1 and Analysis for AHP and ANP 69 

Table 1: Evaluation values of McDonald's, Burger King and Wendy's for two criteria 
A S 

Table 2: Management Policy for advertisement and service 
M B W  

and that of (A ,S )  by (M,B,  W )  is  

w =  

where standardizing conditions 

3 

are assumed. 
Saaty's supermatrix for this A N P  is  

Because of (2.4) S is a stochastic matrix. The  analysis of A N P  are always based on stochas- 
ticness of supermatrix. Therefore, the principaleigenvalue of S is always 1. 

Generally the principal eigenvalue Amax of a comparison matrix C in AHP is not 1, and 

be called the standardized comparison matrix. Of course Amax is real and positive because 
of the irreducibility of C(see Theorem 1 of section 3 or [8] for details). From (2.6), C and C 
have the same principal eigenvector. Using C instead of C, we can discuss various problems 
in different fields by the unified measurement. 

Kinoshita and Nakanishi [2] discuss the problem with the same structure as Example 1, 
but they select the specific alternative/criterion as dominant one and evaluate other alterna- 
tives/criteria based on the dominant alternative/criterion whose evaluation value is always 
1. Thus we have the evaluation matrix like that of Table 3 or Table 4, where alternative M 
(criterion S) is selected as the dominant one. 

For this problem 

2 112 0 0 0 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



K. Sekitani & I. Takahashi 

Figure 2.1: Graphic representation of supermatrix in Example 1 

is no longer a stochastic matrix, and S has the principal eigenvalue Amax = 3.65 and 
3 = 513.65 is the standardized supermatrix which is not stochastic but has the princi- 
pal eigenvalue of 1. 

Table 3: Evaluation values of dominant alternative 
A S 

M I 1  
B 2 112 
W 3 116 

Table 4: Evaluation values of dominant criteria 
M B W  

A 114 3 2 
S i l l  

2.2. The graphic structure of the evaluation problem 
Consider Example 1 of ANP in section 2.1. The first column of the matrix in Table 1 can 
be considered to be the vector whose elements are the values of alternatives M, B and W 
evaluated by criterion A, and the second column values of the alternatives evaluated by 
criterion S. We represent this fact by the arcs from A and S to M, B and W respectively 
shown in Figure 2.1. As the same way, we represent Table 2 by the arc from M, B and W 
to A and S representing shown in Figure 2.1. 

We can consider the graphic representation of the comparison matrix C of AHP, where 
the ith column is the evaluation vector of other objects by the ith object. In general com- 
parison matrix C = [cij], for any i and j (i # j), c~ and cji have positive values, so we 
always have arcs (i, j) and (j, i) in the graph corresponding to C ,  but we have no loop (i, i) 
because of the agreement mentioned in section 2.1. 

We often encounter the case of incomplete information in AHP, where some elements 
of C are missing. If the ( 2 , j )  element of C is missing then we have no arc (i, j) in the 
corresponding graph. As the incomplete information AHP whose corresponding graph is 
disconnected is meaningless, we have only to consider the problem with the connected 
graph. 

In AHP, even if it is the incomplete case, if c~ is positive, then cji = l/ciJ is also positive, 
so if its graph is connected, then it is automatically strongly connected. The directed graph, 
where for any i and j (i # j )  there is a directed path from the zth node to the jth node, is 
called strongly connected. 
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Figure 2.2: Graphic representation of Example 2 with general evaluations for criteria 

Figure 2.3: Graphic representation of AHP 

But in ANP we often encounter the supermatrix whose graph is connected but not 
strongly connected like that of the following example. 

Example 2 Consider again Example 1 (in section 2.1). Assume that general evaluations 
of A and S i n  fast food business world are v1 and v2,  respectively and let u = [ul ,  v2IT, then 
the supermatrix is 

0 0  0 
s = [ u  0 w ]  

O U O  

and the corresponding graph is that in  Figure 2.2. This is clearly connected but not strongly 
connected. H 

In the hierarchy structure of AHP we unify multi-evaluation of alternatives by the several 
criteria. Let Wi be the evaluation vector of alternatives by the ith criterion. Then W = 
W . . . , W,] is the evaluation matrix of alternatives by the criteria. Let v be the weight 
vector of the criteria, then the total evaluation matrix is 

And its graph is like that of Figure 2.3 where the number of criteria is 2 and the number of 
alternatives is 3. This graph is also connected but not strongly connected. 

We introduce a general evaluation problem including each of ANP and AHP as a special 
case. Let its evaluation matrix be 

A = [aij] (2.10) 
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of order n ,  where a,, is a ratio evaluation of the jth object by the zth object for 2 , )  = 1 , .  . . , n. 
And we assume that evaluation values are always nonnegative and self-evaluations are not 
carried out- that is 

We have the supermatrix S in ANP or the comparison matrix C in AHP as a special case 
of general evaluation matrix A. But we do not impose any other restrictions except (2.11) 
on A, such as the stochasticness or the reciprocity. 

Considering an arc (i,j) if and only if a~ > 0, we have the graph corresponding to A. 
The solving method of general evaluation problems varies depending on the structure of its 
graph. 

If the graph is strongly connected, then its solving method is very simple and it is almost 
equivalent to the classical or conventional ANP or AHP method. However, if the graph is not 
strongly connected, then there has been no satisfactory solving method. The main purpose 
of this paper is to propose the method to solve the general problems with not necessarily 
strongly connected graphs. 

3. Analysis for an Irreducible Evaluation Matrix 
In this section we discuss the solving method with the supermatrix S or more general 
evaluation problem with the matrix A of (2.11), when S or A is irreducible(that is the 
evaluation structure is strongly connected). It is simply to find the principal eigenvector of 
S or A. The main purpose of section 3.1 is to show that our solution coincides with that 
of Saaty's limiting process. And in section 3.2 we show that the mathematical foundation 
of our method is based on the averaging principle of Sekitani and Yamaki [5]. This part is 
essentially restatement of [5] for our context. 
3.1. Mathematical foundation of Saaty's ANP for the irreducible supermatrix 
We illustrate that Perron-Frobenius7 Theorem is mathematical foundation of Saaty7s ANP 
for the irreducible supermatrix as well as AHP. 
Theorem 1 (Perron-Frobenius' Theorem (See [$I)) Suppose that D is an irreducible 
nonnegative matrix. Then there are an  eigenvalue A and the corresponding eigenvector w 
satisfying the following two conditions: 
(1) A > 0, w > 0 and A > \a\ for every eigenvalue a of the matrix D. 

(2) A is  a single root of the characteristic equation of D.  
The simple and largest eigenvalue is referred to as the principal eigenvalue. From (2) of 
Theorem 1, it follows directly that a principal eigenvector of the irreducible nonnegative 
matrix is essentially (except for a scalar multiple) unique. 

Saaty [4] proposes the following solving method ANP; If the supermatrix S is (stochastic) 
irreducible and primitive, then limu+m Su converges to a Sm, each column of which is the 
same vector w, that is , 

lim Su = Sm = [w,. . . ,w] 
u+m 

and the elements of w are the desired evaluation weights of objects. For the imprimitive case, 
he introduces the index c of imprimitivity (or cycle index) which is defined by the greatest 
common divisor of lengths of all cycles of the corresponding graph for S. And he shows that 
if S is irreducible and it has the cycle index c, then Sc (with appropriately rearranged rows 
and columns) is a block diagonal matrix, each diagonal component of which is irreducible, 
and lim,,+m(Sc)u converges to a block diagonal matrix Sm such that each diagonal block 
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consists of the same column vectors. Therefore, for the irreducible supermatrix S with the 
cycle index c, 

and each column in the i t  diagonal block of Sm is the same vector w(i), that is 

S(i)00 = [w(i) ,... ,w(i)] for a l l i  = 1 ,..., c. (3.4) 

The elements of w(i) are desired evaluation weights of objects in the i^ block. 
Here firstly we show that the principal eigenvector of S coincides with w in (3.1) for the 

case of primitivity. 
Theorem 2 Let S be a stochastic irreducible matrix. If S is  primitive, then its principal 
eigenvector u, that is  the solution u of 

coincides (except for a scalar multiple ) with w in (3.1). 
Proof: Since S is stochastic, its principal eigenvalue is 1, and the solution of (3.5) is the 
principal eigenvector of S .  Note that S is nonnegative and irreducible, so the solution of 
(3.5) is unique (except for a scalar multiple) by Theorem 4. Let 

It follows from (3.1) that 
lim Eu = lim EU+l = 0. 

VÃ‘>0  v+m 

Multiplying (3.6) by S, we have 

S([w, . .  . , w] + Eu) = SU+l = [w, . . . , w] + Eu+l, 

so we have 
S[w, . .  ., w] = [w,..  ., w] (3.9) 

in the limiting case of v -+ oo. The left hand side of (3.9) can be written as [Sw , - , Sw] , 
so we have 

Sw = w. (3.10) 

But the solution of (3.5) is unique (except for a scalar multiple) so w = u. 

Theorem 3 Let S and c be a stochastic irreducible matrix and its cycle index, respectively. 
Let u be a positive principal eigenvector of S (that is  the solution of (3.5)). I f  all components 
of u are rearranged by the same way as [ ~ ( l ) ~ ,  . . . , w ( c ) ~ ] ~  in (3.4) and we take an  appropri- 
ate scalar multiple of each w ( i )  for i = 1, . . . , c, then, u coincides with [w (l)T, . . . , w ( c ) ~ ] ~ .  
That i s  
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I t  follows from (3.3) that 
lim Eu = lim = 0 

V-Km VÃ‘>0 

So we have 

which shows 

S(i)cS(z)W = S(i)00 for all z = 1 , .  . . , c ,  

S(i)c[w(i),  . . . ,  w(i)} = [w(z), . . . ,  w(2)] f o r a l l i = l ,  . . . ,  c, 
S ( Z ) ~ W ( ~ )  = w(i) for all z = 1, .  . . , c. 

Since S(z)' is stochastic and irreducible, it follows from (3.12) that w(z) is a positive principal 
eigenvect or of S (2)  '. 

On the other hand, a principal eigenvector u of S satisfies the equation SCfu = u. In 
fact, it follows from the stochastic matrix S that S2u = Su = u. Suppose that Sku  = u for 
some k > 2, then Sk^u = SkSu = Sku = u. Since all components of u are rearranged by 
the same way as . . , W ( C ) ~ ] ~ ,  we have u = [u(l)'", . . . , U ( C ) ~ ] ~ .  Therefore, 

S(i)'u(z) = u(i) for all z = 1,. . . , c. 

This implies from the stochastic irreducible matrix S(2)' that u(i) is also a positive principal 
eigenvector of S(i)'. 

Since both of u(z) and w (2)  are a positive principal eigenvector of S(i)', it follows from 
Theorem 1 that u(i) coincides with w(i)(except for a scalar multiple). 

Theorem 3 shows that in order to solve ANP with an irreducible supermatrix (strongly 
connected structure) we have only to find the solution of (3.5). The supermatrix S is a 
stochastic matrix whose principal eigenvalue is 1, so the solution of (3.5) is also the principal 
eigenvector of S .  So we can state that the solution of ANP with the strongly connected 
structure is the principal eigenvector of its supermatrix. 
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3.2. Averaging principle analysis for the irreducible evaluation matrix 
As shown in section 3.1, the solving method of ANP with the irreducible evaluation matrix 
is to find the principal eigenvector of the supermatrix S.  Hence solving methods of both 
AHP and ANP are commonly based on the eigenvector method. The eigenvetor method 
could be the key of the unified approach of AHP, ANP and their variations. 

Sekitani and Yamaki [5] focus on the irreducibility and nonnegativity of the evaluation 
matrix in AHP and develop a principle for eigenvector method of AHP. The principle not 
only gives us the foundation for eigenvector method of AHP but also makes us free from 
the conventional restrictions such as reciprocity or stochasticness of the evaluation matrix. 

Firstly we extend the principle for the general evaluation problem with the following 
irreducible evaluation matrix A = [aij] of order n. As the same assumption as [5] we 
suppose that every object evaluates itself and gives itself the evaluation value. Then wi is 
the self-evaluation value of the ith object and aywj is the evaluation value of the ith object 
from viewpoint of the ĵ object. We denote the ith row vector of A by ai and the number 
of positive entry in ai by Mi for i = 1 , .  . . n. So the average of the external evaluation 
of the ith object is aiw/Mi. If all aG1s are evaluated or calculated under the considerable 
and consistent judgment of the decision maker, then there exists a self-evaluation vector 
such that aijWj = wi for all i , j  = 1,. . . , n and hence, wi = ai6 /Mi  for all i = 1 , .  . . n. 
However, almost all of A in practice are inconsistent and we have some gap between wi and 
aiw/Mi. Therefore all wi's minimizing overall discrepancies between wi and aiw/Mi for each 
i = 1 , .  . . , n must be desirable estimation of weights of object. 

This idea is represented by the following mathematical language: 

a-w 
m i n m a x { ~ - I \ \  i =  1, ..., n } .  
W > O  Miwi 

The following Frobenius' theorem and corollary just meet to get a solution of Problem (3.13). 
Theorem 4 (Frobenius' Theorem (See [I])) Suppose that D i s  a nonnegative matrix 
of order n and that Amax is  the principal eigenvalue of D. Let di be the î  row vector of D 
for i = 1 , .  . . , n. Then  for every positive vector 

Furthermore, i f  the matrix D is irreducible, 

A nonzero vector u is a principal eigenvector of A if and only if 

Furthermore, for every positive vector u except a principal eigenvector of D 

min { $ 1  = 1, . . . ,  n } < Amax < m a x { % l i = l ,  . . . , n} .  

Proof: See [6] for the proof. 

From the above theorem we have the following corollary: 
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Corollary 5 Suppose that D is a nonnegative irreducible matrix of order n, and that Amax 
i s  the principal eigenvalue of D 
Then  

min max 
u>o ! 

where the equality in (3.18) ho 

Let di be the ith row vector of D for every i = 1 , .  . . , n. 

i s  for every positive eigenvector u of D corresponding to 
Amax- For every positive vector u except for an  eigenvector of D corresponding to  Amax 

Proof: See [5] for details. 

Let 

for the irreducible evaluation matrix A, then A is also irreducible and it follows from Corol- 
lary 5 that a positive principal eigenvector of A is a solution of (3.13). 

In this study we propose the averaging principle for the irreducible evaluation matrix A 
as follows: 
Step 1: Generate the matrix A defined by (3.20) for the evaluation matrix A. 
Step 2: Find a positive principal eigenvector 6 of A and define 6 as a weight vector of the 

evaluation matrix A. 
From the irreducibility of the evaluation matrix A we see that Mi is a natural number for 
every i = 1,  . . . , n and that A is well defined in Step 1. Theorem 1 guarantees the existence 
and the uniqueness of 6 of Step 2. Taking D = A in Corollary 5, we see that an optimal 
solution of Problem (3.13) is identical to a positive principal eigenvector of A. 

Example 3 Consider Example 1 and the corresponding evaluation matrix (2.7). W e  apply 
the averaging principle to  the evaluation matrix (2.7). I n  step 1 we have MI = M2 = 3 and 
Ma = M4 = M5 = 2 and divide the ith row vector of (2.7) by Mi for every i = 1 , .  . . , 6 .  
Then  we get 

0 0 1/12 1 213 
0 0 113 113 113 

112 112 0 0 0 
1 114 0 0 0 

312 1/12 0 0 0 

and find a positive principal eigenvector of A i n  Step 2. A principal eigenvector of A is tij = 
[0.262, 0.135, 0.133, 0.199, 0.2711~. The weights of A and S are 0.660 and 0.340,respectively 
and the weights of M, B, W are 0.221, 0.330 and 0.449, respectively. 

Here, we compare the averaging principle with ANP for the Saaty's supermatrix (2.5). 
Theorem 6 Consider the stochastic evaluation matrix A with an  nl x n2 submatrix W and 
a n  n2 x nl submatrix U i.e., 

0 W 
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If U and W  are positive, then the weight vector for the evaluation matrix A b y  ANP is 
identical to  that b y  the averaging principle. 
Proof: Let U be the evaluation matrix of nz alternatives by nl criteria and let W be 
the evaluation matrix of n1 criteria by n2 alternatives. Since both U and W  are positive 
matrices, A is irreducible. Let x and y be the nl weights of criteria and the n2 weights of 
alternatives, respectively. Then from Theorem 3 we have 

WUy = y and UWx = x 

and hence, x is a positive principal eigenvector of UW and y is a positive principal eigen- 
vector of WU. 

On the other hand, in step 1 of the averaging principle we get 

since U and W  are positive. 
In step 2 we find a positive principal vector [vT, zTIT and the principal eigenvalue Amax 

of A, that is, we solve 

This implies that 
WUz = (nin2A&,)z and UWv = (n1n2Ai,,)!;. 

We see from Theorem 1 that z is a principal eigenvector of WU and that v is a principal 
eigenvector of UW. 

Therefore, we have completed the proof. 0 

Since each column of U and W  is often calculated by AHP, both U and W  are positive 
matrices and the weights for the Saaty's supermatrix (2.5) by ANP are often identical to 
those by the averaging principle. 

4. Averaging Principle Analysis for a Reducible Evaluation Matrix 
In section 3 we stated the solving method of the evaluation problem with the strongly 
connected structure, that is, the evaluation matrix A of (2.11) is irreducible. Here we state 
the general solving method of the evaluation problem with the reducible evaluation matrix 
A. This is the main purpose of our paper. 
4.1. Cluster decomposition and standardization 
We consider a reducible evaluation matrix whose graph is not strongly connected but con- 
nected. If the corresponding graph is not connected, the reducible evaluation matrix is de- 
composed into some irreducible evaluation submatrices and each of all submatrices should 
be evaluated individually and independently. Here, we assume that the reducible evaluation 
matrix corresponds the connected graph but not strongly connected one. 

In graph theory it is well known that a connected graph can be decomposed into strongly 
connected components which are topologically ordered. According to the topological order 
we can put a linear order for all strongly connected components. Let L be the number of 
the strongly connected components in the graph corresponding to the reducible evaluation 
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Figure 4.4: Decomposition of the overall evaluation structure into 4 clusters 

matrix and let all strongly connected components be ordered linearly. Then we can represent 
the reducible evaluation matrix A as follows: 

Let n(1) be the number of nodes in the lth strongly connected component for 1 = 1 , .  . . , L. 
Then the order of the submatrix A' of (4.1) is nil) and the submatrix B" of (4.1) is an 
n i l )  x n ( k )  matrix for every ( 1 ,  k )  { ( 1 ,  k )  \ 1 < 1 < k < L}. The lth cluster is called the 
set of an object corresponding to a node in the lth strongly connected component. The 
submatrix A' of (4.1) is the evaluation matrix of the objects in the lth strongly connected 
component by themselves and it is called the internal evaluation matrix of the lth cluster. 
The submatrix B^ of (4.1) is the evaluation matrix of the objects in the lth cluster by those 
in the k̂  cluster. 

Example 4 W e  consider an  evaluation system with 11 objects and the following reducible 
evaluation matrix (4.1) : 
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The evaluation structure consists of 4 clusters, the first cluster {I, 2}, the second cluster 
{3 ,4 ,5} ,  the third cluster {6,7,8} and the forth cluster {9,10,11}. Figure 4.4 shows con- 
nectivity of these 4 closters. W e  have nil)  = 2,  n ( 2 )  = n ( 3 )  = 3 and n(4) = 3, and the 
following 10 submatrices: 

For every internal evaluation matrix A' of (4.1) we state some properties as follows: 
Lemma 7 Let A be the reducible evaluation matrix (4.1). If n(1) > 2, the internal evalua- 
tion matrix A' of the I th  cluster is irreducible. 

Lemma 8 Let A be the reducible evaluation matrix (4.1). If n(1) = 1, the internal evalua- 
tion matrix A' of the lth cluster is a scaler 0. 

If there exists an arc from the k  ̂ cluster to  the lth cluster, we say that the k  ̂ cluster 
precedes the Ith cluster, and that the k  ̂ cluster is a predecessor of the lth cluster. 
Lemma 9 Suppose that A is the reducible evaluation matrix (4.1). The submatrix \B", . . . , 
B"'] of A is a nonnegative and nonzero matrix if and only i f  there exists a predecessor of 
the lth cluster. 
If a cluster does not have a predecessor, it is called a source cluster. Notice that the first 
cluster is a source cluster and that the last cluster has a predecessor in the case of L > 2. 

For the evaluation matrix A defined by (4.1),  we propose the cluster-wise standardization 
other than Saaty's column-wise standardization 'such that each column-sum of A is 1. The 
submatrix 

of the evaluation matrix A is a set of evaluation data by the 1 cluster. For all I = 1,. . . , L, 
we standardize each submatrix (4.2) of A as follows: 

Let A' be the principal eigenvalue of A' with n i l )  2 2 and let A' = 1 in the case of 
n(1) = 1. For all 1 = 1 , .  . . , L, we divide the internal evaluation matrix A' of the I t h  cluster 
and BL+l',. . . , BL' by A'. Let A' = A'/A1 and B" = B~'/ \ '  for k = 1 + 1 , .  . . , L and 
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1 = 1 , .  . . , L, then a standardized evaluation matrix A of A is defined as 

Because it follows from Theorem 1 that A* > 0 for k = 1, . . . , L, A is also a nonnegative 
matrix. The topology of the graph corresponding to the evaluation matrix A are identical 
to  that to A. Therefore, we have the same properties for the standardized evaluation matrix 
A as Lemmas 7, 8 and 9. 
Lemma 10 Let A be the standardized reducible evaluation matrix (4.3). If n(1) >_ 2 ,  the 
standardized internal evaluation matrix A' of the lth cluster is irreducible and its principal 
eigenvalue is 1. 
Lemma 11 Let A be the standardized reducible evaluation matrix (4.3). If n i l )  = 1, the 
standardized internal evaluation matrix A1 of the lth cluster is a scaler 0.  
Lemma 12 Let A be the standardized reducible evaluation matrix (4.3). The submatrix 
[B", . . . , B " ~ ]  of A is a nonnegative and nonzero matrix if and only i f  there exists a 

predecessor of the lth cluster. 
Let M[ be the number of positive elements in the ith row vector of the submatrix [B", . . . , 
B" ' ,  A'] of the standardized reducible evaluation matrix (4.3), then we have the following 
lemma: 
Lemma 13 Let A be the standardized reducible evaluation matrix (4.3). Suppose that there 
exists a predecessor of the lth cluster or that n(1) 2 2, then 2 1 for every i = 1,. . . , n(1). 
Proof: When n(1) = 1, the lth cluster has a t  least one predecessor and hence, M[ = > 
1. When n ( l )  2 2, each node of the lth cluster has a t  least one arc from the other nodes 
of the lth cluster since the lth cluster is strongly connected. Therefore, >_ 1 for every 
i = 1,. . . , n(1).  

4.2. Cluster-wise averaging principle for the reducible evaluation matrix 
We develop the cluster-wise averaging principle for the standardized reducible evaluation 
matrix (4.3) that is sequentially applied to weighting all objects of the cluster according the 
topological order of clusters. 

Let A be the standardized reducible evaluation matrix (4.3). For every source cluster 
with a single object, for example the first cluster {G } of Example 2, the cluster-wise 
averaging principle determines the weight of the single object as 1. Let w1 be the weight 
vector of the lth cluster, then the lth cluster with n(1) = 1 has w1 = w\ = 1. 

For all clusters except source clusters with a single object, the cluster-wise averaging 
principle provides the weight vector of each cluster as follows: 

Suppose that the lth cluster is not the source cluster or that it does not consist of a single 
object. Then there exists a predecessor of the lth cluster or we have n(1) > 2. Therefore we 
see from Lemma 13 that  >. 1 for every i = 1 , .  . . , n(1). Suppose that wk is the weight 
vector of the kth cluster for every k = 1, . . . , l  - 1. Let b:* be the ith row vector of B1* for 
k = 1 , .  . . , I  - 1 and let a: be the i^ row vector of A' for i = 1 , .  . . , n(1). The cluster-wise 
averaging principle for the lth cluster is to  solve 

1-1 yw + - I  

min max { 1 E*=I i , aiw i = l,...,n(l)} 
w>O Mjw, 
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and to define the optimal solution w of (4.4) as the weight vector w1 of the lth cluster. 
The first term xi.2 b^wk of the numerator in (4.4) is the sum of the external evaluation 

values of the ith object in the lth cluster from objects in the predecessors of the lth cluster. 
The second term a^u) is the sum of the external evaluation values of the ith object in the lth 

a,w) /Mi is the cluster from the other objects in the lth cluster. Therefore, (xi2 b"wk + -' 
average of the external evaluation values of the the ith object in the lth cluster. Problem (4.4) 
means that all w,'s minimizing overall discrepancies between the self-evaluation value wi and 
the average (EL: btfwk + i$w) /MJ of the external evaluation values for all i = 1, . . . , n(1) 
are the desirable estimation weights of objects in the lth cluster. Hence, the meaning of 
Problem (4.4) is a natural extension of that of Problem (3.13). 

We will discuss the positiveness of the weight vector by the cluster-wise averaging prin- 
ciple for all clusters except source clusters with a single object. 

Firstly, we consider that the lth cluster with n i l )  > 2 is a source cluster. Then Prob- 
lem (4.4) is reduced into 

since B^ = 0 for k = 1,. . . , 1  - 1. Problem (4.5) is equivalent to Problem (3.13) whose a, 
and Mi are replaced by ti' and M', respectively. Let 

for 1 = 1, . . . , L, then we have the following lemma: 
Lemma 14 Suppose that the lth cluster is a source cluster and that n(1) > 2. An  optimal 
solution of Problem (4.5) for the I th  cluster is identical to a positive principal eigenvector of 
A' defined by (4-6). Furthermore, it is identical to a positive principal eigenvector of 

Proof: Since n(1) > 2, it follows from Lemma 10 that the standardized internal evaluation 
matrix A' is irreducible. From Lemma 13 A' is well defined and hence, it is also irreducible. 
Since A' = A~/A' ,  it follows from the definitions of A' that a positive principal eigenvector 
of A' is identical to that of A'. It follows from Corollary 5 that an optimal solution of 
Problem (4.5) for the lth cluster is identical to a positive principal eigenvector of A' 

Lemma 14 means that the cluster-wise averaging principle for all source clusters with 
more than one object is to determine individually the weight vector of each cluster by the 
averaging principle stated in section 3.1. Hence, it follows from the definition of a source 
cluster that we can apply the averaging principle to each source cluster with more than one 
object before determining the weight vector of any cluster with a predecessor. 

Secondarily, we consider that the lth cluster with n(1) > 2 has a predecessor. 
Lemma 15 Let 2 be the standardized internal evaluation matrix of the lth cluster. If there 
exists a predecessor of the lth cluster and n(1) > 2,  then the principal eigenvalue of A' defined 
by (4.6) is less than 1. 
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Proof: Since the lth cluster has a predecessor, it follows from Lemma 12 that the submatrix 
[B", . . . , B~"'] of A is a nonnegative and nonzero matrix. Without loss of generality, we 

assume that the jth row vector \by, . . . , b y  ' ] of [ B1', . . . , B " ~ ]  is a nonzero vector. Since it 

follows from the irreducibility of A' that ti' is also a nonzero vector, we have lk? > 2. This 
- 'J - 

means from Lemmas 10 and 13 that for a positive principal eigenvector of A 

It follows from (4.7),  (4.8) and Theorem 4 that the principal eigenvalue of A' is less than 1. 
0 

Let 

for k = 1 , . . . 7 1 -  1 and let 
1-1 

= @k;k 

k=l 

for the weight vectors wl, . . . , $'-I and ~ ' l , .  . . , B"-' , then we have the following lemma: 
Lemma 16 Suppose that wk is positive for every k = 1, . . . , 1 - 1 and that n(1) 2 2. Then 
b1 defined by (4.10) is a nonnegative and nonzero vector if and only if there is a predecessor 
of the lth cluster. 
Proof: Since n ( l )  2 2, it follows from Lemma 13 that [BY .  . . , B"-l] is well defined. It 

follows from Lemma 12  that [B", . . . , B""~]  is a nonnegative and nonzero matrix if and 

only if there is a predecessor of the lth cluster. Since wk is positive for k = 1 , .  . . , 1 - 1, we 
have this assertion. 

Here, we introduce the key lemma of solving Problem (4.4) that is well-known in math- 
ematical economics [8]. 
Lemma 17 Let D be an irreducible nonnegative matrix of order n and let I be the identity 
matrix of order n. If p is more than the principal eigenvalue of D,  then P I -  D is nonsingular 
and the inverse matrix of pi  - D is positive. 
The following lemmas imply that the cluster-wise averaging principle provides a positive 
weight vector d for the lth cluster with a predecessor under the assumption of the positive 
weight vectors w l ,  . . . , $1-1 

Lemma 18 Assume that the weight vector wk of the k̂  cluster is positive for k = 1 , .  . . , 1 - 
1. If there exists a predecessor of the lth cluster and n i l )  2 2, an optimal solution of 

Problem (4.4) is ( I  - A ' )  b1, where 2 and @ are defined by  (4.6) and (4,10), respectively 
and I is the identity matrix of order n(1). 
Proof: Let I be the identity matrix of order n(1). Since the lth cluster has a predecessor 
and n(1) 2 2, it follows from Lemma 13 that A' is well defined. Moreover, it follows from 

Lemmas 15 and 17 that I - A' is nonsingular and that the inverse matrix ( I  - A') is 
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positive. From Lemma 16 and the assumption of the positive weight vector wk for every 
k = 1, . . . ,1- 1, it follows that @ defined by (4.10) is a nonnegative and nonzero vector. Let 

= ( I  - A ' )  b1, then is a positive vector and A'@ + b' = a. Hence, it follows from the 

definitions of and b1 that 

This means that 

0 = 

2 

> 
Therefore, an optimal solution of Problem (4.4) is (I - A') b'. 

Finally, we consider that the lth cluster with n(1) = 1 has a predecessor. Then the 
cluster-wise averaging principle provides a positive weight as follows: 
Lemma 19 Suppose that the weight vector Gk of the kth cluster is positive for every k = 
1 , .  . . , l  - 1. I/ there exists a predecessor of the lth cluster and n(1) = 1, an optimal solution 
of Problem (4.4) is b', where b' is defined by (4.10). 
Proof: Since n(1) = 1, it follows from Lemma 11 that A' = 0. Since there exists a prede- 
cessor of the Zth cluster, it follows from Lemma 13 that [B", . . . , B " ' ]  is well defined and 
that Problem (4.4) is 

From Lemma 12, b[ is positive. Therefore, an optimal solution of Problem (4.4) is 8:. 

( y* Lemmas 19 and 11 imply that @' = 1 - A b' when the lth cluster with nil) = 1 has a 
predecessor. 

From Lemmas 14, 18 and 19 we show the positiveness and the uniqueness of all weight 
vectors by the cluster-wise averaging principle. 
Theorem 20 The cluster-wise averaging principle provides a unique positive weight vector 
of each cluster. 
Proof: We will prove this assertion by induction. The first cluster is a source cluster. In 
the case of n(1) > 2, it follows from Lemma 14 that the weight vector w1 of the first cluster 
by the cluster-wise averaging principle is positive and unique except for a scalar multiple. 
In the other case, that is n(1) = 1, it follows from the definition of the cluster-wise principle 
that C1 = 1. 

Suppose that the k"* cluster has a unique positive weight vector wk for k = 1,. . . , l  - 1. 
In the case that the lth cluster has a predecessor, it follows from Lemmas 18 and 19 that 
the weight vector w' of the lth cluster by the cluster-wise averaging principle is positive and 
unique. In the other case, that is lth cluster is a source cluster, it follows from Lemma 14 
and the definition of the cluster-wise principle that w' is positive and unique except for a 
scalar multiple. This has completed the induction. 
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Notice that an eigenvalue of scalar 0 is 0 and that any positive scalar is an eigenvector 
corresponding to the eigenvalue 0. Let e and I be all ones vector and the identity matrix. 
We arrange the cluster-wise averaging principle algorithm as follows: 

tep 0: Rearrange rows and columns of the evaluation matrix A appropriately and generate 
the following standardized evaluation matrix A by the cluster-wise standardization: 

Generate A' and B"Â from A' and Blk by (4.6) and (4.9), respectively, for k = 1, . . . , l -  1 
and I  = 1 , .  . . , L. 

Step 1: Find a positive principal eigenvector ui of and define ui/eTa as the weight 
vector w1 of the first cluster. If L = 1, then stop. Otherwise set I = 2 and go to 
step 2. 

Step 2: Generate b1 from wl ,  . . . , w l '  by (4.10). If b1 = 0, find a positive principal eigen- 
vector a of 2 and define a/eTui as the weight vector w1 of the I th  cluster. Otherwise 

define ( I  - A ' )  b' as the weight vector 6' of the lth cluster. Go to step 3. 
Step 3: If I = L, then stop. Otherwise set I = I  + 1 and go to step 2. 

Notice that  the above cluster-wise principle algorithm determines the weight vector of all 
clusters independent of the choice of the linear order corresponding to the topological order 
of clusters. 

The cluster-wise averaging principle algorithm can be applied to the irreducible evalu- 
ation matrix A since A = A1. Therefore, the cluster-wise averaging principle algorithm is 
simply called the averaging principle. 

5. Illustrative Example 
5.1. The example of externally weighted criteria 
Here we take again Example 2 shown in Figure 2.2 whose supermatrix S in shown in (2.8). 
We assume the numerical values of U and W to be 

and w l  and v2 are left to  be variable parameters. 
The structure of this example consists of 2 clusters; {G} and {A ,  S, M, B, W}. (Note 

that our structuring is based on only graph theory so it might not coincide with the actual 
world structure. By the latter {A, S} and {M, B, W} should be different clusters.) And the 
total evaluation matrix is 

Standardizing them, we have 
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See section 4.1 for the standardizing method. The weight of G is 1 by our rule, so by the 
averaging principle in section 4.2 we have only to calculate 

where 

"1 b = 

to have x = [x1,x2lT and y = [yl, y2, y3]T; 

xl is the weight of criterion A (advertising) 
x2 is the weight of criterion S (service) 
y1 is the weight of alternative M (McDonald) 
y2 is the weight of alternative B (Berger King) 
y3 is the weight of alternative W (Wendy). 

The linear equation system (5.3) is decomposed into 

and eliminating y we have 

The solution x of (5.6) is 
XI = 0 . 2 8 2 8 ~ ~  + O.0O56u2, 
xy = 0 . 0 1 1 6 ~ ~  + 0 .2543~~ .  

We see from (5.7) that xl(weight of A) receives height influence from vl and very low 
influence from u2. This is the reasonable reflection of our structure (in Figure 2.2) where A 
receives the direct evaluation vl from G, but indirect (through other points) evaluation u2. 
The weight x2 of S also has the same reasonable property. 

Further from (5.5) and (5.7) we have 

which also shows so reasonable inclination that y's have generally lower figures than that of 
x's, because x's have the direct but y's have the indirect influence of v's. 
5.2. The example of externally weighted alternatives 
This example is an extension of the one in section 2.1, and is based on the example shown 
in section 4.5 of [4]. We modify and simplify the latter and apply our method to it. 

The set of alternatives is {McDonald, BurgerKing, Wendy} which is denoted by {Cl, C2, C3} 
here. There are two kinds of sets of criteria. The first is the advertising set {creativity, 
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promotion, frequency} which is denoted by {Al, A2, A3}, and the second is the set of quality 
of food {nutrition, taste, portion} which is denoted by {Ql, Q2, Qs}. 

Further each company of (Cl, Cs, Cy} has the general evaluations from international(Rl) 
omestic (&) side. So {Rl, Ry } is also another kind of criteria set. As a result, the set 
objects (including Goal 

c2, Cs, Ai, Aa, As, Qi, Q2, Qs, } - (5.9) 
Through several investigation, we have the following total evaluation matrix A and its net- 
work structure shown in Figure 5.5, where the evaluations Rl and R2 by Goal are represented 
by variable parameters vl and v2 

Figure 5.5: The evaluation structure of the example of externally weighted alternatives 

This total evaluation matrix is given as follows: 
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We have 4 clusters on strongly connected components {G}, {Rl}, {R2} and {Cl, C2, C3, A1 , A2, As, 
Ql ,  Q2, Q3}. By our notation shown in section 3, we have the following submatrices of A. 

Standardizing these, we have 

The weight of G is 1. The weights Gi of Ri(i = 1,2)  are given with G2 = vl and w3 = v2 by 
the averaging principle. Further we have 

and 

b4̂  
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we have the final solutions 

xl  = 0.085% + 0 . 0 7 1 ~ ~  = weight of Cl, 
= weight of C2, 
= weight of C3, 
= weight of Al, 
= weight of As, 
= weight of As, 
= weight of Ql ,  
= weight of Q2, 
= weight of Qs. 

See the results, we can state that x's have greater coefficients of v's than those of y's and 
z's, because C's receive the direct influences from V's on the contrary A's and Q's are only 
indirectly influenced from 21's. 

6. Conclusion and Future Extensions 
This article includes the following results; 

i) Section 2 shows that the unified evaluation model deals with the matrix A of (2.10) 
such as the comparison matrix C in AHP and the super matrix S in ANP. This is 
more general without any restriction such as the reciprocality or the stochasticness. 

ii) It is shown in section 3.2 that the principal eigenvalue of A is the solution of the 
evaluation problem when A is irreducible, that is the evaluation structure is strongly 
connected, and that this is based on Sekitani and Yamaki principle [5]. 

iii) It is shown in section 3.1 that  the solution stated in ii) coincides with that of Saaty's 
method by the limiting process. 

iv) We develop the general solving method of the evaluation problem with the reducible 
matrix A. This is very new method we have never seen before. The main idea of the 
method is to solve (4.5) that is equivalent to 

zLl1 b^wk + a'w M'w, 
min max 

EL-1 p ~ t  + . . . ,  n ( l ) } .  (6.1) W > O  M\Wi k=l i 

An optimal solution (I - A') b' of (4.5) and (6.1) can be rewritten as (E?=~ (A') ") b'. 

The interpretation of (ESS.~ (A')") h' is left to one of the future extension of this re- 
search. 
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v) We should consider some variations of the averaging principle those are suitable to 
the specified case studies. For example one of the variations is the least squared 

2 
principle that is based on solving min x$y 1(zfc\ I'"zijk + ~',w) /M\ - wi\ , or the 
total principle[7] that is to solve (4.5) replaced with M' by 1. 
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