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Abstract The Dynamic Production Plan (DPP) Model for reaching an optimal control of the production 
undergoing the considerations of probabilistic market demand, future obtainable working hour capacity and 
unreliable machines is proposed in this paper. It can be applied to evaluate the optimal production rate 
to reduce the risk in the future of uncertainty. It  is also suggested that the time interval of production, 
maintenance cost of an unreliable machine, transaction, pena,lty, holding costs, sales price and the machine 
reliability should be taken into considerations. In addition, sensitivity analyses on the key variables of 
optimal solution are presented. Act,ually, this study efficiently provides a dynamic tool capable of controlling 
the production plan (rate) at  any time for the production planner having great insight. 

1. Introduction 
To control the time interval of production and the production rate at any given time is an 
efficient way to enlarge the production profits for a firm. This can be suitable to both single- 
stage and multi-stage manufacturing processes. In general, resources limit the production 
in each period of time. In fact, the resource limitation makes the production rate restricted. 
According to Metiers 171, the resource limitation is closely related to the capacity of critical 
production equipment. The capacity is always treated fixed in most studies because adding 
capacity is expensive. As a makter of fa,&, the consideration on the finite capacity is a 
practical problem confronting companies. 

In addition, Sox and Muckstadt [8] proposed that an effective plan of production is 
essential for manufacturing companies to make efficient use of their resources. Traditional 
production plan models are built around the assumption of infinite capacity. However, this 
assumption is not appropriate in dynamic environments where adaptability and flexibility 
are essential. 

Market demand can be divided into two different types; one is deterministic demand and 
the other is probabilistic demand [I, 31. This paper focuses on the probabilistic demand. 
In addition, Kalir and Ariz [4] stated that a ~orksta~t ion consisting of several unreliable 
machines [4, 51 of the sa,me type in parallel is very common in industry. Also, the output 
rate of this workstation corresponds to the output rate of all these unreliable machines. The 
unreliable machine is defined as that the machine failure can occur randomly. 

In practice, the finite resource capacity, the time interval of production, the relevant 
costs, the reliability of a machine are considered simultaneously to determine the production 
rate of production plan under probabilistic market demand, leading to the maximization 
of total profits. In this paper, the maximum obtainable working hours (depending on 
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the number of machines can be offered) of the workstation at each given time is regarded 
as the finite resource capacity at that time. Also, the single-stage manufacturing process 
workstation consisting of several unreliable machines of the same type in parallel is discussed 
in this study. 

2. Notations and Assumptions 
For constructing a mat hematical model, several assumptions and notations should be stated 
clearly as follows: 

2.1. Assumptions 

U(t) is a strictly increasing function of t and represents the cumulative maximum avail- 
able working hours during time interval [O, t]. It is evaluated before production and 
constructed under that  all vacant and crashing working hours can be offered. In addi- 
tion, because the new production plan cannot change the previous plans, U(t) is known 
before product ion. 
Single-stage a~tomatica~lly manufactured products of the same type are discussed in this 
study. 
The deterioration of a product is neglected. 

2.2. Parameters and notations 
7': due date of production (i. e. selling time). 

P: sales price of a product. 
cs: unit transaction cost. It occurs when the backlog quantity at time T is greater than the 

demand quantity at  time T .  
cp: unit pena,lty cost. It occurs when the backlog quantity at time T is less than the demand 

quantity at time T. 
L: processing time of one product in workstation. 
R: expected reliability of a machine, which is defined by R = e/(S + e); where e and 8 are 

the mean length of time interval between failures and the mean length of time interval 
to repair a machine respectively. 

em: maintenance (repair) cost per unit time. It occurs when the machine fails to work. i. e. 
c d  is the  mean maintenance (repair) fees for a single machine. 

ch: holding cost per unit time of a product. 
Y: demand quantity of products at  time T. Here, Y is a random variable, its probability 

density function is f (y) ,  and its cumulative distribution function is F{y). 

[dl+: [ d ] + = d i f d ^ O , a n d [ d ] + = O i f d < O .  

2.3. Decision function 
x(t): cumulative operational working hours during time interval [tx, TI, where tx  is the initial 

time of x for production; that is 

2.4. Given functions 
u(t): u(t) = U'(t) > 0, u(t) means the maximum available working hours at  time t;  where 

u(t) is already known by the manufacturer before production. 
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Ct(Z): production cost 
d Z 

-Ct(Z) = g(-), dZ 
r 7  u(t)  

of the operational working hours Z at  time t ,  Ct(0) = 0 and 
77  
/J 

where g( -) is a nonnegative continuous strictly increasing func- 
u(t) r 7  

/J /J 
tion of - (operational usage rate of working hours at time t),  where - E [O, 11. 

u(t)  4 4  
xl(t) In fact, g(-) presents the marginal cost of input operational working hours at time 
u(t) 

t ,  and g is determined by the value of - I t .  Since u(t) is fixed for a given t, the larger 
u(t)  . , 

xl(t) x'(t) makes - larger. Practically, the more input of operational working hours gets 
u(t} 

more marginalcost of input ~pera~tional  working hours under the limited working hours. 
Therefore, that  

xl(t) g is an increasing function of - 
u(t) 

is suggested in this study. 

3. Model Development 

Ci(xl(t))dt and c^{l - R)xl(t)dt represent the ~roduct ion  cost and the .f 
maintenance (repair) cost during time interval [tx, TI respectively. -x (t)dt means the 

total holding cost during time interval [tx, TI. 
FT 

Since the quantity of products sold, min -x(t), Y , is a random variable, {?  1 
00 + f ^ , m  P- f (y)dy means the expected revenue and 

L 
( )  IJ) f (y)dy shows c s ( T  - 

L 
00 R x m  the expected transaction cost for surplus products. In addition, / cp(y - -) f (y)dy 

L 
l, 

represents the expected penalty cost for lacking products. Thus, a mathematical model is 
constructed below: 

domain x = [try TI with 0 5 ti < T 

< 

< 1 Vt x (tx) = 0, tx and x (T) are free, and 0 5 - 
u(t) - 

f 

max 
x 

s.t. 

\ 

The above model can be rearranged to be Dynamic Production Plan ( D P P )  Model. It is 
described as follows. 
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Note that,  P, L ,  T, R,  U(t),  u( t) ,  F (y ) ,  f (y), c,, cs7 em, and ch are given, and tx, x( t ) ,  and xl(t) 
are decision variable and functions. 

4. Optimal Solution 
Let x*(t), t* <  ̂ t < T , be the optimal solution of D P P Model and assume that the time inter- 

x*' ( t )  
val [< t\ is a maximum subinterval of [t" TI satisfying the constraint 0 < - < 1 Vt E (f, 0 .  

u(t)  
It is valid that  the necessary condition of x*(t), Euler Equation [2, 61 of DPP Model, is given 
by 

Then, there exists a constant k to  satisfy 

and hence 
t 

* ( t )  = u ( i ) g - l ( ~ s  + k - cm(1 - R)ds Vt E [f, <I. (4) 

Then, two Properties are proposed and discussed as follows: 

Property 1. 
x*'(t) 

6) tl(t) is strictly increasing for t E [f, t}. 
(ii) If the curve y = x*'(t) touches the curve y = u(t),  these two curves should overlap 

from the touch point to T. 
x*'(t) 

Proof: (i) Eq.(3) yields that g(-) is a strictly increasing function of t ,  and hence, by uo 
( I ) ,  the Property l . ( i )  can be shown. 

x*' ( t )  
(ii) Since Property l .(i)  holds for any subinterval of [tx*, TI subject to 0 < - < 1 for 

all t belonging this subinterval, the curve in the time interval (6 T )  (shown in Figure 1) 
cannot exist because it contradicts the Property 1 .(i).  Hence, the Property 1 .(ii) is verified. 

By the choices of [t, <I and Property 1, it yields that f and are uniquely determined by x* 
and 

x*' (<) 
O $ f = t , *  $ < S T ,  (T-i)(l-^ "(') 1 = 0. (5) 
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y (working hours) 

t (time) 

Figure 1: Possible conditions of curve y = u(t) and y = x * ( t )  

Property 2. &*, the initial time of x* for production, is given by 

Proof. (a) If tz* = 0, by Eq.(3), (5), and Property 1 .(i) 

and hence 
L 

Ã ‘ Ã ‘ [ g (  +em(! - R) - k ] +  = 0 = & * .  
~h R 

(b) Assume that  ip* > 0. We claim that 

If x*'(tx*) > 0, the D P P  Model meets the transversality condition of free x*(tx*) [2, 61, and 

Eq. (8) contradicts that g is a nonnegative function and cm(l  - R) > 0. 
Therefore, a^'(tx*) = 0 is asserted. 
Here, together with Eq.(3) and ( 7 ) ,  they yield that 

and hence 

Combine (a) and (b),  then the Property 2 is verified. 
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Now, we claim that = T (the proof is shown in Appendix). 
Let 

and 

C, (x) + em (1 - R)xl + @XI L . 

Then, the necessary conditions, Euler Equation and transversality conditions [2, 61, of D P P  
Model are listed below. From Eq.(3), (5), and = T the following property can be formed. 

x * ( t )  ChR 
g(-) = -t + k - cm (1 - R), it is a linear function of t in [tx*, TI. (9) (4 L 

From the transversality condition of salvage value for free x(T) [2, 61, (Fxt + Gx) \T^ 0, then 
the following equation is obtained. 

Combine (9) and ( lo) ,  we have 

Substitute tx* into (9), then 

Using (12), rearrange Eq . ( l l ) ,  then the following equation can be formed. 

In addition, from (4), (5), and (6), the following equation can be obtained. 

Substitute T into Eq.(l4),  we have 

Together with Eq. ( l l )  and (15), the values of k and x*(T) can be determined because 
of two equations with two unknown values. After the determination of k, substituting into 
Eq.(6) and (14), tz* and x*(t) are determined. Also, differentiate Eq.(14) with respect to t ,  
then the x * ( t )  is obtained. 
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5. Sensitivity Analysis 
5.1. The effect on changing T, cs, cp, P 
First, we claim that k should decrease while T, cs is increasing or cp, P is decreasing. It 
is shown as follows: for a given t ,  if T, increases or cp, P decreases, and k is assumed 
to be increasing, from (9), x*'(t} is increasing. When x*'(t) is increasing for every given t,  
x*(T) becomes larger. As a result, it contradicts Eq.(l l)  and that T, cS increases or cp, P 
decreases, then k is decreasing is asserted. Oppositely, while T, cs is decreasing or cp, P is 
increasing, k is increasing. The sensitivity analyses of the decision variables with respect to 
the parameters, T, cs, cp, and P, are presented and shown in Table 1 and Figure 2. 
5.2. The effect on changing cy; 

Second, we also claim that [k - cm(l - R)] should decrease while cm is increasing. It is shown 
as follows: for a given t ,  if cm increases and [k - cm(l  - R)] is assumed to be increasing (this 
implies that k is increasing), from (9), x*( t )  is increasing. When x*'(t) increases for every 
given t ,  x*(T) becomes larger. As a result, it contradicts Eq.(l l)  and that cm increases, 
then [k  - cm(l - R)] is decreasing is asserted. On the other hand, when ~ m .  decreases, 
[k - cm(l  - R)] is increasing. The sensitivity analyses of the decision variables with respect 
to Cm are described and shown in Table 1 and Figure 2. 
5.3. The effect on changing L, R, ch 
From (9), the character of the optimal solution is that the marginal cost of operational 

ch R working hours at time t is a linear function of t with slope -. When ch, R increases or L 
L 

decreases, the slope becomes larger (shown in Figure 3). Oppositely, when ch, R decreases or 
L increases, the slope becomes smaller. However, from (9) and (1 I) ,  the sensitivity analyses 
of decision variables with respect to the parameter, L, R, ch, are hard to obtain. 

Table 1: The sensitivity analyses of parameters and decision variables. 
Parameter c, em T cp P reference 

Decision Variables 
k - a - + + 9 and 11 

tn,* if t,,* > 0 + + + - Figure 2 
ty* if tn,* = 0 nc nc nc nc nc Figure 2 

x* (TI - - - + + 9 and 11 
~ * ' ( t )  - - - + + 9 and 11 

"+": Decision variable is an increasing function of the parameter 
- :  Decision variable is a decreasing function of the parameter 
"#": Decision variable depends on the changes of other relevant parameters. 
"nc": Decision variable does not change. 

6. Conclusions 
The maximum available working hours at any given time t, the probabilistic market de- 
mand, the penalty, transaction, holding, maintenance (repair) costs, the processing time 
of a product, and the reliability of a machine are considered simultaneously to determine 
the optimal production quantity (rate) and the initial time of production. Definitely, this 
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Figure 2: The effect of increasing T, cs, cm, or decreasing cp, P  

Figure 3: The effect of increasing R, ch, or decreasing L 

is a complicated and hard-solving issue. However, through D P P  Model, the above issue 
becomes concrete and easy-to-solve. 

I11 this study, the finite capacity of ~bta ina~ble  working hours at any given time t is pro- 
posed as the production limitation at time t .  Therefore, the applicability of D P P  Model 
is significantly extended. In addition, two characters of optimal solution are as follows: 
First, by (9), the marginal cost of operational working hours at time t is increasing lin- 
early by t .  Second, by (13), that the expected loss per unit time of lacking product, 
R R 
-[cP + P  - ch(T - t,.)] [I - F ( - x * ( ~ ) ) ] ,  minus the expected cost per unit time of sur- 
L L 

R R 
plus product, - [c, + ck(T - tz*)] F (Ã‘x (T)), should be equal to the marginal cost of the 

L - 

x*' (tz* ) 
operational working hours at  the hitiall time of production, g( ) plus the expected 

4 t z *  
maintenance (repair) cost per unit time cm (1 - R).  The viewpoint 'above shows that the 
expected loss per unit time of lacking product should be greater than the expected cost per 
unit time of surplus product at reaching the optimal solution. 

Moreover, that the sensitivity analyses on the key variables of optimal solution are 
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fully discussed to arrive at several useful characteristics is also presented in this study. 
Furthermore, this study presents that the optimal operational working hours a t  any given 
time cannot reach the maximum obtainable working hours before selling time under the 
probabilistic market demand (c.f. Appendix). This result offers significant information to 
the production planner for production control. In sum, this study shows that time is an 
important factor and the determination of the production time interval is critical for the 
production planner. 

Acknowledgment The authors would like to thank the anonymous referees who kindly 
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Appendix: The proof of i = T. 
Suppose that  i < T, then by Property l.(ii), D P P  Model can be rewritten as follows: 

f, 

max ~ ( f ,  x(f)) + / F (x (t) ,  x'{t))dt 
tv 

s.t. domain x = [t,, i] with 0 5 tz 5 i 5 T D p p [  t < ~  x1(t) 

x(tJ = 0, t, and x(i) are free, and 0 < - < 1 Vt E [t,, t] 
u(t) - 

where 

and F(x,x') = - Ct(xl) + cm(l  - R ) x l +  [ g X ] .  L 
The necessary conditions, Euler Equation and transversality conditions [2, 61, of D  P P 

t ^ ~  
Model are listed below. 

x*'(i) 
From Euler Equation and - = 1, the following equation is gained. 

u ( 0  

Substitute Eq.(16) into Eq.(6), then 

From the transversality condition of salvage value for free x(i!) [2, 61, (F,/ + G,) I;= 0, then 
the following equation is obtained. 
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From the transversality condition of salvage value for free i [2, 61, (F - X ' F ~ I  + Gt) ti= 0, 
then the following equation is obtained. 

Both sides of Eq.(19) can be divided by u(t} to form the following equation. 

Combine Eq.(18) and (20) to yield 

From Eq.(21) and u(t) > 0, i = T is asserted. This result gets contradiction and means that 
i < T cannot happen. Hence, that i = T is verified. 
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