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Abstract Cost and operation of inventory depends a great deal on what happens to demand when the 
system is out of stock. In real inventory systems, it is more reasonable to  assume that part of the excess 
demand is backordered and the rest is lost. However, the amount of backorders (or lost sales) often incurs 
disturbance due to  various uncertainties. To incorporate this reality, this article attempts to apply the 
fuzzy set concepts to  deal with the uncertain backorders and lost sales. The purpose of this paper is to 
modify Moon and Choi's continuous review inventory model with variable lead time and partial backorders 
by fuzzifying the backorder rate (or equivalently, fuzzifying the lost sales rate). We first consider the case 
where the lost sales rate is treated as the triangular fuzzy number. Then, through the statistical method 
for establishing the interval estimation of the lost sales rate, we construct a new fuzzy number, namely 
statistic-fuzzy number. For each fuzzy case, we investigate a computing schema for the modified continuous 
review inventory model and develop an algorithm to find the optimal inventory strategy. 

1. Introduction 
Traditionally, the economic order quantity (EOQ) model dealing with continuous review 
inventory problems assumed that demand during the stockout period is either completely 
backordered or completely lost; the lead time is viewed as a prescribed constant or a random 
variable, which there is not subject to control [13,18]. However, these are not quite practical. 
In real markets, we can often observe that,  when the inventory system is out of stock, some 
of the customers are willing to wait for their demand, while others may fill their demand 
from another source. And hence, for inventory models in which shortages are allowed, it is 
more reasonable to assume that some of the excess demand is backordered and the rest is 
lost. In literature, several authors (e.g., Montgomery e t  al. [Ill, Kim and Park [8] , Ouyang 
et  al. [14], Moon and Choi [12] and Hariga and Ben-Daya [6]) have presented the inventory 
models with partial backorders, specifically, Montgomery e t  al. [ll] is among the first who 
formulated and solved the continuous review, stochastic demand inventory problem. 

On the other hand, as pointed out in Tersine [19], lead time usually consists of the 
following components : order preparation, order transit, supplier lead time, delivery time 
and setup time. In some cases, these components can be accomplished earlier than the 
regular time if one is willing to pay extra costs; in other words, lead time is controllable. 
For an example, one may adopt the special delivery (by air) instead of ordinary delivery 
(by water) to shorten the delivery time. Obviously, the air freight rate is higher than the 
water freight rate, and hence more money can be spent to shorten lead time. Also, through 
the Japanese successful experiences of using Just-In-Time (JIT) production, the advantages 
and benefits associated with efforts to reduce lead time have been evidenced. Lead time 
reduction has received a lot of interest in recent years. Liao and Shyu [lo] first presented 
a probabilistic inventory model in which the order quantity is predetermined and lead time 
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is a unique variable. Ben-Daya and Raouf [l] extended Liao and Shyu's [lo] model by 
considering both lead time and order quantity as decision variables. Ouyang et al. [14] 
generalized Ben-Daya and Raouf's [I] model by allowing shortages with partial backorders. 
Recently, Moon and Choi [12] and Hariga and Ben-Daya [6] further extended Ouyang et 
al.'s [14] model by considering the reorder point as one of the decision variables. 

We note that  the underlying assumption in above partial backorder models, no matter 
with lead time reduction [6, 12, 141 or not [8, 111, is that the fraction of excess demand 
backordered (or lost) is a fixed constant. However, in the real situation, when stockout 
occurs many potential factors such as properties of products and/or image of selling shop 
may affect customers9 wills of backorders. In other words, the amount of lost demand caused 
by stockout probably has a little disturbance due to various uncertainties. Therefore, if we 
express the fuzzy backorder (or lost sales) rate as the neighborhood of the fixed backorder 
(or lost sales) rate, then it will more match with the real situation. 

In fact, the application of fuzzy set concepts on EOQ inventory models have been pro- 
posed by many authors (e.g., Park [15], Chen et al. [3], Yao and Lee [20], Roy and Maiti [16], 
Chang et al. [2], Lee and Yao [9]). Specifically, Yao and Lee [20] used the extension principle 
to  solve the inventory model with shortages by fuzzifying the order quantity, in which the 
shortage quantity is a real variable. Later, Chang et al. [2] fuzzified the shortage quantity in 
the backorder model, where the order quantity is a real variable. Inventory model without 
backorder is discussed by Lee and Yao [9], who fuzzify the order quantity to a fuzzy number, 
and solve the economic order quantity with the extension principle. However, these studies 
[2, 3, 9, 15, 16, 201 are almost concentrated on the simple EOQ forms so that there has few 
applications in the real inventory systems. The purpose of this paper is to present a more 
extensive EOQ model to modify Moon and Choi's [12] model by fuzzifying the lost sales 
rate and to solve this new inventory model in the fuzzy sense. 

In this paper, we study the continuous review (Q, r )  inventory models with partial back- 
orders, where the lead time is viewed as a controllable variable and two fuzziness of lost 
sales rate are introduced. Firstly, we express the lost sales rate as one of the widely used 
fuzzy numbers, namely the triangular fuzzy number. Then, by employing the statistical 
method we construct a confidence interval for the lost sales rate, and through it to estab- 
lish the corresponding fuzzy number called the statistic-fuzzy number. It is noted that the 
statistical technology has often been utilized to solve the problem with uncertainty in many 
research areas including Operations Research. Furthermore, this paper investigates a com- 
puting schema for each fuzzy case and develops an algorithm procedure to find the optimal 
inventory strategy. Two examples are given to illustrate the results derived and concluding 
remarks are made. 

2. Membership Function of the Fuzzy Total Cost 
First of all, the following notations and assumptions are employed thoughout this paper so 
as to develop the proposed models. 

Notations : 
Q = order quantity 
A = ordering cost 
r = reorder point 
L = length of lead time 
D = annual demand rate 
h = annual inventory holding cost per unit 
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7~ = fixed penalty cost per unit short 

TO = marginal profit per unit 

Q = fraction of the shortage that will be backordered, 0 < Q < 1 
X = the lead time demand which has a probability density function (p.d.f.) 

f (-) with finite mean D - L and standard deviation a - a, where a 
denotes the standard deviation of the demand per unit time 

B ( r )  = the expected demand shortage at the end of the cycle 

Assumptions 

The reorder point r  = expected demand during lead time + safety stock (SS), and 
SS = k - (standard deviation of lead time demand), i.e., r  = DL + k o a ,  where k is the 
safety factor. 

Inventory is continuously reviewed and replenishments are made whenever the inventory 
level falls to the reorder point r .  
The lead time L has n mutually independent components. The ith component has a 

minimum duration a; and normal duration bi, and a crashing cost per unit time ci. 
Furthermore, for convenience, we rearrange c; such that ci < cz < - - - < en. Then, it is 
clear that the reduction of lead time should first occur on component 1 (because it has 
the minimum unit crashing cost), and then component 2, etc. 

n 

If we let Lo = x by and L; be the length of lead time with components 1 , 2 ,  - - - , i crashed 
y = 1  

n i 

to their minimum duration, then L; can be expressed as Li = x by - E(bj - a,), 2" = 1, 
j=1 y = 1  

2, - - . , n; and the lead time crashing cost R(L) per cycle for a given L â [Li, Li-l]7 is 
given by 

i- 1 

R(L) = ci(Li-1 - L) + cj(bj - a,) and R(Lo) = 0. 
y= 1 

For the model in which the order quantity, Q, reorder point, r ,  and lead time, L are 
treated as decision variables, we will closely follow Moon and Choi [12]. Specifically, by as- 
sumptions 1-4, the total expected annual cost, which is composed of ordering cost, inventory 
holding cost, stockout cost and lead time crashing cost, is expressed by 

Now we attempt to modify Moon and Choi7s [12] model by fuzzifying the backorder rate 
(or equivalently, fuzzif~ing the lost sales rate). For convenience, we first let 5 2 1 - /3 denote 
the lost sales rate. Therefore, for any Q > 0, r  > 0 and L > 0, we may rewrite the expected 
annual total cost function (1) as follows 

Note that in above model, the lost sales rate 5 during the planning horizon is assumed 
to be a fixed constant. However, when the inventory planning is completed, due to various 
uncertainties the lost sales rate in practical problem may be not equal to 5 but just close 
to it. This scenario can be expressed in fuzzy language as " 6 = the real lost sales rate is 
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around S ". Therefore, we would like to replace the lost sales rate S by the fuzzy number 8, 
and consider it as the triangular fuzzy number, 8 = (6 - Al,  6, S + As), where 0 < Al < 5 
and 0 < A2 < 1 - 6, Al and A2 are determined by the decision-makers. Also, here we 
describe the membership function of S as follows: 

^2 

0, otherwise. 

The pictorial sees Figure 1. Then the centroid (see, e.g. [4,~.336]) for /-^(a;) is given by 

We regard this value as the estimate of lost sales rate in the fuzzy sense. 

'r 

- 
Figure 1: Triangular fuzzy number S 

For any Q > 0, r > 0 and L > 0, we let C(Q,r,L)(x) = y (> 0). By extension principle 
7 ,  211, the membership function of the fuzzy cost CIQ,r,L) (8) is given by 

From C ( Q , ~ , ~ ) ( X )  = y and equation (2), we get 

Consequently, 
Q 

Y Q -  [ W D + ~ Q ( ~ + ~ - D L ) ]  
x = 

(hQ + roD)B(r)  
7 ( 7 )  

where W = A + R(L) + 7rB(r). 
Therefore, from (3) and ( 7 ) ,  the membership function of CIQ,r,L}(S) can be written as 
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where 

and 

The pictorial of the membership function of C ~ ~ , ~ , ~ ) ( S )  is shown in Figure 2. 

Y l Vi Y 3 

Figure 2: Triangular fuzzy number c ( ~ , ~ , ~ )  (8) 

We now derive the centroid of I J . ~ ( ~ , ~ , ~ ) ( ~ ) { ~ )  as follows: 

which is an estimate of the expected annual total inventory cost in the fuzzy sense. Thus, 
we obtain the following property. 

Property 1. For any Q > O,r > 0 and L > 0, the estimate of the expected annual total 
inventory cost in the fuzzy sense is 

Moreover, if we let S = (A2 - Ai) (h + y) B(r),  then from (9) we obtain 

3 C(Q7r ,  L) 

M(Q' r' L, - C(Q7 r7 L, x 100% = S x loo%, which implies 
C(Q, r, L) 

[M(Q, r ,  L) - C(Q,r ,  L)] x 100% = S x C(Q, r, L) x 100%. (10) 

Remark 1 

Case 1. If Al = A2, then Figure 1 is an isosceles triangle and equation (9) reduces to 
M(Q, r,  L) = C(Q, r, L), this implies that the fuzzy case becomes the crisp case; 
i.e., the fixed lost sales rate inventory model is a special case of our new fuzzy lost 
sales rate inventory model. 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



24 L. - Y. Ouyang & H. -C. Chang 

Case 2. If A l  < Aa,  then the triangle in Figure 1 is skewed to the right. In this case, 
M(Q, r ,  L) > C(Q, r, L) and the increment of M(Q,  r, L) is S% of C(Q, r, L) (from 

(10)). 
Case 3. If Ai > A2, then the triangle in Figure 1 is skewed to the left. In this case, 

M(Q,  r, L) < C ( Q , r ,  L) and the decrement of M ( Q , r ,  L) is 15'1% of C(Q, r,  L) 
(from (10)). 

3. Optimal Solution 
This section investigates the optimal inventory strategy in the fuzzy sense for a situation 
where the lead time demand, X, follows a normal distribution with p.d.  f. f (-), mean DL 
and standard deviation â /L. We note that the reorder point r = DL + ko-^/L (assumption 
(i)) and the expected number of shortages at the end of the cycle B ( r )  = fm (x - r )  f (x)dx = 

â /L{(i,(k) - k [ l -  a(&)]} = vfi'S{k), where of.) and a ( - )  denote the standard normal p.d. f .  
and c.d. f .  (cumulative distribution function), respectively, and Q(k) = (i,(k) - k[1 - @(k)].  

Following the above result, we can allow the safety factor k as a decision variable instead 
of the reorder point r .  Therefore, our problem of determining the optimal ( Q , r ,  L) by 
minimizing (9) can be reduced to minimizing 

over Q , k  and L. 
To solve this problem, we first note that M(Q,  k, L) is concave in L E [Lh for fixed 

(Q, k) because 

Hence, for fixed (Q, k),  the minimum expected annual total cost in fuzzy sense will occur at 
the end points of the interval [Li, L;-l]. On the other hand, it can be shown that M(Q,  k, L) 
is convex in (Q, k) for fixed L 6 [L;,  (see Appendix for the proof). Hence, for fixed 
L 6 [L;, LiF1], the minimum value of M (Q, k, L) will occur at the point (Q, k),  say (Q*, k*), 
which satisfying 9 M ( Q ,  k, L) /9Q = 0 and 9M[Q, k, L)/9k = 0, simultaneously. Solving 
these two equations result in 

and 

^(k) = 1 - hQ 
(13) 

T D  + (hQ + TOD) ( 6  + 
From equations (12) and (13), though it is difficult to find the closed-form solution of 

(Q*, k*), however, the optimal value of (Q*, k* )  can be obtained using the iterative procedure 
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(see, e.g. Hadley and Whitin [5]). Therefore, the following algorithm to find the optimal 
solutions for the order quantity, safety factor, and lead time can be developed. 

Algorithm 1 

Step 1. For given L;, i = 0,1,2,  - - - , n, perform (i) to (iv). 

(i) Start with kil = 0 and get Â¥S(kii = 0.39894 (which can be obtained by consulting 
the normal table ^>(kii) = 0.39894 and @(kil) = 0.5). 

(ii) Substituting l'(kil) into (1 2) evaluates Qil . 
(iii) Utilizing Qil determines <E'(ki2) from (11), then finds I& by consulting the normal 

table, and hence Â¥S(ki2) 
(iv) Repeat (ii) to (iii) until no change occurs in the values of Qi and ki. 

Denote the solution by (Q:, k*). 

Step 2. For each (QT, k:, L;) , ?' = 0,1,2, - . , n, calculate the corresponding fuzzy expected 
annual total inventory cost M(QT k *  Li) by utilizing (1 1). 

Step3. Find min M(Q:,k,",Li). I f M ( Q t , k r , L 8 ) = ,  min M(Q:,k,*,Li), then(Qi7 
i=O,1,2,Â¥-, z = O , l , 2 , - ~ ~ , n  

kg, Lr) is the optimal solution in the fuzzy sense. Once kc and Lr are obtained, the 

optimal reorder point r-8 = D Lg + $0 L- follows. v̂  
Example 1. In order to illustrate the above solution procedure, let us consider an inventory 
system with the data used in Moon and Choi ([12], which is the same as in Ouyang et al. 
[14]): D = 600 units per year, A = $200 per order, h = $20 per unit per year, TT = $50 
per unit short, TTQ = $150 per unit lost, 0 = 7 units per week, and the lead time has three 
components with data shown in Table 1. 

Table 1: Lead time data 
Lead time Normal duration Minimum duration Unit crashing 

component i bi (days) ai (days) cost ci($ /day) 
1 2 0 6 0.4 
2 20 6 1.2 
3 16 9 5 .O 

Here, we consider three cases: (Ai,  A2) = (0.2,0.2), (Ai ,  Aa) = (0.1,0.4), and (Ai,  A,) = 
(0.4,O.l). We solve each case for lost sales rate 8 = 0.5. The results of the solution procedure 
are summarized in Table 2. 

From Table 2, when Al = A2 = 0.2 (in this situation, the fuzzy case becomes the 
crisp case), by comparing M(Q:, r;, LA, i = 0,1,2,3, we obtain the optimal solution 
(Qg, kr, Lg) = (121,72,4) and the minimum expected annual total cost in fuzzy sense 
M(Q;, kg, Lr) = $2941.68, which are the same as showed w in Moon and Choi [12]. Moreover, 
when A1 = 0.1 and A2 = 0.4, i.e., the fuzzy number 8 = (0.4,0.5,0.9), we have (Qs, r l ,  Lr) = 

(121,73,4) and M(Qs7r8,  L8) = $2954.09. Note that since C(Qs, r., Ls) = $2941.68 is the 
corresponding minimum expected annual total cost in the crisp case, and hence the absolute 
relative variation in the fuzzy sense for the minimum expected annual total cost is 

Similarly, for the case Al = 0.4 and A2 = 0.1, i.e., the fuzzy number 8 = (0.1,0.5,0.6), 
we have (Qg, rg, Lr) = (121,71,4) and M(Qs,r,, Lj) = $2927.42, and the absolute relative 
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Table 2: Solution procedure of Algorithm 1 (Li in weeks) 

A1 A2 i Li R(L4 Q: rf  (kf)  M(Qr, r f ,  Li) 
0.2 0.2 0 8 0.0 117 129 (1.8689) $ 3090.09 

variation in the fuzzy sense for the minimum expected annual total cost is 

4. Using the Sample Data to Fuzzify the Lost Sales Rate 
In general, the real lost sales rate 8 is unknown in advance. In order to estimate the value 
of 8, intuitively, one may collect the random sample data of lost sales rate from past time, 
then compute the mean of the sample measurement (say S) and use it as the estimate of 8. 
Such an issue belongs to the statistical problem. Moreover, though it can be shown that S 
is a good point estimator of 8, however, when the inventory planning is completed, the lost 
sales rate in practical problem may not equal to 6 but just close to it. This scenario can 
be described in fuzzy language as " S* = the real lost sales rate is around S ". Therefore, 
we need to combine the statistical and fuzzy technologies to deal with such an inventory 
problem. This section tackles this problem and the procedures are as follows. 

Assume the actual lost sales rate 6 (which can be regarded as the population mean of 
lost sales rate) is unknown, and suppose we have collected m random sample data of lost 

I m 

sales rate during past time, say J1, 82, - - . , dm, then the sample mean is S = Ã x &, and 
rn ̂ =I 

2 1 the sample variance is s = - x ( 8 ;  - Q2.  Furthermore, suppose the above sample 
m -  1 ̂ =1 

data satisfy some certain statistical assumptions such as normality, then by the method for 
establishing the interval estimation of the parameter, we get the following (1 - a )  x 100% 
confidence interval for 6: 

where cil, a 2  > 0, al + a2 = a, and tm-,(ai), i = 1,2,  is the tabulated upper a, point of the 
t-distribution with m - 1 degrees of freedom; that is, if T be a random variable distributed 
as t-distribution with m - 1 degrees of freedom, then (ai) is the value that satisfies the 
following condition: 

P I T > t m - l ( ~ ) ] = q  i = 1 , 2 .  (15) 
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Next, we take any point (denoted by $0) from the inside of above confidence interval 
(14). If So = 8, then the error of estimation \So - S\ = 0; in this case, the confidence level is 
viewed as 1. In contrast, the further the point & is from 5, the larger the error of estimation 
\So - $ 1  to be, and hence, the smaller the confidence level will be given. If So is one of the 
end points of the confidence interval, then the error of estimation [So - S\ is in the largest; 
in this case, the confidence level is viewed as 0. Thus, we can employ (14) to express the 
st at istical-fuzzy lost sales rate S* as the following triangular fuzzy number: 

where a\ + a2 = a. Note that the decision-makers can determine a1 and a2 so as to satisfy 

Remark 2. We note that since the membership grade of (16) has the same property as 
the above confidence level, so using confidence level as membership grade to construct the 
st at istic-fuzzy number (16) (corresponding to (14)) is feasible and validity. 

The membership function of statistic-fuzzy lost sales rate S* is given by: 

I 0, otherwise. 

The pictorial sees Frgure 3. Then the centroid of ps* (x )  is 

We regard this value as the estimate of lost sales rate in the fuzzy sense. Obviously, 6** > 0 
- 

and 6" belongs to the interval (14). For the special case a1 = a2 = al l ,  it gets 6" = 5- 

Figure 3: Triangular fuzzy number S* 
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We let C(Q,~,L)(X) = z .  By extension principle [7, 211, the membership function of the 
fuzzy cost c ( ~ , ~ , ~ )  (S*) is 

From C(Q,r ,Lj (~)  = z and equations (2), (18) and (19), we obtain the membership func- 
tion of C(Q,r,L) (5*) as follows: 

otherwise, 

(20) 
where 

and 
TI-0 D 

[i;trn-1!.,2.^-] I'm ( h +  T )  '('1. 

Therefore, the centroid of (z) can be obtained and is given by 

we get the following property. 

Property 2. For any Q > 0, r > 0 and L > 0, and given a\ > 0 , ~  > 0 and a1 + a 2  = a ,  
the estimate of the expected annual total inventory cost in the fuzzy sense is 

Note that the difference between EAC*(Q, r ,  L) and EAC(Q, r ,  L) (defined in (2)) is that 
the lost sales rate S in (2) is replaced by the sample mean Z. 
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Remark 3. If we let S* = 
[tm-l(a2) -tm-l(al)] s 

- ( h  + y) B(r) ,  then from (21) we 
3EAC*(Q, r, L) v/m 

obtain G(Q' r7 L, - EAc*(Q' x 100% = 5" x loo%, which implies 
EAC* (Q, r, L) 

[G(Q, r ,  L) - EAC*(Q, r, L)] x 100% = S* x EAC*(Q, r, L) x 100%. (22) 

Thus, we have the following results. 

(i) If a1 = a 2  = a/2 ,  then tm_l(ai)  = tm-i (a2),  which implies G(Q, r, L) = EAC*(Q, r, L). 
That is, the total cost EAC*(Q, r, L) obtained by point estimate S is consistent with 
the total cost G(Q, r ,  L) obtained by fuzzy number S* defined in (16). 

(ii) If 0 < a 2  < a1 < 1, then tm_l(al)  < tm-1(a2), which implies G(Q, r,  L) > EAC*(Q, r, L), 
and the increment of G(Q, r, L) is S*% of EAC* (Q, r,  L). 

(iii) If 0 < a1 < 0 2  < 1, then (ai) > tm-1 (a2) ,  which implies G(Q, r,  L) < EAC* (Q, r, L), 
and the decrement of G(Q, r, L) is \S*\% of EAC*(Q, r, L). 

Now, we investigate the optimal inventory strategy in the fuzzy sense for the case where 
the lead time demand follows a normal distribution with mean DL and standard deviation 
06. By the same arguments as in section 3, we obtain the expected annual total inventory 
cost G(Q , r ,  L )  in fuzzy sense as follows: 

Now we seek to minimize G(Q7 k, L) by optimizing over Q, k and L. Once again, the 
approach employed in the previous section is utilized to solve this problem. We can show 
that G(Q, k ,  L) is concave in L E [L,, Li_l] for fixed (Q, k). Hence, for fixed (Q, k ) ,  the 
minimum expected annual total cost in fuzzy sense will occur at the end points of the 
interval [L;, Li_l]. On the other hand, it can be shown that G(Q, k, L) is convex in (Q, k )  
for fixed L â [Li, Li-I] (the proof is similar to that given in Appendix). Then upon solving 
9G(Q7 k, L)/9Q = 0 and QG(Q7 k, L)/9k = 0, we obtain 

Thus, for given a1 > 0, a 2  > 0 and a\ + a 2  = a, we can establish the following algorithm 
to find the optimal solutions for order quantity, safety factor and lead time. The convergence 
of the iterative procedure can be verified by using the graphical technique (see, e.g. Hadley 
and Whitin [5]). 
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Algorithm 2 

Step 1. Collected m sample data of lost sales rate, say 81, S2, - a - , (Li, and then evaluate 

1 
sample mean 6 = - <  ̂ and sample standard deviation s = 1 7  E(6; - S p a  

i=l m - 1 
In addition, for given a1 and a 2  ( a l  + a 2  = a), consulting the t-distribution table 
to find the values of tm-i(a;) and tm-1(a2)7 where tm-l(ai) is the upper a; point 
of the t-distribution with m - 1 degrees of freedom, z = 1,2. 

Step 2. For given Li, z = 0 , 1 , 2 , . - -  , n ,  perform (i) to (iv). 

i )  Start with kil = 0 and get @(kil) = 0.39894. 
(ii) Substituting 1'(ki1) into (24) evaluates Qii . 
(iii) Utilizing Qd determines $(ki2) from (25), then finds ki2 by consulting the normal 

table, and hence @(ki2). 
(iv) Repeat (ii) to (iii) until no change occurs in the values of Q; and k;. 

Denote the solution by (Q;, kf).  

Step 3. 

Step 4. 

A A 

For each (Q:, k t ,  L ; ) ,  i = 0,1,2,  - . - , n,  calculate the corresponding fuzzy expected 
annual total cost G(Qr, kr , L;) by utilizing (23). 
Find min G(Q;, k,", Li). i=0,1,2,.-,n 

If G(Qs., k,. , L,.) = , min G(Q;, k ,  Li), then (Q,. , kg., Lfi) is the optimal solu- 1=0.1.2.~~-.n , , ,  , 

tion in the fuzzy sense. When and Lr, are obtained, the optimal reorder point 
rg. = DL-^, + k p  06 is followed. 

Example 2. We use the same data as in Example 1, but assume that the random sample 
of size 6 yields the sample mean of lost sales rate $ = 0.5 and sample standard deviation 
s = 0.195. We determine the optimal inventory strategy in fuzzy sense for the case where 
a1 = 0.1 and a 2  = 0.05 (al and 0 2  are determined by the decision-makers, and here we take 
these two values to illustrate the results of proposed model). Consulting the t-distribution 
table, we find t5(0.1) = 1.476 and t5(0.05) = 2.015. The results of the solution procedure 
are summarized in Table 3. 

Table 3: Solution ~rocedure  of Algorithm 2 (L; in weeks) 

From Table 3, by comparing G(QL kt ,  Li), i = 0,1 ,2 ,3 ,  we find that the optimal strategy 
(Qs., , kg., Li t)  = (121,72,4), which leads to the minimum expected annual total inventory 
cost $ 2943.56. 

5. Concluding Remarks 
In this paper, we present the modified continuous review inventory model with partial 
backorders in the fuzzy sense to accommodate the practical situation. Two fuzziness of lost 
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sales rates are introduced. In section 2, we discuss how to apply the fuzzy set concepts to 
deal with the problem in which no statistical data can be used. On the other hand, when 
there are available statistical data, we discuss how to combine the statistical and fuzzy 
technologies to deal with such a problem in section 4. We note that the optimal solution 
derived from the total cost function in [12] may not match the real situation, while using 
the optimal solution derived from the total cost through properties 1 and 2 in this article 
does. 

This article assumes that the demand during lead time follows a normal distribution. In 
general, information about the distributional form of lead time demand is often limited. In 
future research, it would be interested to relax the normal demand assumption to consider 
the distribution free case where only the first two moments of lead time demand are known. 
The minimax distribution free approach as proposed by Scarf [17] can be utilized to solve 
such a problem. 

Acknowledgements The authors greatly appreciate the anonymous referees for their 
very valuable and helpful suggestions on an earlier version of the paper. 

Appendix 
The proof of M(Q,k,  L) is convex i n  (Q, k) for f ixed L â [Li7 Li-l], 

For a given value of L, we first obtain the Hessian matrix H as follows 

where 

The first principal minor of H is 

A2 - A1 because the term 5 + (which is the estimate of lost sales rate in the fuzzy sense 
0 (see equation (4) in text)) is a positive value. 

The second principal minor of H is 
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From (A.3)) we see that to prove H221 > 0 it only needs to prove the term in the last 
brace, 2@(k)ff>(k) - [1 - @(k)I2, is positive since all other terms are positive. Let I (k )  

dl(k) 2@(k)^>(k) - [l - $(k)] 2 .  By taking the derivative of I (k) ,  we get - = -2k@(k)^>(k) < 0, 
dk 

which means I (k )  is a decreasing function of k. Moreover, by checking the normal table, we 
obtain I(0)  = 2.0.3989 - 0.3989 - (1 - 0.5)2 = 0.0683 and lim I (k)  = 0. Therefore, I (k)  > 0 

k + m  
for k C [O, a), the behavior of I (k )  sees Figure A-1. Thus, we have \H^ > 0. 

From the results: \H-^\ > 0 and \Hu\ > 0, it can be concluded that M(Q, k, L) is convex 
in (Q, k) for fixed L G [Li ,  L i_ l ] .  

Figure A-1: Behavior of I ( k )  
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