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Abstract A discrete Bass model, which is a discrete analog of the Bass model, is proposed. This discrete 
Bass model is defined as a difference equation that has an exact solution. The difference equation and the 
solution respectively tend to  the differential equation which the Bass model is defined as and the solution 
when the time interval tends t o  zero. The discrete Bass model conserves the characteristics of the Bass 
model because the difference equation has an exact solution. Therefore, the discrete Bass model enables us 
to forecast the innovation diffusion of products and services without a continuous-time Bass model. 

The parameter estimations of the discrete Bass model are very simple and precise. The difference 
equation itself can be used for the ordinary least squares procedure. Parameter estimation using the ordinary 
least squares procedure is equal to  that using the nonlinear least squares procedure in the discrete Bass 
model. 

The ordinary least squares procedures in the discrete Bass model overcome the three shortcomings of 
the ordinary least squares procedure in the continuous Bass model: the time-interval bias, standard error, 
and multicollinearity. 

1. Introduction 
Since its introduction t o  marketing in the 1960s [I ,  2, 7, 11, 19, 221, the diffusion theory 
perspective has been of interest to scholars of consumer behavior, marketing management, 
and management and marketing science. The main impetus underlying the work done in 
this area is a new-product growth model developed by Bass [2]. 

The Bass model has been investigated in mainly three aspects: adopter categorization 
[14, 251, the communication structure between the two assumed groups of adopters of 'inno- 
vators' and 'imitators7 [24], and the development of diffusion models by specifying adoption 
decisions at  the individual level [5, 181. The Bass model and its revised forms have been 
successfully demonstrated for forecasting innovation diffusion in many products and services. 

Bernhardt and MacKenzie [3], however, ha,ve stated that although the simple diffusion 
models work well in some cases, in other cases the results are poor. They suggest that the 
success of diffusion models has been due to a "judicious choice of situation, population, 
innovation and time frame for evaluating the data." Heeler and Hustad [8] have reported 
examples of new product diffusion in an international setting where the Bass model does 
not perform well. 

Mahajan and Wind [16] suggested that one possible reason why diffusion models work in 
some cases but do not perform well in others could be the particular estimation procedure 
used to estimate the parameters of the diffusion models. Mahajan, Srinivasan, and Mason 
[13] compared four estimation procedures: ordinary least squares estimation (OLS) [2], 
maximum likelihood estimation (MLE) [2l], nonlinear least squares estimation (NLS) [ lo ,  
231, and algebraic estimation (AE) [15]. They concluded that NLS procedures provide better 
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2 D. Satoh 

predictions and more valid estimates of standard errors for the parameter estimates than 
the other three estimation procedures. The NLS procedure, however, is elaborate. 

Evaluation of the differential in the differential equation makes it difficult to propose a 
simple and accurate procedure. I do not extend the parameter-estimation procedure but 
propose a discrete analog of the Bass model. Hirota [9] proposed a discrete Riccati equation, 
which has an exact solution. The Bass model is regarded as a Riccati equation. Therefore, 
I derived a discrete Bass model. The result obtained by OLS is equivalent to that obtained 
by NLS in the parameter estimation of the discrete Bass model. NLS is the most accurate 
procedure and OLS is the simplest one. 

2. The Bass Model and Conventional Parameter Estimations 
Since the Bass model [2] was first reported, diffusion theory has often been used to model 
the first-purchase sales growth of a new product over time. 

In his 1969 article, Bass suggested that the following differential equation can be used 
to represent the diffusion process: 

where N(t) is the cumulative number of adopters at time t,  m is the ceiling, p is the 
coefficient of innovation, and q is the coefficient of imitation. 

Assuming F( t )  = Jv^, where F ( t )  is the fraction of potential adopters who adopt the 
product by time t,  the Bass model can be restated as 

If N(t  = to = 0) = 0, simple integration of equation (1) gives the following distribution 
function to represent the time-dependent aspect of the diffusion process. That is, 

Equation (3) yields the S-shaped diffusion curve captured by the Bass model. In fact, for 
this curve, the point of inflection (which is the maximum penetration rate, [dN(t)/dtImsix) 
occurs when 

and 

Hence, if p, q, and m are known for a particular product, equations (3)-(6) can be used to 
represent the product growth curve. 

A number of estimation procedures have been suggested for estimating parameters p,  q, 
and m of the Bass model. Mahajan et al. [13] compared the four estimation procedures- 
the ordinary least squares (OLS), the maximum likelihood estimation (MLE), the nonlinear 
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A Discrete Bass Model 3 

least squares (NLS) , and the algebraic estimation (AE) procedures-by applying them to 
several sets of data. They concluded that NLS yielded better predictions as well as more 
valid estimates of standard errors for the parameter estimates. On the other hand, OLS is 
the easiest to implement. Therefore I will explain the OLS and NLS procedures in detail in 
the following two sections. 

2.1. The ordinary least squares procedure 
The OLS procedure suggested by Bass [2] is one of the earliest procedures for estimating the 
parameters. This procedure involves estimation of the parameters by taking the discrete 
or regression analog of the differential equation (1). Equation (1) is discretized with an 
ordinary forward difference equation as follows: 

where a1 = pm, a 2  = q - p ,  and 0 3  = -q/m. The data-collection interval must be constant. 
Given regression coefficients1 and ti3, the estimates of parameters p ,  q, and m can 

be easily obtained as follows: 

The main advantage of the OLS estimation procedure is that it is easy to implement. It 
is applicable to many diffusion models, the only exception being those models that cannot 
be expressed as linear in their parameters; for example, the Von Bertalanffy [4] model. 

However, the OLS procedure has three shortcomings [21]. First, as is clear from equation 
8 ) ,  in the presence of only a few data points and the likely multicollinearity between 
variables (N  (tivl) and N2 (ti-l)), one may obtain parameter estimates that are unstable 
or possess wrong signs (see, for example, [8, 21, 231). Second, the standard errors for the 
estimates are not available since parameters p, q ,  and m are nonlinear functions of ai, a 2 ,  

and a3. The error term, however, does contain the net effect of a11 sources of error. Third7 
the right-hand side of equation (7) will overestimate the derivative of N(t) taken at ti-l for 
time intervals before the point of inflection and will underestimate after that. That is, a 
time-interval bias is present in the OLS approach since discrete time-series data are used to 
estimate a continuous-time model. 

2 .2 .  Nonlinear least squares estimation (NLS) 
The nonlinear least squares estimation procedure suggested by Srinivasan and Mason 1231 
was designed to overcome some of the shortcomings of the maximum likelihood estimation 
procedure, which itself was designed to overcome the shortcomings of the OLS procedure of 
Schmittlein and Mahaj an [21]. Using the cumulative distribution function given by 

Q ' i  > 0, Q'2 > 0, and 0 3  < 0 because f i ,  4, and T% are positive. 
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4 D. Satoh 

Srinivasan and Mason suggest that parameter estimates p. q ,  and m can be obtained by 
using the following expression for the number of adopters X(i )  in the ith time interval 

(ti-l-i ti): 

where pi is an additive error term. Based on equation (14), parameters p, q, and m and 
their asymptotic standard errors can be directly estimated. 

The nonlinear least squares estimation procedure overcomes the time-interval bias present 
in the OLS procedure. Furthermore, since the error term may be considered to represent 
the net effect of sampling errors, excluded variables (such as economic conditions and mar- 
keting mix variables), and mis-specification of the density function, the derived standard 
errors for the parameter estimates may be more realistic. However, since the nonlinear least 
squares estimation procedure employs various search routines to estimate the parameters, 
parameter estimates may sometimes be very slow to converge or may not converge, the final 
estimates may be sensitive to the starting values for p, q, and m, or the procedure may not 
provide a global optimum. 

3. The Discrete Bass Model 
An easy and accurate parameter estimation procedure is difficult to develop. One reason 
for this is that the Bass model is a continuous-time model while the data we obtain is dis- 
crete. If we had a discrete model that conserved the properties of the continuous model, 
the parameter estimation would likely be simpler and more accurate. I propose a discrete 
Bass model obtained by using a discrete Riccati equation [9]. This model is described by 
a difference equation. The difference equation has an exact solution, although an ordinary 
forward difference equation does not. The discrete Bass model enables us to forecast inno- 
vation diffusion without a continuous-time Bass model because the discrete model has an 
exact solution. 

A Riccati equation is 
du - = a(t) + 2b(t)u + c(t)u2, 
d t (15) 

where a(^), b(t), and c(t} are given functions of t. In this paper, the Riccati equation is 
considered when a, b, and c are constant. Equation (1) can be regarded as a Riccati equation 
by setting 

a = mp, 

Hirota obtained a discrete Riccati equation [9] that has an exact solution. His discrete 
Riccati equation is described as 
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A Discrete Bass Model 5 

where S is the constant time-difference length. The exact solution to equation (19) is given 

where 

By using the discrete Riccati equation, I can obtain the discrete Bass model: 

The exact solution to equation (23) is written as 

t where n = z. The data have to be collected periodically because the time interval is a 
const ant value. 

The ceiling m is the same as that of the continuous Bass model and is conserved for any 
6 in equation (24), because 

N~ -+ m as n -+ oo. (25) 

The ratio of p and q is also the same as that of the continuous Bass model and is conserved 
for any S in equation (24), because m is conserved as shown above and 

Equation (24) converges equation (3) as follows: 

The difference operator is defined as 

The point of inflection (which is the maximum penetration rate, max(ANt)) occurs when 

where 

(n*) = {n 1 max(n 5 n*), n 6 Z}. 
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When n* is an integer, 

The above equation is the same as equation ( 4 ) .  Moreover, let 

I can show that t* converges the point of inflection in the differential equation as 8  Ã‘ 0 as 
follows : 

log ' 
t* = 28 

1 
log l - h ( q + p )  -+--log(') as S - + O  

l + h ( q + p )  
P + O  

The difference between equation (24) and equation (3) is as follows. I expand the following 
term with 6. 

Then, I also expand the following term with 8  

Equations ( 3 5 )  and ( 3 6 )  show that equation ( 2 4 )  is equivalent to equa,tion ( 3 )  until the 
second order of 8. Therefore, the solution of the difference equation is the same as the 
solution of the differential equation until the second order of 8. 

I compared two difference equations: an ordinary forward difference equation for the 
Bass model and the difference equation for the discrete Bass model. The parameters were 
m = 100, p = 0.01, q = 1.9, and 8  = 1, and N ( 0 )  = 0.01 was the initial value. Figures 1 
and 2 show the results calculated by the two difference equations. Although Figure 1 shows 
oscillation, Figure 2 shows that the ceiling is constant. 

Figure 1: An ordinary forward difference equation for the Bass model. 

It is easy to apply OLS to the discrete Bass model because the model is basically a time- 
discrete equation. The ordinary least squares estimation procedure is the simplest parameter 
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A Discrete Bass Model 

Figure 2: The difference equation for the discrete Bass model. 

estimation for the discrete Bass model. In the continuous Ba,ss model, the forward difference 
equation, which is a regression equation in the OLS procedure, is an approximation of the 
differential equation. As shown in Figure 1, the approximation of the difference equation 
is poor. However, in the discrete Bass model, the model itself is directly applied to the 
regression equation. Moreover, a solution of the discrete Bass model provides the same 
values as a solution of the continuous Bass model through the following equations: 

Pd = kp, (37) 

qd = kq, (38) 

where pd and qd mean p and q in equation (24), respectively. 
I propose two regression models. The first one is the following equation: 

where 

m'  
e(n)  : error, E [e(n)] = 0. 

Given regression coefficients2 a ,  b, and c, parameter estimates 5, ij, and m can be easily 
obtained as follows: 

p = - b + d Ã ‘  (46) 

ij = b + V & 2 Ã ‘  (47) 

'a > 0, b > 0, and c < 0 because p ,  ij, and m are positive. 
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8 D. Satoh 

The other regression model is the following equation: 

Mn = A + BNn-i + C(Nn+i - Nn-1) + ~ ( n ) ,  

where 

Given regression coefficients3 A, B, and C, parameter 
obtained as follows: 

(53) 

= 0. (54) 

estimates p, 4, and m can be easily 

These procedures have the advantage of simplicity, which the OLS procedure in the contin- 
uous Bass model also offers. 

It is also relatively easy to apply the NLS procedure to the discrete Bass model because 
the discrete Bass model has an exact solution (24). I propose two NLS procedures for the 
discrete Bass model. One of these provides pa,ra,ineter estimates p,@, and m by using the 
following expressions for the number of a,dopters Xn in the nth time interval: 

where pn is an additive error term. 
The other NLS procedure for the discrete Bass model is the following equations: 

where Yn is the ratio between the number of adopters at  the nth time and that at the 
(n  + 1)st time. 

3 A  > 0, B > 0, and C < 0 because @, ij, and fh are positive. 
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A Discrete Bass Model 9 

These procedures, as well as the NLS procedure for the continuous Bass model, have the 
advantage that their asymptotic standard errors can be directly estimated. Moreover, since 
the error term of these procedures may be considered to represent the net effect of sampling 
errors, excluded variables, and mis-specification of the density function, the derived standard 
errors for the parameter estimates may be as realistic as those of the NLS procedure for the 
continuous Bass model. 

The OLS procedures of the discrete Bass model overcome the three shortcomings of the 
OLS procedure in the continuous Bass model: the time-interval bias, standard error, and 
multicollinearity. 

When we use the discrete Bass model to foreca,st innovation diffusion without a continuous- 
time Bass model, a time-interval bias does not exist because the model is a discrete model. 
Furthermore, even if the discrete Bass model is regarded as one procedure to  obtain the 
parameters, these procedures do not suffer from a time-interval bias because a solution of 
the discrete Bass model gives the same values as a solution of the continuous Bass model as 
already stated in this section. Therefore, these procedures do not suffer from a time-interval 
bias. 

From equation (23), equation (40) is equivalent to equation (59), and equation (49) is 
equivalent to equation (61) under no constraints. Therefore, the same parameter estimation 
is done through both procedures in the discrete Bass model. This is a significant advantage 
of the discrete Bass model because we can get the global optimum by NLS through OLS. This 
means both procedures used together overcome the shortcomings of each other separakely 
applied. That is, the standard error of the OLS procedure of the discrete Bass model is 
obtained through the NLS procedure of the discrete Bass model. Equations (40) and (49) 
overcome the three shortcomings of NLS: that final parameter estimates are sensitive to the 
starting values for p, q, and m, that  parameter estimates may sometimes be very slow to 
converge or may not converge, and that the procedure may not provide a global optimum. 

Table 1 shows the condition number, the determinant of correlation matrix R, and 
the variance inflation factors (VIFs) of three procedures: the conventional OLS procedure, 
the discrete analog 1 of the OLS (40) (dOLSl), and the discrete analog 2 of the OLS 
(49) (dOLS2), where I chose the exact solution (p = 0.002, q = 1, m = 100) of differential 
equation (1) as the data from every period from t = 0 to t = 11. The VIF in the conventional 
OLS row is the VIF of the variable N(ti_1) in equation (8). The value of the VIF of the 
variable N(tiVi) is the same as that of the VIF of the other variable N(t i)2 from the definition 
of the VIF. The VIF in the dOLSl row is the VIF of the variable (Nn+i + Nn-i}; the VIF in 
the dOLS2 row is the VIF of the variables Nn-1 in Table 1. dOLS2 excludes the problem of 
multicollinearity. Therefore, a wrong sign for a parameter suggests that the obtained data 
is not appropriate for the Bass model. 

Ta,ble 1: Condition number, det R,  and VIF. 
Procedure Condition number det R VIF 
Conventional OLS 14.0111 0.01428 20.85 
dOLS1 11.68 0.01914 12.68 
dOLS2 3.548 0.2059 1.000 
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4. Parameter Estimation 
The accuracy of the parameter estimation between the conventional OLS procedure and the 
two OLS procedures in the discrete Bass model was compared. To compare the accuracy 
of the parameter estimates only, I chose the exact solution (p = 0.002, q = 1, m = 100) of 
differential equation (1) as the data from every period from t = 0 to t = 11 (the same data 
as used in the previous section). This dais ha,s a point of inflection when t* = 12.4044074 
and N ( P )  = 49.9. I analyzed three sets of data,; data 1: the da,ta up to just before the 
point of inflection (t = 0,1,  - - ,6) ,  data 2: the data up to just a,fter the point of inflection 
( t  = 0 , 1 , . . - , 7 ) ,  and data 3: the daka until the ceiling ( t  = 0 , 1 , - - - , 1 1 ) .  

The results of the comparison between the con~entiona~l OLS and the proposed OLS 
procedures in the discrete Bass model are shown in Tables 2, 3, and 4, where pi and ql are 
the parameters of dOLSl and p2 and q2 are the parameters of dOLS2. To compare dOLSl 
and dOLS2 to the conventional OLS, p and q, which are the parameters of the continuous 
Bass model, are obtained through the following equations: 

- 
k = -  

1 1 - q p i  + qi} 

2 ( ~ i  + qi) 1 + J(pi + qi) 
7 i = 1,2 .  

Ta,ble 2: Parameter estimates of the conventional OLS. 

data 2 0.00981 1.41 144.1 71.61 
data, 3 0.0225 0.961 42.63 97.27 

Table 3: Parameter estimates of the dOLSl. 
P Q P 1 q1 911~1 m 

data 1 0.002 1 0.00152 0.761 500 100 
data 2 0.002 1 0.00152 0.761 500 100 
data 3 0.002 1 0.00152 0.761 500 100 

Table 4: Parameter estimates of the dOLS2. 
P q P 2 q2 q2/p2 m 

data 1 0.002 1 0.00152 0.761 500 100 
data 2 0.002 1 0.00152 0.761 500 100 
data 3 0.002 1 0.00152 0.761 500 100 

Tables 5 and 6 show the accuracy of the OLS procedures in the discrete Bass model: 
dOLSl and dOLS2. Both OLS procedures in the discrete Bass model provide accurate 
parameter estimates in the continuous Bass model. Because I used the exact solution 
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as the data, an accurate procedure would reproduce the values of the parameters in the 
exact solution. Tables 3 and 4 show that both OLS procedures in the discrete Bass model 
reproduced m,  p, and q perfectly, even though the da,ta did not include the point of inflection 
and there were fewer than eight data points. 

Table 5: Accuracy of parameter estimates in dOLSl. 
Ip - 0.0021 \q - 11 lql/pl - 5001 lm - 1001 

data 1 3.990E-17 5.329E-15 1.262E-11 1.378E-12 
data 2 3.166E-17 3.331E-15 6.253E-12 3.268E-13 
data 3 8.973E-16 8.327E-15 2.285E-10 1.279E-13 

Table 6: Accuracy of parameter estimates in dOLS2. 

Ip - 0.0021 Iq - 11 W P ~  - 5001 m - 1001 
data 1 6.072E-18 2.220E-15 3.411E-13 7.248E-13 
data 2 1.431E-17 6.661E-16 3.865E-12 1.137E-13 
data 3 2.64545E-17 less than l.OE-18 6.48OE-12 less than 1.OE-18 

The accuracy was also estimated from the ratio of the two parameters because the ratio 
of the two parameters of the discrete model is conserved in any time interval 6. The conven- 
tional OLS procedure has poor accuracy despite using the exact solution of the differential 
equation as the data. In particular, the conventional OLS procedure yields poor estimates 
of the parameters with data 1, which has seven data points not including the point of in- 
flection. This is consistent with the findings of Heeler and Husta,d [8] and Srinivasan and 
Mason [23]. Through empirical studies, they found tha8t stable and robust estimates for the 
parameters of the basic diffusion models cannot be obtained unless one uses at  least eight 
data points including the point of inflection. The estimates of the parameters with data 2 
were also not accurate enough, even though data 2 satisfies the condition of at  least eight 
data points including the point of inflection. 

Whenever a data set is a set of an exact solution of equation (I), the dOLSl and dOLS2 
procedures completely reproduce values of the parameters, e.g., m,  p, and q; theoretically) 
this is because the solution of equation (23) is the same as that of equation (1) through 
equations (62), (63), and (64). It is independent of the number of data points or the values 
of the parameters. However, the conventional OLS procedure does not reproduce values of 
the parameters and depends on the number of data points as shown in Table (2) because 
regression equation (8) does not have a,n exact solution and gives only an approximation of 
the Bass model. 

Moreover, regression equation (8) of the conventional OLS procedure can perfectly fit 
data that are far from the exact solution of the Bass model. For example, I prepared the 
data of Table 7 as data that were far from the exact solution of the Bass model, which 
were illustrated in Figure 3. As shown in Table 8, regression equation (8) fitted the data 
perfectly even though the data of Table 7 cannot be actually observed. On the other hand, 
the dOLSl and dOLS2 procedures both provide a worse fit in terms of the mean absolute 
deviation and the mean squared error, as shown in Table 8, than does OLS; here, the error 
term of dOLS2 was translated as equation (65), 
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Figure 3: Data far from the exact solution of the Bass model. 

Furthermore, the dOLS1 and dOLS2 procedures yielded the wrong sign of parameter p for 
the same data set as Table 9. As discussed at  the end of this section, the wrong sign of the 
parameter provided by the procedures of the discrete Bass model suggested that the data 
of Table 7 were not appropriate for the Bass model. 

Table 7: Data far from the exact solution of the Bass model. 
n Dafta n, Da,t a, n Data, 

Table 8: Fit statistics for the three estimation procedures for the Bass model. 
Procedure Mean Absolute Devia,tion Mean Squared Error 
OLS 5.81404E-11 5.34E-21 
dOLSl 71.7211507 6928.76843 
dOLS2 57.4644679 6255.08989 

I also evaluated the discrete Bass model by using actual diffusion data. This data was 
the same as that used by Mahajan e t  a1,[13], which was diffusion data for seven products: 
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Table 9: Parameter estimates for the three estimation procedures for the Bass model. 

Procedure P q m 
OLS 0.01 3 100 

dOLS1 -0.004693221 1.493157342 14717.17075 
dOLS2 -0.007577906 0.843251539 6663.316838 

room air conditioners, color televisions, clothes dryers, ultrasound, mammography, foreign 
language, and accelerated program. These seven products represent a diversity of innova- 
tions and data types for which a minimum of eight a,nnual data points, including the peak 
(point of inflection), are available. In addition, these products have been used extensively in 
the diffusion modeling literature to illustrate the application of alternative diffusion models 
or estimation procedures [2, 12, 21, 231. 

To compare the predictive performance of the four estimation procedures, the OLS and 
the NLS procedure in the continuous Bass model and the two OLS procedures in the discrete 
Bass model, results related to fit statistics a,re given in Table 10. The numbers (1,2, - - . ,7)  
in the left column represent, respectively, room air conditioners, color televisions, clothes 
dryers, ultrasound, mammography, foreign language, and accelerated program. The fit 
statistics of dOLS2 cannot be cornpasred with those of the other estimation procedures 
directly because the error term of dOLS2 is different from the error terms of the other 
estimation procedures. However, from equations (40) and (49), the error term e(n) is 
regarded as 

Therefore, I compared the fit statistics of dOLS2 with those of other procedures by using 
this equation. 

Results related to the parameter esti~na~tes are given in Tables 11, 12, and 13, where the 
parameter estimates of dOLSl and dOLS2 in Tables 12 and 13 show the values of p and q 
in equations (62) and (63) for compa,rison with other procedures. The parameter estimates 
of dOLS1 and dOLS2 are the same as those of the corresponding NLS procedures as stated 
in the previous section. 

Table 10: Fit statistics for the four estimation procedures for the Bass model using all 
available data. 

Mean Absolute Deviation Mean Squared Error 
OLS NLS dOLSl dOLS2 OLS NLS dOLSl dOLS2 

1 173.2 144.6 92.7 97.2 41,265 26,267 13,205 15,177 
2 392.4 276.8 188.2 194.6 282,522 119,474 38,477 40,320 
3 111.8 101.5 65.0 74.1 20,818 16,367 7,692 9,115 
4 0 3.0 1.96 2.21 P 11.6 5.26 6.09 
5 Q 1.7 1.1 1.1 ft 3.9 2.19 2.30 
6 0 0.7 0.23 0.24 f t  0.5 0.0949 0.0993 
7 2.2 1.9 0.65 0.68 11.3 6.2 0.528 0.544 

Of the four procedures (the OLS, MLE, NLS, and AE procedures in the continuous Bass 
model), the NLS procedure provides the best fit to the data [13]. Mahajan e t  al. state that 
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Table 11: Parameter estimates of m for the four estimation procedures for the Bass model 
and the discrete Bass model using all available data. 

Product OLS NLS dOLSl dOLS2 
Room air conditioners 17.1E6 18.7E6 18.0E6 17.1EG 
Color televisions 35.5E6 39.7E6 39.1E6 38.4E6 
Clothes dryers 15.3E6 16.5E6 16.19E6 15.3E6 
Ultrasound ft 167.4 187.2 180.2 
Mammography ft 111.4 122.1 121.2 
Foreign language ft 37.6 40.1 39.6 
Accelerated program 63.6 64.4 65.5 65.1 

Table 12: Parameter estimates of p for the four estimation procedures for the Bass model 
and the discrete Bass model using all available data. 

Product OLS NLS 
Room air conditioners 0.0170 0.0094 
Color televisions 0.0357 0.0185 
Clothes dryers 0.0196 0.0136 
Ultrasound f t  0.0013 
Mammography Q 0.0004 
Foreign language Q 0.0019 
Accelerated program 0.0120 0.0007 

Table 13: Parameter estimates of q for the four e~tima~tion procedures for the Bass model 
and the discrete Bass model using all ava,ila,ble data. 

Product OLS NLS dOLSl dOLS2 
Room air conditioners 0.4049 0.3748 0.3842 0.42412 
Color televisions 0.6719 0.6159 0.6162 0.64012 
Clothes dryers 0.3481 0.3267 0.3229 0.363769 
Ultrasound ft 0.6204 0.5537 0.63077 
Mammography Q 0.8606 0.7734 0.81747 
Foreign langua,ge 3 0.6968 0.6961 0.72534 
Accelerated nro~rram 0.8476 0.9283 0.9597 0.99695 

assuming global optimum parameter estimates, the NLS procedure should, by definition, 
provide the best fit in terms of the mean squared error [13]. However, a comparison of the 
fit statistics in Table 10 indicates that both dOLSl and dOLS2 provided a better fit to the 
data than did the OLS or NLS in terms of the mean a,bsolute deviation and mean squared 
error. The fit statistics of dOLSl were the best of all. A Q in Table 10 shows that the 
OLS procedure yielded an incorrect sign for the regression coefficient GI in the regression 
equation. 

Tables 11, 12, and 13 show the estimated parameters of the OLS, NLS, dOLS1, and 
dOLS2 procedures. Again, f t  shows that the OLS procedure ~ ie lded  an incorrect sign for the 
regression coefficient in the regression equation. The results for the parameter estimates 
summarized in Table 12 indicate that both dOLSl and dOLS2 provide the wrong sign for 
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the regression coefficient a in equation (40) and for the regression coefficient A in equation 
(49) for ultrasound, mamm~gra~phy,  foreign language, and accelerated program. Both a in 
equation (40) and A in equation (49) are the regression coefficients of the constant term. 

The wrong sign in Table 12, however, does not indicate multicollinearity. Tables 14,15, 
and 16, respectively, show the condition number, the determinant of the correlation matrix, 
and the variance inflation factors for each product. These tables show that multicollinearity 
does not exist in dOLS2. The products that  have the wrong signs have smaller condition 
numbers, larger determinants of the correlation matrices, and smaller VIFs than the prod- 
ucts that have the right signs. Therefore, the wrong sign of a parameter suggests that the 
obtained data is not appropriate for the Bass model. 

Table 14: Condition number. 
Product OLS dOLSl dOLS2 
Room air conditioners 11.943 12.615 7.743 
Color televisions 13.321 15.768 10.123 
Clothes dryers 13.145 14.499 9.723 
Ultrasound 13.380 13.436 4.513 
Mammogr apli y 14.982 13.648 3.703 
Foreign language 13.132 13.213 4.700 
Accelerated program 13.546 11.736 3.503 

Table 15: Determinant of correlation matrix. 
Product OLS dOLSl dOLS2 
Room air conditioners 0.01913 0.01614 0.03135 
Color televisions 0.01453 0.009096 0.01152 
Clothes dryers 0.01485 0.01138 0.01817 
Ultrasound 0.01565 0.01459 0.08556 
Mammography 0.01222 0.01383 0.1650 
Foreign language 0.01658 0.01518 0.08084 
Accelerated program 0.01578 0.01973 0.1836 

Table 16: Variance inflation factors. 
Product OLS dOLSl 
Room air conditioners 14.003 13.577 
Color televisions 15.537 15.432 
Clothes dryers 15.021 15.498 
Ultrasound 17.52 15.488 
Mammography 22.121 16.19 
Foreign language 17.525 15.129 
Accelerated program 20.189 13.256 
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5. Conclusion 
The discrete Bass model is described with a difference equakion that has a,n exact solu- 
tion. The exact solution is equivalent to the exact solution of the differential equation that 
describes the Bass model when the time interval a,pproaches 0. The exact solution of the 
discrete Bass model is equivalent to that of the conventional Bass model up to the square 
of the time interval. Therefore, the exact solution of the discrete Bass model gives a very 
good approximation of the solution of the conventional Bass model when the time interval 
is sufficiently small. The ceiling m and the ratio q / p  is conserved for any time interval. 
Moreover, when the transformation to p and q is done, a solution of the discrete Bass model 
provides the same values as a solution of the continuous Bass model. The discrete Bass 
model enables us to ana,lyze the diffusion process with only the discrete model because the 
discrete Bass model has an exact solution and the solution provides the same values as a 
solution of the continuous Bass model. 

When the exact solution is used as the input daka,, the paxameter estimation procedures 
in the discrete Bass model always reproduce the values of the parameters perfectly. It is 
independent of the number of da,ta points or the values of the parameters. The OLS and the 
NLS in the discrete Bass model give the same parameter estimates under no constraints. 
Although the regression equation of the conventional OLS procedure could perfectly fit data 
far from the exact solution of the Bass model, the dOLSl and dOLS2 procedures indicated 
that such data were not appropriate for the Bass model. For the actual data used by 
Mahajan et a/ , ,  both the dOLSl and the dOLS2 procedures provided a better fit to the 
data than did the OLS or the NLS procedure in terms of mean absolute deviation and mean 
squared error. The parameter estimation procedures in the discrete Ba,ss model are superior 
to the conventional procedures in terms of these two criteria,. The two criteria determine 
the superiority of the parameter estima,tions in models, such as the Bass model, which haJve 
exact solutions. 

The parameter estimation procedures in the discrete Bass model have certain advantages 
compared to those of the conventional Bass model. The OLS procedures of the discrete Bass 
model overcome the three shortcomings of the OLS procedure in the continuous Bass model: 
the time-interval bia,s, standard error, and multicollinearity. Though the wrong signs of the 
parameters ha,ve been regarded as a problem caused by multicollinearity, I found that the 
wrong signs could be used to judge whether the Bass model works for dais. 

In the discrete Ba,ss model a,nd in the OLS for a, continuous Bass model, the da'ta must 
be collected periodically beca,use the time interval is constant. The discrete Bass model 
can be applied if the data is tra,nsla,ted into data in the longest interval. If the data is 
not collected for a constant interval and the da,ta should not be tra,nslated into data, in the 
longest interval, a new discrete Bass model whose time interval is not constant has to be 
derived. 

The meanings of parameters p and q are defined through a hazard function. The rnean- 
L .  ings, e.g., innovators' and 'imitators', have played a11 important role in the Bass model. 

However, a direct relation between the discrete Bass model and the hazard function has yet 
to  be discovered. Therefore, further studies a,re needed to determine the direct relation be- 
tween the discrete Bass model and the ha,za,rd function, and to give meanings to parameters 
p and q through the hazaxd function. 

The approach ta,ken in this paper ca,n be aspplied to other models if a discrete equation 
that has an exact solution is derived. For example, Sa-toh [20] has ~ r o ~ o s e d  a discrete 
Gompertz curve model and the paxameter estimation. 
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