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Abstract We are concerned with an M / G / 1  queue in which service time distributions in each busy period 
may depend on the number of ~us t~omers  who have been served in the same busy period. This model is 
called an exceptional service model. Our major interest is t,o see a general structure of this model through 
the stationary waiting time distribution and some other ~haracterist~ics. To t,his end, we take a regenerative 
cycle approach with respect to a busy cycle. This approach enables us to get several characteristics in 
tractable forms, from which we get some interesting; properties of the exceptional service model. Numerical 
examples are presented as well. 

1. Introduction 

We consider a single server queue with Poisson arrivals and an infinite buffer, where service 
discipline is FIFO, i.e., first in first out. Service times are assumed to be independent, but 
their distributions may depend on the number of customers who have been served in the 
current busy period. Thus, the queue is a modification of the standard M/G/1  model, and 
called an M/G/1 queue with exceptional service. 

This class of models are motivated by the fact that a server may need more (or less) 
time when he resumes service after idling. For example, he may need an extra job to resume 
service for warming up. This also reflects a certain aspect of cashing in a computer system, 
in which transfer times of data correspond to service times (see, e.g., [10]). Furthermore, 
in a practical service system, a server may be refreshed at the service resumption or may 
be getting tired. In those situations, it is very natural for the service times of not only the 
first customer but also the subsequent several customers to be changed. We consider this 
case, while the traditional setting usually assumes a single exceptional service. A primary 
concern of the exceptional service model is to study the effect of such deviations of service 
times at the beginning of each busy period. 

The model is also closely related to queues with vacations (see [4] for their survey). In 
the latter model, a server takes a vacation, and the customers who arrive during the server 
vacation experience longer waiting times. However, those delays largely depend on a policy 
of the server vacation, and only the first customer at each busy period can be considered 
to have exceptional service for a typical vacation policy such as exhaustive service. On the 
other hand, in the exceptional service model, service time distributions are specified, and 
more than one customers may have exceptional service. Thus, the exceptional service model 
has a different model structure from the vacation model, although certain special cases such 
as the single exceptional service are indeed closely related. The exceptional service model 
can be also used to analyze other models such as priority queues (see, e.g., [13]). 

The M/G/1  queue with exceptional service was firstly studied by Welch [15], and recently 
further studied by Igaki et al. [5] and Baba [2] (see also [l01 for the case of exponentially 
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distributed service times). For the case of the renewal arrivals, the single exceptional service 
model was studied as a modification of GI /G / l  queue with server vacations (see [g, 111 
and references in [4]). The papers [2, 5, 101 for the M/G/1 models generalizes the single 
exceptional service to multiple exceptional services. However, the approaches of those papers 
have some limitations. The paper of [l01 assumes the exponential service times, while the 
other two papers use the Kolmogorov differential equations for stationary analysis, which 
requires unnecessary regularity conditions such as the existence of densities of the service 
time distributions. Furthermore, from the results of those papers, it is hard to see the effect 
of exceptional services. Moreover, closed form formulas for stationary characteristics are 
obtained only for two exceptional services in [5], and three exceptional services in [2]. 

The aim of this paper is twofold. First, we show usefulness of a regenerative cycle ap- 
proach, which is only concerned with a single busy cycle, and uses a well known regenerative 
cycle formula to derive stationary distributions (e.g., see [3]). This approach well fits to ex- 
ceptional service mechanism, and neither needs to assume the steady state as in [2] nor 
to use the Kolmogorov differential equations. The approach has been used for the single 
exceptional service model (see [I l l ) ,  but has never been applied to the multiple exceptional 
service model, as long as the authors know. 

Secondly, we study general structures of characteristics of interests such as the mean 
waiting time, in particular, how they are affected by the exceptional service. This is our 
major interest. For this, we derive the Laplace transform of the stationary waiting time 
using some unknown parameters, which can be determined by algorithmic computations. 
The result is presented as a certain decomposition formula (see Theorem 3.1), which is our 
main result. The formula enables us to see how the empty probability and the mean waiting 
time are affected by the distributions of exceptional service times as well as to get some other 
stationary characteristics such as queue length. As byproduct, the Laplace transform of the 
stationary waiting time of each customer in a given busy period is obtained. It is not our 
major interest to derive the closed form formulas, but we demonstrate the case of up to 
five exceptional services to show how our approach produces those formulas in a systematic 
way (see Appendix A).  Note that those formulas not only extend the known results but also 
prevent possible errors found in the literature. 

This paper is composed of six sections. Section 2 introduces the exceptional service 
model, and discusses general expressions for the waiting time distributions in transient as 
well as stationary cases. In this section, the number of exceptional services may be infinite, 
but the subsequent sections assumes that it is finite. In Section 3, the stationary distribution 
and its moments are computed for the waiting time, while they are computed for the sojourn 
time and the queue length in Section 4. The unknown parameters in those formulas are 
computed in Section 5 and Appendix A. We also give numerical examples in Section 6. 

2. Exceptional Service Model and Waiting Time 
Consider the M/G/ l  queue with exceptional service. Denote the mean arrival rate by A,  
which is assumed to be positive and finite. We are only concerned with one busy period 
starting with an empty state, i.e. the state that there is no customer in system, since the 
empty state is a regeneration epoch for both of the waiting time and queue length process. 
For an integer n > 1, let Sn be the service time of the n-th arriving customer in the first 
busy period. It is assumed that {Sn\ n = 1 , 2 , .  . .} is a sequence of independent random 
variables that are independent of the arrival process. The expectation E(Sn) is assumed to 
be finite for all n. We denote the distribution of Sn by Gn. If only the first i customers 
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get exceptional service, the service time distribution of the n-th customer for n > C. + 1 is 
independent of n,  and denoted by G. That is, = = . . . = G. We are mainly 
concerned with the case of a finite !, but, in this section, the C. may be infinite. 

Let Tn be interarrival between n-th and (n + l )- th arriving customer, and let Wn be 
the waiting time of the n arriving customer for n = 1 ,2 ,  . . .. It is assumed that the first 
arriving customer finds the system empty. Namely, the system starts with the empty state 
a t  time 0. Let N be the total number of customers that arrive in the first busy period. We 
do not assume that N is finite at this stage, although our main interest is in the case that 
E ( N )  <m. 

For n = 1,2 ,  . . . , define function fn as 

where E ( X ;  A) = E(XIA} for an event A and the indicator function lA. Since Wn+l = 
Wr, + Sn - Tn > 0 on the event that N 2 n + 1, we have 

where the second equality is obtained from the fact that Tn is subject to the exponential 
distribution with mean I/A. For each n = 1 , 2 , .  . ., the Laplace transform of Gn is denoted 
by gn, i.e., 

gn(0) = E (e-OSn). 

Since Wl = 0 and Wn and Sn are independent, (2.1) leads to 

In principle, (2.2) and (2.3) successively determine fn .  Hence, if we can write characteristics 
of interest in terms of them, our problems are solved. However, the determination of fn is 
not easy as it looks. In fact, from (2.2) and (2.3), we have 

where the empty product is unity, and the empty sum is zero. Thus, f@) is determined 
if fi(X)'s are obtained. But, the evaluation of fn(Q) at  Q = X is not easy, because of the 
singularity in the expression (2.4). We defer this problem to Section 5. Since (2.3) with 
0 = 0 implies 

fn(A)gn(A) = fn(0) - fn+l(O),  n 2 1. (2.5) 

fn(Q)  is also determined by fi(0) for z = 1 ,2 ,  . . . , n. 
In the rest of this section and in the next section, we shall express various characteristics 

using fn(Q) and fn(0) in addition to gn(0)- We first note that 

Then, from (2.5), we have 
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Lemma 2.1 The total number N  is finite, i.e., P ( N  < +oo) = 1, if and only if 

00 

E fn ( A ) g n  ( A )  = I.. 
n=l 

Lemma 2.2 The queue is stable, i.e., there exists a stationary waiting time distribution 
for all customers over all busy periods if and only if E ( N )  is finite, i.e. 

If this is the case, Laplace transform (f> of the stationary waiting time distribution is given 

by 

( Q )  fn(0)- 
E ( N )  n=l 

PROOF. Since {Wn; n = 1,2 ,  . .  .} is a discrete-time regenerative process, it has the 
stationary distribution only if each regenerative cycle has a finite mean, i.e., E ( N )  < CO. 
(2 .8)  is a direct consequence of the so called cycle formula, i.e., 

Another interesting characteristic is the conditional waiting time distribution of the n-th 
arriving customer, given that he arrived in the first busy period. That is, 

3. Stationary Waiting Time for Finite Exceptional Services 
In this section, we assume that only the first i customers get exceptional service, and 
E ( N )  < m, where t is finite. It is easy to see that the latter holds if and only if 

where S  is subject to the distribution G. For instance, one can verify this fact by formulating 
the waiting time process as a random walk with jumps Sn - Tn and reflecting barriers at  the 
origin. Then, the waiting time distribution weakly converges to a probability distribution if 
and only if s = l ( S i  - Ti) goes to -CO with probability one as n tends to infinity. The latter 
is only possible for the case that E(SM - T!+l) = E ( S )  - l / A  < 0. 

Our aim of this section is to compute stationary characteristics such as the stationary 
waiting time distribution, using fl, fg ,  . . . , ft. Even though they are not completely known, 
informative expressions will be found. 

For each n = 0 ,1 , .  . ., let 
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Then, from Lemma 2.2, we have 

We first compute 

Lemma 3.1 

PROOF. Using (2.5), the inductive formula (2.3) can be written as, for 1 < n < C., 

and, for n > C. + 1, 

Summing (3.5) over n = C. + 1, C. + 2, . . . yields 

On the other hand, from (3.4), we have, for n < C. 

Summing (3.6) and (3.7) for n = 1,2,  . . . , i and the fact that f (8) = 1 lead to 

This yields (3.3). 

To get the Laplace transform of the stationary waiting time, we need to compute +1(0). 
From Lemma 3.1, we have 

Hence, from (3.3) and (3.8), we have 
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Let WM/G/I be a random variable subject to the stationary waiting time distribution of 
the standard M/G/1 queue that corresponds with the exceptional model, i.e., both models 
has the same arrival rate and the same distribution for the non-exceptional service times. 
That is, 

We are now ready to present the result (3.9) in the following form. 

Theorem 3.1 Under the stability condition (3.l),  the Laplace transform of the stationary 
waiting time is 

Remark 3.1 From (3.7), we have 

for the Laplace transform g of an arbitrary distribution of a positive random variable. Hence, 
under the stability condition (2.7), equation (3.10) is valid also for l = CO, if pn is bound 
in n. If gn(6} converges to g(0) for all 0 as n goes to infinity, it is not difficult to see that 
p = limwoo h < 1 is sufficient for (2.7). However, (3.10) with l = m may not be useful 
since it includes fn for all n. 

Remark 3.2 Equation (3.10) may be interpreted as a decomposition formula similar to 
the one for the vacation models (see, e.g. [4]). However, it is not the decomposition of a 
distribution. The busy period of the exceptional service model may be shorter than the 
corresponding period of the non-exceptional model, so we may not be able to create any 
server vacation. This is the reason that the second component of the decomposition may not 
correspond with any distribution. Exceptionally, it indeed corresponds with a distribution 
if Sn is the sum of independent nonnegative random variables S^ and Vn such that S^ 
has the same distribution as S, because 

where ~ ~ ( 6 )  is the Laplace transform of Vn- In this case, the server actually takes a vacation 
for each exceptional service. 

Remark 3.3 If we only consider customers who have arrived after the exceptional service 
periods, we have the conventional decomposition. That is, from (3.6) and (3.7) with n = l, 
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emark 3.4 To fully determine E ( e e w ) ,  we need to compute fn(Q) and f m .  This will 
be considered in Section 5 and Appendix A. Note that,  if their closed forms are obtained, 
one may numerically invert the Laplace transform using techniques developed in [I]. 

Using Theorem 3.1, we consider some properties of the exceptional service model. 

.1 Under the assumption of Theorem 3.1, the stationary probability that an 
arriving customer finds the system empty is 

By PASTA property (see, e.g., [3]), this probability equals the probability that the system 
is empty in the steady state. 

PROOF. The first equality is a direct consequence of (2.8), since (2.3) implies that fn(Q) 
goes to zero for n > 2 as Q goes to infinity, while the second equality follows from (2.6) and 
(3.8). D 

From the sample path comparisons, it is easy to see that the empty probability is de- 
creased if Sn is stochastically increased, i.e., the tail probability P(Sn > X) is increased for 
all X > 0. Corollary 3.1 also implies this, since the denominator of the right-hand side of 
(3.11) is rewritten as 

and fn(0) is increased as Sn is stochastically increased. Corollary 3.1 tells more about the 
empty probability. 

For instance, if I = 1, then Sl affects P ( W  = 0) only through its mean. In general, the 
last exceptional service time S  ̂affects P ( W  = 0) only through its mean, since (2.4) implies 
that fn(0) is determined by g, for 2 < n - 1. If I = 2, the distribution of Si does affect 
P ( W  = 0). This affection is not obvious. For instance, compare the two exceptional service 
models one of which has an exponential distribution for S1, and the other has a deterministic 
distribution with the same mean for Si. We distinguish characteristics of those models by 
upper suffixes (M) and (D), respectively, if necessary. Then, since h ( 0 )  = 1 - gl(A) from 
(2.3), we have 

Hence, if E(siD1) = E ( s ~ ) )  and if p2 > (<)p, the deterministic S? decreases (increases) 
the empty probability compared with the exponential S -  (respectively). Thus, less random 
Si may decrease the empty probability, contrary to intuition. Since 

1 - gi (A) = E ( l  - ePM1) , 

is the expectation of the increasing concave function of Sl, the same property holds for the 
two systems if the S19s are concave ordered (see [l41 for the concave order). This may be 
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interpreted that,  for the system with C. = 2, less random S-\ effectively increases N, if p2 > p. 
For the case of C. = 3, a similar tendency can be found in numerical examples of [2] (see 
Tables 1 and 2 of the paper). However, this is not always the case (see Appendix B). Thus, 
we can not expect such a concave order property for the t > 3. 

We next consider the moments of W. Let k be an arbitrary positive integer. If E(Sn+l) 
and E(sT1) for n = 1 , 2 , .  . . , l  are finite, then f2)(0) is finite for n <t and j 5 k ,  where 
fp denotes the j-th derivative. This can be seen from the inductive relations, 

which are obtained from (2.3) by differentiating it after multiplying (A - 0). Hence, taking 
the k-th order derivative of (3.10) a t  0 = 0 and noting the fact that 

we have the following result. 

Corollary 3.2 Under the assumption of Theorem 3.1, for an arbitrary positive integer k, 
if E(Sn^) and ^(S?') for n = 1 ,2 , .  . . , t are finite, then we have 

By Corollary 3.2, the moments of the stationary waiting time is evaluated only through fm for n <; C. and j 5 k. By (3.12), they are eventually determined by fn(0) for n < i. 
We defer computations of fn(0) to Section 5. We here keep them as unknown parameters. 
Nevertheless, we can conclude some general properties from Corollary 3.2. We consider 
them for the mean waiting time, which is given by 

n=l 

where - f'(0) is nonnegative, and calculated as 

Corollary 3.3 Under the assumption of Theorem 3.1, the following properties hold. 
(i) Suppose E (S:) for n = 1,2,  . . . , t - 1 are finite. If E (S), E (Sn) for n = 1,2 ,  . . . , l and 

E (S:) for n = 1 ,2 ,  . . . , l - 1 are fixed, E (W) is a linear and increasing function of 
E(S2)  and E(Sf) .  In particular, E (W)  is finite only if E (S2) and Â£'(S; are finite. 
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(ii) The mean E ( W )  is finite if and only if E(S2) and E(S2) for n = 1,2 ,  . . . , C are finite. 
(iii) Under the condition in (ii) , if E (S) 5 (>)E(S!) for n = 1,2 ,  . . . , C and if E (S2) 5 (2) 

E (S:) for n = 1 ,2 ,  . . . , l, then E (W) is not less (greater) than the mean waiting time 
of the corresponding standard M/G/l  queue, i.e., the first term in the right hand side 
of (3.14). 

PROOF. From (2.5), fJO) is determined by g, for z < n - 1. Hence, E (W)  of (3.14) 
is a function of p, ,on for n = 1 ,2 ,  . . . , C, 5(S2), Â£'(S; for n = 1,2,  . . . , C, and gn for 
n = 1,2,,  . . . , l - 1. Furthermore, the coefficients of E{S2) are summed up to 

since fn(0) 5 1. Hence, the first part of (i) is obtained from (3.14), if E(S2) and Â£'(S] 
are finite. If either one of these second moments is infinite, we truncate S and S! by K > 0, 
i.e., they are replaced by S^) = &(K, S) and S }  = min(K, Sp}, respectively. Since each 
sample of Wn is a nondecreasing function of the service times, the truncated system has 
stochastically not greater waiting times. Hence, for a random variable W^ subject to the 
stationary waiting time of the truncated system, we have 

W 2 Since E ( w ( ~ ) )  is an increasing function of E((s^^)~)  and E((S, ) ) and either one of 
E (S2) and E (S]) is infinite, letting K tend to infinite yields that E (W)  = oo. This concludes 
the second part of (1). (ii) is obviously obtained from (i) and (3.14), since 0 < fn(0) < 1 for 
n = 1 ,2 ,  . . . , C. (iii) is also a direct consequence of (3.14). D 

The property (iii) also follows from the rate conservation law (e.g., see [12]), 

since Wn and Sn are independent. So (iii) just verifies the compatibility of Corollary 3.3. 

4. Sojourn Time and Queue Length 
In this section, we consider the sojourn time of a customer and the queue length in the 
steady state, where the queue length is meant the total number of customers including a 
customer being served. We assume the finiteness of the number of the exceptional services 
and the stability condition p < 1 as in the previous section. 

Let Un be the sojourn time of the n-th arriving customer, and let U be a random variable 
subject to the stationary sojourn time distribution. Since Sn is independent of Wn and the 
event {N > n}, we get 

Hence, similar to Lemma 2.2, we have 
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Since (3.4) and (3.5) imply 

we have 

Using WM/GIl in the corresponding M/G/ l  queue, (4.1) is written as the following form. 

Theorem 4.1 Under the assumptions of Theorem 3.1, we have 

Let L$ be the queue length just after the n-th customer completes his service. Then, L: 
equals the number of customers who arrived during the n-th customer being in the system. 
Hence, we have 

Thus we can calculate the condition generating function E [ , z L q ~  > n] through fn. 
Let L be a random variable subject to the stationary queue length distribution at  an 

arbitrary time instant, and let QMIGII  be the queue length not including a customer being 
served in the corresponding M/G/1 queue, similar to WM/G/l. That is, 

Then, from (4.2) and the distributional Little's law, i.e., 

we have following result. 
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Corollary 4.1 Under the assumptions of Theorem 3.1, we have 

For the moments of the stationary sojourn time and the stationary queue length, we can 
get similar formulas to those in Corollary 3.2 from Theorems 4.1 and 4.1. However, they are 
tedious and the resulted formulas are not tractable, so we here only give the first moment 
of the queue length. 

Corollary 4.2 Under the same assumptions of Corollary 3.2 for k = 1, 

PROOF. We differentiate (4.4) at z = 1. Then, we have (4.5) using the fact that 

which is obtained from (3.15). 

5. Computa t ions  of fn(A)'s 

As we discussed, the computations of fn(0)'s or equivalently those of f m s  are essential to 
determine fa) as well as to compute the means of the waiting time and the queue length. 
We here give an algorithm to compute fn(A)'s. Then, fn(0)'s are computed by 

which is obtained from (2.5). Since these computations are irrelevant to the number of 
exceptional services C, we mainly use gn instead of g for n >: l as in Section 2. 

In the following computations, we need to evaluate derivatives of Laplace transforms at 
A. To this end, we introduce operator notation for differentiations. Let h(Q) be the Laplace 
transform of a distribution on [O, m). For nonnegative integer n, define the operator D? 
and D! as 

The following result recursively determines fn ( \ ) ' s .  
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Lemma 5.1 For n = 0 , 1 , .  . ., we have 

PROOF. Multiplying both sides of (2.4) for n + 1 instead of n by ( A  - Q)n  yields 

Since, for n > 1 and k < n, 

applying D? to  both sides of (5.3) leads to 

n-1 

- >: ( ) ( - l ) j - l U  - l ) ! A n - j + l ~ + l  
j - l  ( fi g.) l j=l i=j+l 

where n = j is dropped in the summation, since the empty product is unity and its derivative 
is zero. Dividing both sides of this equation by (-l)"'n! yields (5.2). 

Remark 5.1 Note that, for a Laplace transform h of a nonnegative random variable X, 

Let = Sj + Sj+1 + m m . + Sn. Then, cn has the Laplace transform flyaj gi ( Q )  , so (5.2) 
can be written as 

e-m,m (A5+1,n)n-j+1 e-W+~,n 
n! j=l (n  - j + l ) !  

Thus, the recursive computation by (5.2) is expected to be numerically stable, since fj{A)'s 
are all positive (also see Lemma 2.1). 

Remark 5.2 To get algebraic formulas for f m  in terms of the derivatives of gn at  A, (5.2) 
is not so convenient. To this end, we rewrite it in the following form by multiplying both 
sides of (5.2) with n! / ( -A)" .  

n! ( j  - l ) !  
-fn+l(A)=DY ( A )  g j  ( A )  D",~+I 
- A )  ( z=j+1 fi l). (5.4) 

Then, we can recursively calculate n! (-v fn+1 (A )  using either or D?. 
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Using (5-4), we exemplify the first six terms of f n ( A )  below, where Dig^ denotes g  ̂(A) .  

+3gm + 2gi1) (A)g^ (A) ) )  , 

Here, f 2 ( A ) ,  f a ( A )  and f 4 ( A )  are given also in terms of g f n ) ( ~ )  for convenience. These 
computation indicates how much f n ( A )  become complicated as n increases. Thus, it seems 
not so meaningful to present closed form formulas for them except for small n. See Appendix 
A for the corresponding formulas of fn (Q) )  fn(0) and fL(0) for n = 1 ,2 ,  . . . , 5 .  These formulas 
together with (4.1) and (4.4) give closed form formulas for the case of C, exceptional services 
for l < 5. 

Although f n ( A )  and therefore fn(0) are complicated for large n ,  it is expected that 
fn{6}/ fn(Q) converges as n goes to infinity, if the number of exceptional services C, is finite. 
This limit corresponds with the so called quasi-stationary distribution on (0, m), which is 
independent of C,. The following result is known for the standard M/G/l queue, but it is 
intuitively clear that they also hold for the exceptional service model, as long as the C, is 
finite. 

Suppose that the queue is stable, i.e. p < 1, and there is a OQ > 0 such that g(-&) < m .  
Then, from Theorem 2.3 of [6] (see also [8]), we have 

where 7 = Ag(r)/(A - r) < 1, and r is a unique solution of the equation of 0 < 0, 

That is, E ( e ( s T ) O )  = g(O)A/(A - Q) attains a minimum value a t  Q = r. For instance, if 
the service time distribution is the exponential with mean 1/p ,  we have r = (A - p)/2, so 
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we get 

Furthermore, the asymptotic behavior of fn (0) is also obtained in [6], i.e., 

where c is a constant determined by the distribution of S (see Theorem 2.2 
that these results are only useful for fn with sufficient large n compared with 

of [6]). Note 
the l. 

6. Numerical Examples 
In the computations of fn (A)'s through (5.2), we need to evaluate D? (Ei gi)'s. It is possible 
to give analytic expression for an arbitrary n ,  but the expression as well as its numerical 
evaluation rapidly becomes complicated as n is increased. So, we evaluate their numerical 
values inductively. We first note the following equation. 

Hence, if g j i ) ( ~ )  is evaluated for 0 < i <, j and 1 < j <, n, g,) is evaluated 
inductively. Thus, if we know the Laplace transform g' of the j-th service time Sy, we can 
numerically compute fn(A)'s. For instance, if Sjls are all exponentially distributed with 
mean l/pi's, we have 

(-4' (i) A'̂ , P; 
7 9 ,  (A)  = 

(2)  (p' + yr+l (l + pj)-+ll 

where p' = A/^'. 
Using the above algorithm, for the case of the exponentially distributed service times, we 

compute E ( W )  for != 1 ,2 ,3 ,4 ,  and E(WJN 2 n) for !=4  and n < 5. For the latter, we 
also compute the limiting value of E(Wn \ N 2 n) when n goes to infinity, which is denoted 
by E(Woo\N = m). From (5.5), this is computed as 

if the total number l of exceptional services is finite. On the other hand, from (3.15), 
E ( Wn \ N > n) is computed as 

- 1 
- - E (fi-l (())pi-1 - f,(0)). Afn(0) Ã £  

In Tables 1 and 2, the expected values of the conditional waiting times are presented 
for the first n < 15 customers when all the service times are exponentially distributed. In 
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Tables 3 to 6, the expected values of the stationary waiting times are presented for the case 
that S is exponentially distributed. In Tables 3 and 5, all Si7s are exponentially distributed, 
while, in Tables 4 and 6, all Si's are deterministic. In all the tables, case 1 assumes that 

while case 2 assumes that 

Note that A = p, since E (S) = 1. 
From those tables, we can see that the variability of Si's as well as their means increases 

the mean waiting times, as it is expected. One interesting feature is that the mean stationary 
waiting times are maximized for = 3 in Table 6. This shows a trade off between the means 
and variability of Si. 

Table 1: E(Wn\N > n} for the exponential S, with l = 4: case 1 

Table 2: E(Wnl N 2 n) for the exponential Si with Â = 4: case 2 

Table 3: E(W)  for the exponential Si with l <_ 4: case 1 
P Â£= ^ = l  G 2  ^ = 3  Â£=4 

0.3 0.428571 0.267857 0.232045 0.221719 0.219091 
0.6 1.500000 1.145320 0.995524 0.924230 0.896147 
0.9 9.000000 8.406593 8.028617 7.787066 7.668081 

Table 4: E (W)  for the deterministic Si with l < 4: case 1 
P Â£= ^ = l  ^ = 2  ^ = 3  e = 4  

0.3 0.428571 0.184152 0.129821 0.114861 0.110378 
0.6 1.500000 0.960591 0.714844 0.593581 0.533846 
0.9 9.000000 8.097527 7.432807 6.960174 6.661003 
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Table 5: E (W) for the exponential Si with ! 5 4: case 2 

Table 6: E (W)  for the deterministic Si with ! 5 4: case 2 
P ! = O  !=l  !=2 ! = 3  !=4  

0.3 0.428571 0.525794 0.560295 0.564263 0.558788 
0.6 1.500000 1.666667 1.755184 1.772154 1.743789 
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Appendix 

w e  calculate f n ( Q ) ,  fn (0 )  and fA(0) for n = l ,  2 ,  . . . , 5 .  From fn(A)  of Section 5 and (2 .4) ,  

Substituting 6' = 0 in the above formulas or directly from (5 .1) ,  we have 

These fn(Q)  and fn(0)  explicitly determine the Laplace transforms of the stationary distri- 
butions of the waiting time) the sojourn time, and the queue length through (3 .9) ,  (4. l) and 
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(4.41, respectively, for t 5 5. The results agrees with those in [l51 for t = l and in [2] for 
l = 2. They also correct some errors in the corresponding formula for l = 3 in [2], in which 

(1) apparently A is dropped a t  B. (A)  of [2] which is g1 in our notation. We here systematically 
derive the Laplace transforms. 

Finally, we calculate f: (0) for n = l, 2, . . . , 5 ,  using (3.15). 

Afi(0) = 0) 

AfJ(0) = 1 - g1(A) - Pl, 

These together with fn (0) 'S yield closed form formulas for the means waiting time. 

Appendix B 
We compare the stationary empty probability P ( W  = 0) for the two exceptional service 
models with t = 3, one of which exceptional service times are exponentially distributed, 
while those of the other mode1 are deterministic. The other model assumptions are the 
same for both models. As in Section 3, we distinguish their characteristics by super script 
(M) and (D), respectively, if necessary. We assume that p < l and E(sLM)) = E(sLD)) for 
n = l, 2,3. 

Since P ( W  = 0) = l / E ( N ) ,  we compare (l - p) E(N) .  Form Corollary 3. l and fn (0) in 
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Appendix A, 

Hence, we have 

Since, for small X > 0, 

where o(x) denote the small order) i.e., o(x)/x goes to 0 as X goes to 0, we have 

Substituting these expressions into (B.1) yields 

Thus, if we choose sufficiently small p1 and p2 in such a way that p2 > p and p3 > p, this 
equation is positive, so we have 

This is contrary to the case of ! = 2 discussed in Section 3. However, if p1 and p2 become 
large, for instance) if p1 = p2 = 2, then the order is reversed. Thus, P ( W  = 0) can not be 
ordered by the concave orders of Sl and S2 for the ! = 3. 
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