
Journal of the Operations Research
Society of Japan

Vol. 43, No. 4, December 2000

A NEW STOCHASTIC LEARNING ALGORITHM
FOR NEURAL NETWORKS

Masato Koda Hiroyuki Okano
University of Tsukuba IBM Research, Tokyo Research Laboratory

(Received October 6, 1999; Final July 7, 2000)

Abstract A new stochastic learning algorithm using Gaussian white noise sequence, referred to as Subcon-
scious Noise Reaction (SNR), is proposed for a class of discrete-time neural networks with time-dependent
connection weights. Unlike the back-propagation-through-time (BTT) algorithm, SNR does not require the
synchronous transmission of information backward along connection weights, while it uses only ubiquitous
noise and local signals, which are correlated against a single performance functional, to achieve simple se-
quential (chronologically ordered) updating of connection weights. The algorithm is derived and analyzed
on the basis of a functional derivative formulation of the gradient descent method in conjunction with
stochastic ~ensit~ivity analysis techniques using the ~ariationa~l approach.

1. Introduction
Development of computer algorithms for artificial neural networks started with a funda-
mental idea borrowed from studies of the brain. Based on a computing model similar t o
the underlying structure of the brain, neural networks share the brain's ability to learn and
adapt in reaction to external and/or internal inputs, and, over time, the neural network
has itself become an accepted metaphor for how the brain actually works. Sophisticated
back-propagation algorithms [l71 are widely used for many practical applications, and the
technology has now reached a level at which neural computing (computing based on a
brain-like model) is both possible and practical.

Neural networks, for instance, have also been considered to provide existential support for
some models of the organized mind; Hebb7s assumption about the plasticity of synapses [5]
was verified on neural networks before actual biological evidence was found in the brain [7].
However, although neural networks have demonstrated emergent intelligent behavior, they
continue to face major criticism from neuro-scientists. Francis Crick, for example, pointed
out that back-propagation, which requires transmission of information backward along ax-
ons, is highly unrealistic [2] . What the researchers seem t o have overlooked, in the authors'
opinion, is the possible existence of a human-learning or information-preprocessing mecha-
nism that operates largely at a subconscious level without a (conscious) back-propagation
mechanism.

This paper proposes a new noise-based learning algorithm that does not require the
backward transmission of sensitivity information. The algorithm takes advantage of ubiq-
uitous noise inherent in each node (neuron) and updates connection weights using only the
noise, the signal from each node, and the overall objective of the network. The process of
updating connection weights may be referred t o as reaction, because it resembles and emu-
lates an autonomous reaction of each neuron in response t o noise signals and the network
objective. A major characteristic of the algorithm is that updating is done locally without

© 2000 The Operations Research Society of Japan

470 M. Koda & H. Okano

synchronous transmission of information backward along network connections. The pro-
posed algorithm, therefore, is referred to as Subconscious Noise Reaction (SNR)' , since it
may offer some analogy to a possible information preprocessing mechanism in the brain that
operates largely at a subconscious level.

There has been an earlier effort to design and analyze stochastic neural networks that
function in the presence of random perturbations. Kosko [14], for example, extended the
standard deterministic stability theory for recurrent networks (e.g., [l, 41 and references
therein) to continuous networks whose dynamics are driven by additive Brownian motion.
An attempt by Matsuoka [l51 to design a stochastic learning method showed the technical
potential of noise-based learning for a class of layered networks.

In the stochastic sensitivity analysis area, on the other hand, a sensitivity theory for a
general class of stochastic kinetic systems, employing Green's function method, has been
described in Dacol and Rabitz [3]. Similarly, Koda [g] proposed a likelihood ratio method
t o compute the sensitivity information on a temporal evolution of the probability density
function by using a diffusionless Fokker-Planck equation associated with the dynamic sys-
tems. These studies reveal that the stochastic sensitivity analysis can be a powerful tool for
estimating the gradient information of stochastic neural networks.

In the prior exposition, Koda [10, 11, 121 derived a comprehensive framework of stochastic
sensitivity analysis for the neural learning of a class of continuous recurrent networks whose

ditive Gaussian white noise process. The purpose of this paper
uous results to general cases of discrete-time stochastic neural

networks with time-dependent connection weights, and derive Subconscious Noise Reaction
(SNR) algorithm.

The derived SNR algorithm does not involve differentiation of a signal function or sum-
mation over connection weights, where the signal function is a transmitting function a t each
node. The simplicity of the SNR gives it practical importance; a non-differentiable signal
function, such as a step (threshold) function, may be used, and there is no need to propagate
error sensitivities along connection weights. These properties make it suitable for hardware
(chip) implementations, and applicable to dynamic networks in which network connections
are generated and deallocated dynamically at each node independent of a learning algo-
rithm. Note that the standard back-propagation-through-time (BTT) algorithm requires a
differentiable signal function and a static network.

Numerical experiments using the SNR and BTT algorithms based on the three-layer
feedforward networks, N(3; 3; 1) and N(7; n; l), reveal that the SNR has basically the same
characteristics (in a stochastic sense) as the BTT. The experiments also show that the SNR
achieves a learning with a step function, a simple non-differentiable function, with which

T T does not work. Note that the SNR algorithm proposed in this paper is applicable
t o most kinds of empirical learning for both layered or recurrent neural networks, which
can model types of problems in operations research; for example, clustering problems or
combinatorial optimization problems [6].

In Section 2, a discrete-time stochastic neural network system with additive Gaussian
white noise is defined. In Section 3, a functional derivative formulation is proposed for the
gradient descent learning of time-dependent connection weights. The variational approach
t o stochastic sensitivity analysis is also described, and a fundamental sensitivity relation
is obtained by using the concept of discrete-time functional derivative sensitivity coeffi-
cients. In Section 4, a comprehensive theoretical framework for stochastic neural learning is

SNR is also referred to as Stochastic Noise Reaction in other publications.

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

Stochastic Neural Learning Algorithm 4 71

obtained and the SNR algorithm is derived. In Section 5, the application of the SNR algo-
rithm to general layered networks is illustrated, and numerical experiments on the learning
of OR, XOR, and mirror symmetry (SYM) patterns are reported. The results are compared
wit h those obtained by using the standard back-propagation algorithm. Finally, conclusions
are summarized in Section 6.

2. Discrete-Time Stochastic Neural Networks
In this study, a class of discrete-time recurrent neural networks with n units is considered,
which is described by the following difference equations (with time treated as an integer
variable) :

x i (t + l) = x w i j (t) S j (t) + & (t + l) , i , j = l , 2 , . . . , n,
j

(1)

where xi(t) denotes the internal state of the i-th unit a t time t , wij(t) is the weight of the
time-dependent connection between the i-th and the j-th units, Sj{t) is the signal a t the
j-th unit, and &(t + 1) is the noise associated with the i-th unit a t time t + 1. The initial
data, ~ ~ (0) = X a t t = 0, is assumed to be given. For ease of exposition, the non-linear
signal function is specified as

1 - exp(-2x&))
Si(t) = tanh[xi(t)] =

1 + exp(-2xi (t)) '

where tanh is the sigmoid-shaped function on [-l, +l]-interval.
In the subsequent development, a discrete-time model is consistently assumed; however,

many of the techniques described in this study can also be applied and carried over t o
continuous-time recurrent networks [4]. Note that the discrete-time model, in principle, can
be obtained directly from a continuous model by using standard (temporal) discretization
techniques or by (spatially) unfolding a continuous recurrent network into a multi-layered
feedforward network that evolves by one layer at each time step.

Injection of Gaussian white noise (with zero mean and unit variance) is assumed in (1);
i.e.,

E[&@)] = 0, E[&(t)<j(s)] = SijSts, (3)

where E[-] denotes the expectation operator and and Sts denote the Kronecker delta. The
noise &(t) can be considered either as a network bias, an (externally controlled) artificial
noise signal, or an intrinsic system noise (e.g., a thermal noise). Hence, the (n-dimensional)
internal state vector x(t) becomes a stochastic variable, since a degree of uncertainty is
induced by the additive noise sequence <(S) (S = 1,2 , . . . , t) . It should be noted that the
stochastic network defined by (1)-(3) reduces to the ordinary multi-layered network if the
stochastic state variables are replaced by their expected values. The present approach is in
contrast to simulated annealing [8], where the Boltzmann distribution is used to implement
stochastic algorithms.

3. Stochastic Sensitivity Analysis
In this section, a functional derivative formulation is proposed for the gradient descent
learning of time-dependent connection weights. A variational approach for stochastic sen-
sitivity analysis of the network is then described, and a concept of discrete-time functional
derivatives for obtaining fundamental sensitivity relations is proposed.

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

472 M. Koda & H. Okano

3.1. Functional derivative formulation of gradient met hod
Let the performance functional for a network to be minimized be L[x(T)], where t = T
denotes the time of interest, which is usually some final time, although this final time could
itself be arbitrary. Since the connection weights wij(t) are time-dependent, and they are
correlated against a single performance functional L[x(T)] at time T, a relevant gradient
descent method may be formulated as follows:

where r denotes the index for the learning time and p is the learning rate, which is usually
a small positive number (p > Q). In (4), denotes the functional derivative (see, e.g.,

[13]) since the gradient computation in weight space involves multiple time variables t and
T (t < T).

Thus, the central role in this study is played by functional derivative sensitivity coef-
ficients, defined formally as first-order derivatives of the performance functional L[x(T)}
with respect to the tirne-dependent parameters wG(t), which are simply denoted by W.
Further, assuming that the performance functional L [X (T)] has an implicit dependence on
wij(t) only through x (T) , can be expressed as

Equation (5) implies that the state sensitivity coefficients, which are defined as first-order
functional derivatives of the internal state xk (T) with respect t o the connection weights

6xk (T) wij (t) , i.e., a, contain all the information needed for the neural learning of wij (t).
In the present stochastic sensitivity analysis, network performance is evaluated by the

average value of L [X (T)] :

(6)

where p(x, T) denotes the probability density function and X is a set of random variables
associated with the underlying stochastic sequence [(t) . Thus, a gross performance index
for the stochastic network can be defined and given by (6). In practice, however, a suitably
defined statistical average of L[x(T)] may be used for (6).

Taking the functional derivative of (6) with respect to w~ (A) , the performance sensitivity
coefficient is obtained as follows:

where (5) has been used, and it is assumed that the operations of (functional derivative)
differentiation and expectation are interchangeable. Therefore, in the functional derivative
formulation of the gradient descent method (4), it is needed to determine the state sensitivity

6xk (T) coefficients, 6 (1 .
3.2. Variational approach
Sensitivity problems for stochastic neural networks can be solved by using the variational
approach developed and typically demonstrated for continuous-time neural networks by one

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

Stochastic Neural Learning Algorithm 4 73

of the present authors (e.g., [10, 111). In this study, a discrete-time neural network defined
by the stochastic difference equations (1) and (2) is considered by using the same approach.

Simultaneous perturbations of the connection weights, including noise signals, cause
perturbations in the system states. Thus variations, 6wjk(t) and Kj{t + l) , result in a
variation 6xj(t + 1) for t = 0,1 ,2 , . . . , T - 1. To first-order, relations for these variations are
obtained as

Sx, (t + l) = zic wji, (t)S; (t)Sxk (t)

+ E k ' 5 i " , k (t) S k (t) + & (t + l) ,
(8)

where

Adjoint variables q'~~(t) (i = l, 2, . . . , n) are now introduced, and (8) is multiplied by
&(t + 1) to obtain

Summation of (10) from t = 0 to t = T - 1 yields

Further manipulation of (11) and an appropriate arrangement of terms lead t o

where the relation Sxj(0) = 0 and the formal translation '& wjft4, (t + 1)s; (t)6xk (t) =
Et E, wisj (t + l) S', (t) Sxj (t) have been used.

Let 0,(t) be governed formally by the following adjoint equations:

subject to the terminal data

where i represents an output node. Note that the adjoint equations, i.e., n X (T - 1) linear
difference equations (13) with terminal data (14), must generally be solved backwards in
time.

Substitution of (13) and (14) into (12) yields

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

4 74 M. Koda & H. Okano

It is observed that the total variation of the internal state at time T, 6xi(T), can be decom-
posed into two contributing terms. The first term in the right-hand side of (15) shows the
total sum over time of variations in each of the connection weights wjk{t), and the second
term shows the temporal sum of the effect of changes in each of the noise sequences ^,j(t),
respectively. In the continuous limit, the temporal sums in (15) can be equivalently replaced
by the corresponding integrals with respect to the (continuous) time t.

Hence, following the continuous-time arguments [10, 111, a discrete-time functional
derivative can be formally defined based on (15):

where kdZ2 denotes the discrete-time functional derivative sensitivity coefficient, which gives sa, (t)
a relevant stochastic sensitivity measure for the present analysis. Equation (16) implies that
the adjoint function <pj (t) can be viewed as the sensitivity of the internal state at the i-th
unit a t time T, xi(T), with respect to a variation in the noise signal at the j - th unit a t time

t 7

The variational approach described above leads to the following state sensitivity lemma:
Lemma 1 (State Sensitivity): For the discrete-time neural network defined by (1)-(3),

the state functional derivative sensitivity coefficient, a, can be expressed as follows:

f o r t = 0 , 1 , 2 , . . . , T - 1 .
Proof: From (15), the state functional derivative sensitivity coefficient (17) is derived

as follows:

where the discrete-time functional derivative defined by (16) has been used. M
Remark 1: It is important to observe that the adjoint function, <k(t + l) , is not

explicitly involved in (17). This contrasts with the deterministic theory based on the back-
propagation-through-time (BTT) algorithm, where computation of the adjoint equation
is needed [17]. Lemma 1, therefore, implies that the desired sensitivity coefficients may
be obtained directly from the functional derivative sensitivities, a, without the need
for actually computing the back-propagation equation. Similar results for continuous-time
recurrent networks can be found in Koda [10, 11, 121.

4. Stochastic Learning of Discrete-Time Neural Networks
In this section, a stochastic learning algorithm in terms of the functional derivative formu-
lation of the gradient descent method is proposed.
4.1. Main theorem
The algorithm uses the following identity (Novikov7s Theorem):

6 H W where H ([) is an arbitrary functional of the Gaussian stochastic process a t) , and -grÃ

denotes the functional derivative [3].

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

Stochastic Neural Learning Algorithm 4 75

Using in (7) Lemma 1 from Subsection 3.2 and the above Novikov's Theorem, the fol-
lowing performance sensitivity lemma is obtained:

Lemma 2 (Performance Sensitivity): For the discrete-time neural network defined by
can be ex- (1)- (3), the performance functional derivative sensitivity coefficient, , (t , ,

messed as follows:

which is valid in a statistical sense (i.e., as a mean or average).
Proof: Using (17) and (19) in (7) yields

where the follow ng fact is used that Sj(t) and &(t + 1) are independent stochastic variables
SS, (t)

(- S[, (t+l) = O) , because of the temporal causality of the network system (1). Further
arrangement of the terms in (21) yields

which leads to (20). E
Using Lemma 2 in the functional derivative formulation of the gradient descent method

described in Subsection 3.1, i.e., inserting (20) into (4), a stochastic implementation of the
gradient descent method for a discrete-time neural network can be obtained.

Theorem: For the discrete-time stochastic neural network system defined by (1)-(3),
the learning algorithm

W? (t) = w^{t) - pL[x(T)]&(t + l)Sj (t) (23)

guarantees a monotonic decrease in the average value of the given performance functional

L[x(T)l.
Proof: From the formal definition of discrete-time functional derivatives, the basic

variational relationship is obtained as follows:

' SL[x(T)]
SL[x(T)l = W^ SW., (t) .

2 j t=O Sw,,{t)

Using the learning algorithm (23) to update W& (t) at time t , while the weights at other
times are kept unchanged, the variations induced by the learning sequence are derived as
follows:

SW,, (t) = W:+' (t) - W; (t) = -pLT [x(T)]ti (t + l)Sj (t). (25)
The corresponding variation of the performance functional is

where LT [x(T)} denotes the value of L[x(T)] computed by using w'[At).

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

4 76 M. Koda & H. Okano

Then, by taking the expectation of (26) and using (24), (25), and (20):

where CJAT,t} is the correlation defined by

In establishing (27), it has been assumed the relations S w d s) = 0 for S # t and that the
variations of the learning sequence, (251, and sensitivities, W, are statistically indepen-

dent. Finally, from (27), the following relation is obtained:

which leads to the claim stated in the main theorem. M
Remark 2: The assumption of unit variance in the Gaussian white noise sequence, (3),

does not impose any limitations on the practical applications of the Theorem. In actual
implementation of the algorithm, the variance of the noise does not need to be estimated,
because it is never really used for gradient computation in weight space. The magnitude
of the noise variance can be embedded into the learning rate p (> 0) in (23), which could
itself be a function of the learning time, i.e., p = p (r) . An appropriate cooling schedule
that mimics simulated annealing may be considered for p (r) .

Remark 3: Equation (23) contains two time sequences, i.e., the system time t and
the learning time r. The network system (1) and the learning algorithm (23) may operate
on different time scales. As a network evolves in system time t , (23) can be sequentially

ronological order without resort to back-propagation techniques. For a fixed
system time, the update of connection weights according to (23) usually occurs at a slower
rate with the learning time r. It is important to note that the weight w s) can take
independent (constant) values over the system time (t = 0,1,2, . . . , T - 1).

Remark 4: Equation (23) does not involve differentiation of a signal function or sum-
mation over connection weights, while the BTT algorithm involves both (see (31)-(33) in
the next section). It means that a non-differentiable function may be used for a signal
function although its derivative appears only formally in the derivation of the learning al-
gorithm, e.g., in (8)-(13). It also means that weight connections may be generated and

ynamically at each node independent of the learning algorithm (23), while the
BTT requires a static adjacency information of the network.

A central role in the stochastic sensitivity approach described above is played by ubiqui-
tous noise a t each individual unit. In general, such noise is small and the resulting variation
of a performance functional may not be noticeably large. However, the Theorem indicates
tha t the iterative modification of connection weights can be performed as a stochastic reac-
tion of each connection weight wv (t) to the ubiquitous noise ^{t + 1) and the global perfor-
mance functional L[x(T)]. Since the reaction (23) can occur locally without a synchronous
transmission of information backward along network connections (e.g., back-propagation),
and may be analogous t o the subconscious (i.e., autonomous) activity of neurons, the learn-
ing algorithm (23) is called Subconscious Noise Reaction (SNR).

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

Stochastic Neural Learning Algorithm

4.2. Framework of the algorithm
The framework of the learning algorithm based on the main theorem (23) is as follows:
1. Initialize the connection weights w^(t) for t = 0,1,2, . . . , T - 1.
2. For learning time r := 1,2 , . . . , M do

begin
Clear the update increments 5w,,(t) for t = 0,1 ,2 , . . . , T - 1.
For running time r := 1,2 , . . . , R do

begin
Set an initial state vector x(0) = xO.
Generate the Gaussian white noise vectors a t) for t = l, 2, . . . , T.
Calculate the state vectors x(t) for t = 1 ,2 , . . . , T.
Calculate the performance functional L[x(T)] .
Calculate new update increments based on (23) as
SwG(t) := Swij(t) - pL[x(T)]f.[t + l)Sj(t) for t = 0 ,1 ,2 , . . . , T - 1.

end;
Update the connection weights as
wij{t) := W@ (t) + 6wij{t)/R for t = 0,1,2, . . . , T - 1.

Adjust the connection weights based on the given value range [wmin, wmax] as
wij(t) := max {min { ~ ~ (t) , wmai:} , Wmin} for t = 0,1,2, . . . , T - 1.

Stop if the given terminal condition is met.
end;

A set of training patterns P = {{xO, X*}, . . .} is usually given in advance, and the
above algorithm is applied to obtain the optimal connection weights with which the network
outputs desired output vectors X* corresponding to given input vectors xO.

The weight and state vectors may be implemented in a computer as floating point vari-
ables; for example, the connection weights wij(t) may be implemented as an n X n X T
floating point array, where n is a number of nodes and T is a final time of the system.
The initial value of each W^ (t) is arbitrary; Gaussian white noise2 is used in the numerical
study.

The procedure in learning time, from Steps 4 to 15, is called an iteration, which is further
decomposed into four phases: initialize (Step 4), running (from Steps 5 to 12), update (Steps
13 and 14), and evaluation (Step 15). To accumulate update increments valid in a stochastic
sense, R runs are performed in the running phase. Usually, a large number is chosen for
R compared to the size of the training patterns, i.e., IPI. In Step 7, a pair of an input
vector and a desired output vector, {xo7x*} E P , is arbitrarily chosen. The performance
functional L[x(T)] should be defined to reflect the extent of errors in the actual output
vector x(T) compared to the desired output vector. The details of implementation of the
SNR framework for three-layer feedforward networks are described in the next section.

5. Numerical Study
In this section, the convergence behavior of the proposed Subconscious Noise Reaction
(SNR) algorithm is studied and compared with that of the standard back-propagation-
through-time (BTT) algorithm [17]. A linearly separable pattern - logical OR - and two
linearly non-separable patterns - logical XOR and symmetry detection - are used to evaluate
performances of the SNR and BTT algorithms.

Gaussian white noise with zero mean and unit variance is generated by cos(2rra)&Ti$, where a and
b are real numbers uniformly distributed on (0, l)-interval.

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

M. Koda & H. Okano

Figure 1: N(3; 3; l) layered network

5.1. Network models and learning algorithms
In order to adapt the SNR algorithm to general layered networks, xi(t) in (1) is interpreted
as denoting the internal state at the i-th unit in the t-th network layer. This is the unfolded
feedforward network model described in Section 2. Hence, hereafter, t represents an index
for the t-th network layer; e.g., t = T denotes the output layer. Similarly, wij(t) is the
weight of the connection between the j-th unit in the t-th layer and the i-th unit in the
(t + l) - th layer.

Two types of three-layer-networks, N(3; 3; 1) and N(7; n; l), are used for the present
numerical study. The N(3; 3; 1) layered network (Figure 1) has two input units in the
zeroth layer, two hidden units in the first layer, and one output unit in the second layer.
In addition, auxiliary (threshold) units in the zeroth and first layers, which always hold the
constant input (= 1.0), give threshold values to the units in the first and second layers,
respectively. The N(7; n ; 1) layered network (Figure 2) has six input units in the zeroth
layer, n - 1 hidden units in the first layer, one output unit in the second layer, and one
threshold unit both in the zeroth and first layers. The value of n ranges from 2 to 20 in a
simulation, where a simulation means an execution of the framework described in Subsection
4.2. For both networks, the internal states of units in the input layer are denoted by xi(0),
those of units in the hidden layer by xi (l), and a single unit in the output (second) layer
by x f l) (T = 2). Connection weights are denoted by wq(t) (t = 0,1) . In the following
simulations, for the input and threshold units, the obvious relation Sz(t) = x î} is assumed.
Similarly, for desired output vectors, S* = X* is assumed. The sigmoid function, (2), is used
for other units unless otherwise stated.

The performance functional L[x(T)} is now specified to be a summation of the square of
the difference (error) between the actual output Si(T) and the desired output S*:

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

Stochastic Neural Learning Algorithm

Output

SB .- 1 .o
Input

Figure 2: N(7; n ; 1) layered network

where the summation is taken a t all the corresponding output units. Note that , for N(3; 3; 1)
and N(7; n ; l) , the network has only one output unit. Note also that , in the present numer-
ical study, the gross performance index is defined by J = (L[x(T)]), where (e) denotes the
statistical average in a running phase.

Computation of the error derivatives associated with (30) in the unfolded network can
be carried out by using the following BTT algorithm:

with the terminal data

a, (T) = ^ (T) {St{T) - 5:)
= /.{l + s,(T)}{l - si(T)}{s,(T) - ' ? } l

and t h e weight modification

wy (t) = wij (t) - a, (t + l) S, (t) , (33)

where p, is the learning rate (p > 0).
Several observations may be made here. In (32), when the actual output Si(T) is staying

close to the desired output S:, (Ti{T) behaves essentially like a noise. As a result, (31)
is regarded as back-propagating the noise t o compute the error derivatives, i.e., d t +
l) , used in the BTT algorithm (33). Note that the back-propagation equation (31) is
essentially equivalent to the adjoint equation (13), though the terminal conditions, (32) and
(14), respectively, are different. Further, the BTT algorithm (33) corresponds to the SNR
algorithm (23) , where the stochastic correlation pL[x(T)]&(t + l) is used instead of dt + l)

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

480 M. Koda & H. Okano

or error sensitivity. Thus, in contrast to the BTT algorithm, the SNR algorithm does not
need to solve the back-propagation equations (31) and (32).

For N{n; n ; . . . ; n) layered networks, the time complexity (computational cost) of up-
dating a connection weight by means of the BTT algorithm (31)-(33) is O(n), because of
the summation involved in (31). In consequence, the time complexity of updating all the
connection weights in a layer by means of the BTT algorithm is 0(n2) . On the other hand,
the complexity of updating a connection weight by means of the SNR algorithm is O(1); i.e.,
the total time complexity is 0(n), which is much smaller than that of the BTT algorithm.
5.2. Simulation results
Both the SNR and BTT algorithms were used to perform numerical simulations for the
N(3; 3; 1) and N(7; n; I) layered networks, and their convergence behaviors were compared.

e framework described in Subsection 4.2 was used for both algorithms. For BTT sim-
11 of the framework was modified to calculate the update increments based

on (33) as SW,, (t} := 5w,, (t) - 0, (t + 1)S, (t) for t = 0 ,1 ,2 , . . . , T - 1, which means the
back-propagation of error derivatives should be performed in this step.

For training patterns (i.e., sets of input and desired output vectors), logical OR and
XOR patterns were used for N(3; 3; l) , and a mirror symmetry (SYM) pattern was used
for *W(?; n; l). In the OR pattern, only two hidden units (including a threshold unit) are
required, while the XOR and SYM patterns require at least three hidden units for neural
learning. Note that the SYM pattern is used to detect mirror symmetry in an input vector of
six bits; when an input vector is symmetric - (0 ,0 ,0 ,0 ,0 , 0), (1 ,0 ,0 ,0 ,0 , l), (0 ,1 ,0 ,0 ,1 , Q),
(1 ,1 ,0 ,0 ,1 , l) , (0 ,0 ,1 ,1 ,0 , 0), (1 ,0 ,1 ,1 ,0 , l) , (0 ,1 ,1 ,1 ,1 , Q) , (1,1, 1,1,1,1) - the output is
1; otherwise, the output is 0. This symmetry detection is rather a difficult problem since
all the neighbors of symmetric vectors within Hamming distance 1 are asymmetric.

In Step 7 of the framework, an input vector was prepared as follows: a desired output
value S: was selected randomly from 1 and 0, and an input vector was then selected randomly
from vectors corresponding to the selected output. Each component in an input vector took
a value of either +l or - 1. Once an input vector (X!, x i) or (X : , . . . , X:) had been set, the
network states and the following decision function was calculated:

1 when S(T) is correct,
0 when S(T) is incorrect,

where S(T) is said to be correct when

+l > Si(T) > 0 iff +1 > 5'; > 0,
- l<S i (T)<O iff - 1 < S , * < 0 .

Sirnulations started with each connection weight initialized to a Gaussian white
(with zero mean and unit variance), and terminated when the following conditions
both met:

J = (L[x(T)]) < 0.01; and,
1 - (D[S(T)]) < 0.01,

noise
were

where (m) denotes the average value in a running phase. The simulation was aborted if
the number of iterations exceeded M , i.e., if the simulation did not converge. For the
OR and XOR patterns, M = 1000, and for the SYM pattern, M = 5000. Throughout this
numerical study, Gaussian white noise was injected into the hidden and output units, except
in the second case of BTT simulation for the OR pattern (Figure 5), where the network was
completely noise-free.

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

Stochastic Neural Learning Algorithm 481

I t e r a t i o n s vs. v- of SNR (OR)

- : tf of iterations - : Failure ratio (g)

I t e r a t i o n s vs. u. of BIT (OR)

- : # of iterations
- : Failure ratio ($1

Figure 3: Average convergence time and Figure 4: Average convergence time and
failure ratio of the SNR algorithm for an failure ratio of the BTT algorithm for an
OR pattern, plotted against p OR pattern, plotted against p

The running phase consists of R = 100 runs to compute the network states and D [S (T)] ,
and to accumulate the update increments, i.e., the second terms in the right-hand sides of
(23) and (33). After the running phase, each connection weight is modified in the update
phase. A value range [-10, +l01 was specified for each of the connection weights. In the
evaluation phase, the conditions for termination are checked, and if the simulation converges,
the convergence time is recorded.

For simulations of the OR and XOR patterns, the learning rate p varies over a range
of values from 0.1 to 16.0, and 100 simulations were conducted for each value of p. For
simulations of the SYM pattern, p is always set to 5.0; on the other hand, the number of
hidden units n (including a threshold unit) varies over a range of values from 2 to 20, and
100 simulations were conducted for each value of n. The average value of the convergence
time and the number of failed runs among the 100 simulations are defined as the average
convergence time, and as the failure ratio, respectively.

Comparison of the SNR and BTT algorithms for the OR pattern (Figures 3 and 4) shows
that simulations always converge for both algorithms when p is in a certain range, and that
SNR has basically the same performance characteristics as BTT. The average convergence
times of both algorithms are almost the same for small p.

When BTT was used in a noise-free environment, on the other hand, where no noise
was injected into the hidden and output units, BTT's performance was very poor. Figure
5 shows the result of using the BTT algorithm for the OR pattern without noise injection.
Comparison of Figures 4 and 5 reveals that, to obtain better performance, the BTT al-
gorithm should be used in a stochastic environment just as the SNR algorithm. This is
related to the recent findings of the enhanced performance of neural networks with additive
noise (e.g., [16]), and constitutes one of motivations for investigating the present stochastic
learning algorithm.

Figure 6 shows the result of using the SNR algorithm for the OR pattern while using a

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

M. Koda & H. Okano

Iterations vs, p of noise-free l3lT (OR)

- : # of i terat ions - : Failure ra t io (g)

Figure 5: Average convergence time and
failure ratio of the BTT algorithm for an
OR pattern, plotted against p. No noise
was injected.

step function

Si (t) = step [xi (t)] =

Iterations vs. fi of SNR/step (OR) ? O 0 1 - : i7 of i terat ions
- : Failure ra t io (%l

Figure 6: Average convergence time and
failure ratio of the SNR algorithm with a
step function for an OR patternl plotted
against p

+l when xi(t) 2 0,
-l when xi(t) < O1

for normal units at t = l and t = T (T = 2). Note that the obvious relation S%(t) = xz(t)
was assumed for units at t = 0 and for threshold units. Comparison of Figures 3 and 6
reveals that the SNR can perform neural learning while using a step function as well as
with a sigmoid function. Note that the BTT algorithm does not work with a step function
because (32) and (33) explicitly differentiate the signal function.

Simulations were conducted in a similar manner for the XOR pattern (Figures 7 and 8).
In contrast to the OR patternl the failure ratios of both the SNR and BTT algorithms depend
strongly on p, and no single value of p guarantees convergence of the BTT algorithm. Which
means determination of a proper learning rate is crucial and tedious for both algorithms.
Note that the failure ratio of SNR becomes higher than that in Figure 7 when the value
range is not set, and that determination of a proper value range is important for SNR.

The result of the SNR algorithm while using the step function (Figure 9) reveals that
SNR can train the neural network for the XOR pattern as well as with a sigmoid function
(Figure 7). Note that both the number of iterations and the failure ratio can be decreased
by increasing the number of hidden units or by adjusting the noise variance, and that the
experimental setup used here may not be optimal for both algorithms.

Simulation results for the SYM pattern (Figures l 0 and l l) show that the sensitivities of
the SNR and BTT algorithms to the complexity of the network architecture (i.e.> the number
of hidden units n) are basically the same. No single value of p guarantees convergence of
the BTT algorithm as well as for the XOR pattern. Comparison of the results of the SNR
algorithm with the sigmoid and step functions (Figures l 0 and 12) reveals that the choice of
these signal functions does not greatly affect the convergence behavior and the architecture
sensitivity of SNR.

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

Stochastic Neural Learning Algorithm 483

800

700

600

500

400

300

zoo

l00

c

Iterations vs. U of SNR (XOR)

- : # of iterations - : Failure ratio (%l

Figure 7: Average convergence time and
failure ratio of the SNR algorithm for an
XOR pattern, plotted against p

Iterations vs. U of SNR/step (XOR)

- : # of iterations
- : F d u r e ratio (%l

Figure 9: Average convergence time and
failure ratio of the SNR algorithm with a
step function for an XOR pattern? plot-
ted against p

Ite~ations vs. U of BTI (XOR)

- : # of iterations
- : Failure ratio (8

Figure 8: Average convergence time and
failure ratio of the BTT algorithm for an
XOR pattern? plotted against p

Iterations vs. hidden nodes of SNR (SW)

- : # of iterations - : Failure ratio (X)

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
of hidden nodes

Figure 10: Average convergence time
and failure ratio of the SNR algorithm
for a mirror symmetry pattern, plotted
against the number of hidden units

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

M. Koda & H. 0ka110

I t e r a t i o n s vs, hidden nodes of B'IT (SM)
5000 - : # of i t e r a t h w - : Failure ra t io (g)

4000

3000

2000

I000

2 3 4 5 6 7 8 9 l0 l1 12 13 14 15 l6 17 18 19 20
of hidden nodes

I t e r a t i o n s vs. hidden nodes of SNR/step {$+M)
100% - : # of i t e ra t iow - : Failure ra t io (X)

5 0%

2 3 4 5 6 7 8 9 10 l 1 12 13 14 15 16 17 18 19 20 0%

of hidden nodes

Figure l l : Average convergence time Figure 12: Average convergence time
and failure ratio of the BTT algorithm and failure ratio of the SNR algorithm
for a mirror symmetry pattern7 plotted with a step function for a mirror symme-
against the number of hidden units try pattern7 plotted against the number

of hidden units

These results indicate that the SNR algorithm can be used to train the neural network
in a stochastic environment, and that the SNR and BTT algorithms have basically the same
capabilities. For all the experiments iri this section? the failure ratio of SNR is generally
smaller than that of BTT while the average number of iterations required by SNR is larger
than that by BTT. As stated earlier, the time complexity of the SNR algorithm for updating
a connection weight is smaller than that of the BTT algorithm; however, this advantage may
be offset by an increase in the number of iterations needed for convergence. Consequently7
the overall performance of the SNR and BTT algorithms may be comparable when suitable
setups for the network architecture or the noise variances are realized for both algorithms.

A new stochastic learning algorithm, referred to as Subconscious Noise Reaction (SNR)?
was developed for a class of discrete-time recurrent 11eural networks with time-dependent
connection weights and additive Gaussian white noise. Tlie algorithm iteratively modifies
connection weights as a stochastic reaction to the ubiquitous noise and to the global network
objective. The present SNR algorithm has an advantage over standard back-propagation
techniques in that it alleviates the need to solve lengthy back-propagation equations by
providing a comprehensive theoretical framework derived from stochastic sensitivity analy-
sis using the variational approach. Moreover, SNR's computer implementations are much
simpler than standard back-propagatiorl techniques; a simple, but non-differentiable step
function can be used for the signal function, and SNR9s complexity of updating all the con-
nection weights in a layer is much smaller than that required by BTT. For N(n; n; . . . ; n)
layered networks? SNR only requires O (n) updates while BTT requires O(n2) . Further, SNR
does not use the adja,cency information of the network connections in updating their weights.

ecause of these properties7 SNR may be suited to hardware (chip) implementations.

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

Stochastic Neural Learning Algorithm

Acknowledgment
The authors would like to thank anonymous referees for their valuable comments which
helped to improve the paper. The work of the first author was supported in part by a
Grant-in-Aid for Scientific Research of the Ministry of Education? Science? Sports? and
Culture of Japan.

References

[l] M. A. Cohen and S. Grossberg: Absolute stability of global pattern formation and
parallel memory storage by competitive neural networks. IEEE Transactzons on Systems7
Man7 and Cybernet~cs~ SMC-l3 (1983) 815-826.

[2] F. Crick: The recent excitement about neural networks. Nature, 337 (1989) 129-132.
[3] D. K. Dacol and H. Rabitz: Sensitivity analysis of stochastic kinetic models. Journal of

Mathematzcal Physzcs, 25 (1984) 2716-2727.
[4] S. Grossberg: Nonlinear neural networks: Principles7 mechanisms7 and architectures.

Neural Networks7 l (1988) 17-61.
[S] D. 0 . Hebb: The Organzzatzon of Behavzor (John Wiley? New York7 1949).
[6] J . Hertz7 Anders Krogh, and Richard G. Palmer? Introduction to the Theory of Neural

Computatzon (Pegasus Booksl 1991)
[7] D. H. Hubel and T. N. Wiesel: Receptive fields? binocular interaction and functional

architecture in the cat7s visual cortex. Journal of Physzology7 160 (1962) 106-154.
[8] S. Kirkpatrik, C. D. Gelatt? Jr.? and M. P. Vecchi: Optimization by simulated annealing.

Sczence7 220 (1983) 671-680.
[g] M. Koda: Sensitivity analysis of stochastic dynamical systems. International Journal

of Systems Sczence, 23 (1992) 2187-2195.
[l01 M. Koda: Stochastic sensitivity analysis method for neural network learning. Interna-

tional Journal of Systems Sczence7 26 (1995) 703-711.
[11] M. Koda: Neural network learning based on stochastic sensitivity analysis? IEEE

Transactions on Systems7 Man, and Cybernetzcs Par t Bl 27 (1997) 132-135.
[l21 M. Koda: Stochastic sensitivity analysis and Langevin simulation for neural network

learning. Journal of Relzabzlzty Engzneerzng and System Safety, 57 (1997) 71-78.
[l31 M. Koda and J . H. Seinfeld: Sensitivity analysis of distributed parameter systems.

IEEE Transactzons on Automatic Control7 AC-27 (1982) 951-955.
[l41 B. Kosko: Structural stability of unsupervised learning in feedback neural networks.

IEEE Transactzons on Automatzc Control, AC-36 (1991) 785-792.
[l51 K. Matsuoka: Learning and evolution of neural nets (in Japanese). Journal of SICE7

32 (1993) 843-847.
[l61 A. F. Murray and P. J. Edwards: Enhanced MLP performance and fault tolerance

resulting from synaptic weight noise during training. IEEE Transactzons on Neural
Networks, NN-5 (1994) 792-802.

[l71 D. E. Rumelhart, G. E. Hinton? and R. J. Williams: Learning representation by back-
propagation errors. Nature? 232 (1986) 533-536.

Hiroyuki Okano
IBM Research, Tokyo Research Laboratory
1623-14 Shimots~rurna~ Yamato
Kanagawa-ken 242-8502> JAPAN
E-mail: okanoh@ J P . ibm. corn

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

