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Abstract A new stochastic learning algorithm using Gaussian white noise sequence, referred to as Subcon- 
scious Noise Reaction (SNR), is proposed for a class of discrete-time neural networks with time-dependent 
connection weights. Unlike the back-propagation-through-time (BTT) algorithm, SNR does not require the 
synchronous transmission of information backward along connection weights, while it uses only ubiquitous 
noise and local signals, which are correlated against a single performance functional, to  achieve simple se- 
quential (chronologically ordered) updating of connection weights. The algorithm is derived and analyzed 
on the basis of a functional derivative formulation of the gradient descent method in conjunction with 
stochastic ~ensit~ivity analysis techniques using the ~ariationa~l approach. 

1. Introduction 
Development of computer algorithms for artificial neural networks started with a funda- 
mental idea borrowed from studies of the brain. Based on a computing model similar t o  
the underlying structure of the brain, neural networks share the brain's ability to learn and 
adapt in reaction to  external and/or internal inputs, and, over time, the neural network 
has itself become an accepted metaphor for how the brain actually works. Sophisticated 
back-propagation algorithms [l71 are widely used for many practical applications, and the 
technology has now reached a level at  which neural computing (computing based on a 
brain-like model) is both possible and practical. 

Neural networks, for instance, have also been considered to  provide existential support for 
some models of the organized mind; Hebb7s assumption about the plasticity of synapses [5] 
was verified on neural networks before actual biological evidence was found in the brain [7]. 
However, although neural networks have demonstrated emergent intelligent behavior, they 
continue to  face major criticism from neuro-scientists. Francis Crick, for example, pointed 
out that  back-propagation, which requires transmission of information backward along ax- 
ons, is highly unrealistic [ 2 ] .  What the researchers seem t o  have overlooked, in the authors' 
opinion, is the possible existence of a human-learning or information-preprocessing mecha- 
nism that  operates largely at  a subconscious level without a (conscious) back-propagation 
mechanism. 

This paper proposes a new noise-based learning algorithm that  does not require the 
backward transmission of sensitivity information. The algorithm takes advantage of ubiq- 
uitous noise inherent in each node (neuron) and updates connection weights using only the 
noise, the signal from each node, and the overall objective of the network. The process of 
updating connection weights may be referred t o  as reaction, because it resembles and emu- 
lates an autonomous reaction of each neuron in response t o  noise signals and the network 
objective. A major characteristic of the algorithm is that  updating is done locally without 
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synchronous transmission of information backward along network connections. The pro- 
posed algorithm, therefore, is referred to as Subconscious Noise Reaction (SNR)' , since it 
may offer some analogy to a possible information preprocessing mechanism in the brain that 
operates largely at  a subconscious level. 

There has been an earlier effort to design and analyze stochastic neural networks that 
function in the presence of random perturbations. Kosko [14], for example, extended the 
standard deterministic stability theory for recurrent networks (e.g., [l, 41 and references 
therein) to  continuous networks whose dynamics are driven by additive Brownian motion. 
An attempt by Matsuoka [l51 to design a stochastic learning method showed the technical 
potential of noise-based learning for a class of layered networks. 

In the stochastic sensitivity analysis area, on the other hand, a sensitivity theory for a 
general class of stochastic kinetic systems, employing Green's function method, has been 
described in Dacol and Rabitz [3]. Similarly, Koda [g] proposed a likelihood ratio method 
t o  compute the sensitivity information on a temporal evolution of the probability density 
function by using a diffusionless Fokker-Planck equation associated with the dynamic sys- 
tems. These studies reveal that the stochastic sensitivity analysis can be a powerful tool for 
estimating the gradient information of stochastic neural networks. 

In the prior exposition, Koda [10, 11, 121 derived a comprehensive framework of stochastic 
sensitivity analysis for the neural learning of a class of continuous recurrent networks whose 

ditive Gaussian white noise process. The purpose of this paper 
uous results to general cases of discrete-time stochastic neural 

networks with time-dependent connection weights, and derive Subconscious Noise Reaction 
(SNR) algorithm. 

The derived SNR algorithm does not involve differentiation of a signal function or sum- 
mation over connection weights, where the signal function is a transmitting function a t  each 
node. The simplicity of the SNR gives it practical importance; a non-differentiable signal 
function, such as a step (threshold) function, may be used, and there is no need to  propagate 
error sensitivities along connection weights. These properties make it suitable for hardware 
(chip) implementations, and applicable to dynamic networks in which network connections 
are generated and deallocated dynamically at  each node independent of a learning algo- 
rithm. Note that the standard back-propagation-through-time (BTT) algorithm requires a 
differentiable signal function and a static network. 

Numerical experiments using the SNR and BTT algorithms based on the three-layer 
feedforward networks, N(3;  3; 1) and N(7;  n; l), reveal that  the SNR has basically the same 
characteristics (in a stochastic sense) as the BTT. The experiments also show that the SNR 
achieves a learning with a step function, a simple non-differentiable function, with which 

T T  does not work. Note that  the SNR algorithm proposed in this paper is applicable 
t o  most kinds of empirical learning for both layered or recurrent neural networks, which 
can model types of problems in operations research; for example, clustering problems or 
combinatorial optimization problems [6]. 

In Section 2, a discrete-time stochastic neural network system with additive Gaussian 
white noise is defined. In Section 3, a functional derivative formulation is proposed for the 
gradient descent learning of time-dependent connection weights. The variational approach 
t o  stochastic sensitivity analysis is also described, and a fundamental sensitivity relation 
is obtained by using the concept of discrete-time functional derivative sensitivity coeffi- 
cients. In Section 4, a comprehensive theoretical framework for stochastic neural learning is 

SNR is also referred to as Stochastic Noise Reaction in other publications. 
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obtained and the SNR algorithm is derived. In Section 5, the application of the SNR algo- 
rithm to general layered networks is illustrated, and numerical experiments on the learning 
of OR, XOR, and mirror symmetry (SYM) patterns are reported. The results are compared 
wit h those obtained by using the standard back-propagation algorithm. Finally, conclusions 
are summarized in Section 6. 

2. Discrete-Time Stochastic Neural Networks 
In this study, a class of discrete-time recurrent neural networks with n units is considered, 
which is described by the following difference equations (with time treated as an integer 
variable) : 

x i ( t + l ) = x w i j ( t ) S j ( t ) + & ( t + l ) ,  i , j = l , 2  , . . . ,  n,  
j 

(1) 

where xi(t) denotes the internal state of the i-th unit a t  time t ,  wij(t) is the weight of the 
time-dependent connection between the i-th and the j-th units, Sj{t) is the signal a t  the 
j-th unit, and &(t  + 1) is the noise associated with the i-th unit a t  time t + 1. The initial 
data, ~ ~ ( 0 )  = X a t  t = 0, is assumed to  be given. For ease of exposition, the non-linear 
signal function is specified as 

1 - exp(-2x&)) 
Si(t)  = tanh[xi(t)] = 

1 + exp(-2xi (t)) ' 

where tanh is the sigmoid-shaped function on [-l, +l]-interval. 
In the subsequent development, a discrete-time model is consistently assumed; however, 

many of the techniques described in this study can also be applied and carried over t o  
continuous-time recurrent networks [4]. Note that  the discrete-time model, in principle, can 
be obtained directly from a continuous model by using standard (temporal) discretization 
techniques or by (spatially) unfolding a continuous recurrent network into a multi-layered 
feedforward network that  evolves by one layer at  each time step. 

Injection of Gaussian white noise (with zero mean and unit variance) is assumed in (1); 
i.e., 

E[&@)] = 0, E[&(t)<j(s)] = SijSts, (3) 

where E[-] denotes the expectation operator and and Sts denote the Kronecker delta. The 
noise &(t) can be considered either as a network bias, an (externally controlled) artificial 
noise signal, or an intrinsic system noise (e.g., a thermal noise). Hence, the (n-dimensional) 
internal state vector x(t)  becomes a stochastic variable, since a degree of uncertainty is 
induced by the additive noise sequence <(S) (S = 1,2 ,  . . . , t) .  It should be noted that the 
stochastic network defined by (1)-(3) reduces to  the ordinary multi-layered network if the 
stochastic state variables are replaced by their expected values. The present approach is in 
contrast to  simulated annealing [8], where the Boltzmann distribution is used to  implement 
stochastic algorithms. 

3. Stochastic Sensitivity Analysis 
In this section, a functional derivative formulation is proposed for the gradient descent 
learning of time-dependent connection weights. A variational approach for stochastic sen- 
sitivity analysis of the network is then described, and a concept of discrete-time functional 
derivatives for obtaining fundamental sensitivity relations is proposed. 
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3.1. Functional derivative formulation of gradient met hod 
Let the performance functional for a network to be minimized be L[x(T)],  where t = T 
denotes the time of interest, which is usually some final time, although this final time could 
itself be arbitrary. Since the connection weights wij(t) are time-dependent, and they are 
correlated against a single performance functional L[x(T)] at  time T, a relevant gradient 
descent method may be formulated as follows: 

where r denotes the index for the learning time and p is the learning rate, which is usually 
a small positive number (p > Q). In (4), denotes the functional derivative (see, e.g., 

[13]) since the gradient computation in weight space involves multiple time variables t and 
T ( t  < T). 

Thus, the central role in this study is played by functional derivative sensitivity coef- 
ficients, defined formally as first-order derivatives of the performance functional L[x(T)} 
with respect to the tirne-dependent parameters wG(t), which are simply denoted by W. 
Further, assuming that  the performance functional L [X (T)] has an implicit dependence on 
wij(t) only through x (T) ,  can be expressed as 

Equation (5) implies that  the state sensitivity coefficients, which are defined as first-order 
functional derivatives of the internal state xk (T) with respect t o  the connection weights 

6xk ( T )  wij (t) ,  i.e., a, contain all the information needed for the neural learning of wij (t). 
In the present stochastic sensitivity analysis, network performance is evaluated by the 

average value of L [X (T)] : 

(6) 

where p(x, T) denotes the probability density function and X is a set of random variables 
associated with the underlying stochastic sequence [ ( t ) .  Thus, a gross performance index 
for the stochastic network can be defined and given by (6). In practice, however, a suitably 
defined statistical average of L[x(T)] may be used for (6). 

Taking the functional derivative of (6) with respect to  w~ ( A ) ,  the performance sensitivity 
coefficient is obtained as follows: 

where (5) has been used, and it is assumed that the operations of (functional derivative) 
differentiation and expectation are interchangeable. Therefore, in the functional derivative 
formulation of the gradient descent method (4), it is needed to  determine the state sensitivity 

6xk ( T )  coefficients, 6 ( 1  . 
3.2. Variational approach 
Sensitivity problems for stochastic neural networks can be solved by using the variational 
approach developed and typically demonstrated for continuous-time neural networks by one 
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of the present authors (e.g., [10, 111). In this study, a discrete-time neural network defined 
by the stochastic difference equations (1) and (2) is considered by using the same approach. 

Simultaneous perturbations of the connection weights, including noise signals, cause 
perturbations in the system states. Thus variations, 6wjk(t) and Kj{t + l ) ,  result in a 
variation 6xj(t + 1) for t = 0,1 ,2 ,  . . . , T - 1. To first-order, relations for these variations are 
obtained as 

Sx, ( t  + l) = zic wji, (t)S; (t)Sxk (t) 

+ E k ' 5 i " , k ( t ) S k ( t ) + & ( t + l ) ,  
(8) 

where 

Adjoint variables q'~~(t) (i = l, 2, . . . , n)  are now introduced, and (8) is multiplied by 
&( t  + 1) to  obtain 

Summation of (10) from t = 0 to  t = T - 1 yields 

Further manipulation of (11) and an appropriate arrangement of terms lead t o  

where the relation Sxj(0) = 0 and the formal translation '& wjft4, (t + 1)s; (t)6xk (t)  = 
Et E, wisj (t + l) S', (t) Sxj (t) have been used. 

Let 0,(t) be governed formally by the following adjoint equations: 

subject to the terminal data 

where i represents an output node. Note that the adjoint equations, i.e., n X (T - 1) linear 
difference equations (13) with terminal data (14), must generally be solved backwards in 
time. 

Substitution of (13) and (14) into (12) yields 
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It  is observed that  the total variation of the internal state at  time T, 6xi(T), can be decom- 
posed into two contributing terms. The first term in the right-hand side of (15) shows the 
total sum over time of variations in each of the connection weights wjk{t), and the second 
term shows the temporal sum of the effect of changes in each of the noise sequences ^,j(t), 
respectively. In the continuous limit, the temporal sums in (15) can be equivalently replaced 
by the corresponding integrals with respect to  the (continuous) time t. 

Hence, following the continuous-time arguments [10, 111, a discrete-time functional 
derivative can be formally defined based on (15): 

where kdZ2 denotes the discrete-time functional derivative sensitivity coefficient, which gives sa, ( t )  
a relevant stochastic sensitivity measure for the present analysis. Equation (16) implies that 
the adjoint function <pj  (t)  can be viewed as the sensitivity of the internal state at  the i-th 
unit a t  time T, xi(T),  with respect to a variation in the noise signal at  the j - th unit a t  time 

t 7  

The variational approach described above leads to  the following state sensitivity lemma: 
Lemma 1 (State Sensitivity): For the discrete-time neural network defined by (1)-(3), 

the state functional derivative sensitivity coefficient, a, can be expressed as follows: 

f o r t = 0 , 1 , 2  , . . . ,  T - 1 .  
Proof: From (15), the state functional derivative sensitivity coefficient (17) is derived 

as follows: 

where the discrete-time functional derivative defined by (16) has been used. M 
Remark 1: It is important to observe that  the adjoint function, <k(t + l) ,  is not 

explicitly involved in (17). This contrasts with the deterministic theory based on the back- 
propagation-through-time (BTT) algorithm, where computation of the adjoint equation 
is needed [17]. Lemma 1, therefore, implies that the desired sensitivity coefficients may 
be obtained directly from the functional derivative sensitivities, a, without the need 
for actually computing the back-propagation equation. Similar results for continuous-time 
recurrent networks can be found in Koda [10, 11, 121. 

4. Stochastic Learning of Discrete-Time Neural Networks 
In this section, a stochastic learning algorithm in terms of the functional derivative formu- 
lation of the gradient descent method is proposed. 
4.1. Main theorem 
The algorithm uses the following identity (Novikov7s Theorem): 

6 H W  where H ( [ )  is an arbitrary functional of the Gaussian stochastic process a t ) ,  and -grÃ 

denotes the functional derivative [3]. 
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Using in (7) Lemma 1 from Subsection 3.2 and the above Novikov's Theorem, the fol- 
lowing performance sensitivity lemma is obtained: 

Lemma 2 (Performance Sensitivity): For the discrete-time neural network defined by 
can be ex- (1)- (3), the performance functional derivative sensitivity coefficient, , ( t ,  , 

messed as follows: 

which is valid in a statistical sense (i.e., as a mean or average). 
Proof: Using (17) and (19) in (7) yields 

where the follow ng fact is used that Sj(t) and &(t  + 1) are independent stochastic variables 
SS, ( t )  

( -  S[, ( t+l)  = O) ,  because of the temporal causality of the network system (1). Further 
arrangement of the terms in (21) yields 

which leads to (20). E 
Using Lemma 2 in the functional derivative formulation of the gradient descent method 

described in Subsection 3.1, i.e., inserting (20) into (4), a stochastic implementation of the 
gradient descent method for a discrete-time neural network can be obtained. 

Theorem: For the discrete-time stochastic neural network system defined by (1)-(3), 
the learning algorithm 

W? (t) = w^{t) - pL[x(T)]&(t + l)Sj (t) (23) 

guarantees a monotonic decrease in the average value of the given performance functional 

L[x(T)l. 
Proof: From the formal definition of discrete-time functional derivatives, the basic 

variational relationship is obtained as follows: 

' SL[x(T)] 
SL[x(T)l = W^ SW., (t) . 

2 j t=O Sw,,{t) 

Using the learning algorithm (23) to update W& (t) at  time t ,  while the weights at  other 
times are kept unchanged, the variations induced by the learning sequence are derived as 
follows: 

SW,, (t) = W:+' (t) - W; (t) = -pLT [x(T)]ti (t + l)Sj (t). (25) 
The corresponding variation of the performance functional is 

where LT [x(T)} denotes the value of L[x(T)] computed by using w'[At). 
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Then, by taking the expectation of (26) and using (24), (25), and (20): 

where CJAT,t} is the correlation defined by 

In establishing (27), it has been assumed the relations S w d s )  = 0 for S # t and that the 
variations of the learning sequence, (251, and sensitivities, W, are statistically indepen- 

dent. Finally, from (27), the following relation is obtained: 

which leads to  the claim stated in the main theorem. M 
Remark 2: The assumption of unit variance in the Gaussian white noise sequence, (3), 

does not impose any limitations on the practical applications of the Theorem. In actual 
implementation of the algorithm, the variance of the noise does not need to  be estimated, 
because it is never really used for gradient computation in weight space. The magnitude 
of the noise variance can be embedded into the learning rate p (> 0) in (23), which could 
itself be a function of the learning time, i.e., p = p ( r ) .  An appropriate cooling schedule 
that  mimics simulated annealing may be considered for p ( r ) .  

Remark 3: Equation (23) contains two time sequences, i.e., the system time t and 
the learning time r. The network system (1) and the learning algorithm (23) may operate 
on different time scales. As a network evolves in system time t ,  (23) can be sequentially 

ronological order without resort to back-propagation techniques. For a fixed 
system time, the update of connection weights according to  (23) usually occurs at  a slower 
rate with the learning time r. It  is important to note that the weight w s )  can take 
independent (constant) values over the system time (t = 0,1,2,  . . . , T - 1). 

Remark 4: Equation (23) does not involve differentiation of a signal function or sum- 
mation over connection weights, while the BTT algorithm involves both (see (31)-(33) in 
the next section). It means that  a non-differentiable function may be used for a signal 
function although its derivative appears only formally in the derivation of the learning al- 
gorithm, e.g., in (8)-(13). It also means that weight connections may be generated and 

ynamically at  each node independent of the learning algorithm (23), while the 
BTT requires a static adjacency information of the network. 

A central role in the stochastic sensitivity approach described above is played by ubiqui- 
tous noise a t  each individual unit. In general, such noise is small and the resulting variation 
of a performance functional may not be noticeably large. However, the Theorem indicates 
tha t  the iterative modification of connection weights can be performed as a stochastic reac- 
tion of each connection weight wv (t) to  the ubiquitous noise ^{t + 1) and the global perfor- 
mance functional L[x(T)]. Since the reaction (23) can occur locally without a synchronous 
transmission of information backward along network connections (e.g., back-propagation), 
and may be analogous t o  the subconscious (i.e., autonomous) activity of neurons, the learn- 
ing algorithm (23) is called Subconscious Noise Reaction (SNR). 
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4.2. Framework of the algorithm 
The framework of the learning algorithm based on the main theorem (23) is as follows: 
1. Initialize the connection weights w^(t) for t = 0,1,2, . . . , T - 1. 
2. For learning time r := 1,2 , .  . . , M do 

begin 
Clear the update increments 5w,,(t) for t = 0,1 ,2 , .  . . , T - 1. 
For running time r := 1,2 ,  . . . , R do 

begin 
Set an initial state vector x(0) = xO. 
Generate the Gaussian white noise vectors a t )  for t = l, 2, . . . , T.  
Calculate the state vectors x(t) for t = 1 ,2 , .  . . , T. 
Calculate the performance functional L[x(T)] . 
Calculate new update increments based on (23) as 
SwG(t) := Swij(t) - pL[x(T)]f.[t + l )Sj( t)  for t = 0 ,1 ,2 , .  . . , T  - 1. 

end; 
Update the connection weights as 
wij{t) := W@ (t) + 6wij{t)/R for t = 0,1,2,  . . . , T - 1. 

Adjust the connection weights based on the given value range [wmin, wmax] as 
wij(t) := max {min { ~ ~ ( t ) ,  wmai:} , Wmin} for t = 0,1,2, . . . , T - 1. 

Stop if the given terminal condition is met. 
end; 

A set of training patterns P = {{xO, X*}, . . .} is usually given in advance, and the 
above algorithm is applied to obtain the optimal connection weights with which the network 
outputs desired output vectors X* corresponding to given input vectors xO. 

The weight and state vectors may be implemented in a computer as floating point vari- 
ables; for example, the connection weights wij(t) may be implemented as an n X n X T 
floating point array, where n is a number of nodes and T is a final time of the system. 
The initial value of each W^ (t) is arbitrary; Gaussian white noise2 is used in the numerical 
study. 

The procedure in learning time, from Steps 4 to 15, is called an iteration, which is further 
decomposed into four phases: initialize (Step 4), running (from Steps 5 to 12), update (Steps 
13 and 14), and evaluation (Step 15). To accumulate update increments valid in a stochastic 
sense, R runs are performed in the running phase. Usually, a large number is chosen for 
R compared to the size of the training patterns, i.e., IPI. In Step 7, a pair of an input 
vector and a desired output vector, {xo7x*} E P ,  is arbitrarily chosen. The performance 
functional L[x(T)] should be defined to reflect the extent of errors in the actual output 
vector x(T) compared to the desired output vector. The details of implementation of the 
SNR framework for three-layer feedforward networks are described in the next section. 

5. Numerical Study 
In this section, the convergence behavior of the proposed Subconscious Noise Reaction 
(SNR) algorithm is studied and compared with that of the standard back-propagation- 
through-time (BTT) algorithm [17]. A linearly separable pattern - logical OR - and two 
linearly non-separable patterns - logical XOR and symmetry detection - are used to evaluate 
performances of the SNR and BTT algorithms. 

Gaussian white noise with zero mean and unit variance is generated by cos(2rra)&Ti$, where a and 
b are real numbers uniformly distributed on (0, l)-interval. 
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Figure 1: N(3; 3; l) layered network 

5.1. Network models and learning algorithms 
In order to  adapt the SNR algorithm to  general layered networks, xi(t)  in (1) is interpreted 
as denoting the internal state at  the i-th unit in the t-th network layer. This is the unfolded 
feedforward network model described in Section 2. Hence, hereafter, t represents an index 
for the t-th network layer; e.g., t = T denotes the output layer. Similarly, wij(t) is the 
weight of the connection between the j-th unit in the t-th layer and the i-th unit in the 
(t + l ) - th layer. 

Two types of three-layer-networks, N(3; 3; 1) and N(7;  n; l), are used for the present 
numerical study. The N(3; 3; 1) layered network (Figure 1) has two input units in the 
zeroth layer, two hidden units in the first layer, and one output unit in the second layer. 
In addition, auxiliary (threshold) units in the zeroth and first layers, which always hold the 
constant input (= 1.0), give threshold values to  the units in the first and second layers, 
respectively. The N(7; n ;  1) layered network (Figure 2) has six input units in the zeroth 
layer, n - 1 hidden units in the first layer, one output unit in the second layer, and one 
threshold unit both in the zeroth and first layers. The value of n ranges from 2 to 20 in a 
simulation, where a simulation means an execution of the framework described in Subsection 
4.2. For both networks, the internal states of units in the input layer are denoted by xi(0), 
those of units in the hidden layer by xi (l), and a single unit in the output (second) layer 
by x f l )  (T = 2). Connection weights are denoted by wq(t) ( t  = 0,1) .  In the following 
simulations, for the input and threshold units, the obvious relation Sz(t)  = x î} is assumed. 
Similarly, for desired output vectors, S* = X* is assumed. The sigmoid function, (2), is used 
for other units unless otherwise stated. 

The performance functional L[x(T)} is now specified to  be a summation of the square of 
the difference (error) between the actual output Si(T) and the desired output S*: 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



Stochastic Neural Learning Algorithm 

Output 

SB .- 1 .o 
Input 

Figure 2: N(7; n ;  1) layered network 

where the summation is taken a t  all the corresponding output units. Note that ,  for N(3; 3; 1) 
and N(7;  n ;  l) ,  the network has only one output unit. Note also that ,  in the present numer- 
ical study, the gross performance index is defined by J = (L[x(T)]), where ( e )  denotes the 
statistical average in a running phase. 

Computation of the error derivatives associated with (30) in the unfolded network can 
be carried out by using the following BTT algorithm: 

with the terminal data 

a, (T) = ^ (T) {St{T) - 5:) 
= /.{l + s,(T)}{l - si(T)}{s,(T) - ' ? } l  

and t h e  weight modification 

wy (t) = wij (t)  - a, (t + l )  S, (t) , (33) 

where p, is the learning rate (p > 0). 
Several observations may be made here. In (32), when the actual output Si(T) is staying 

close to  the desired output S:, (Ti{T) behaves essentially like a noise. As a result, (31) 
is regarded as back-propagating the noise t o  compute the error derivatives, i.e., d t  + 
l ) ,  used in the BTT algorithm (33). Note that the back-propagation equation (31) is 
essentially equivalent to  the adjoint equation (13), though the terminal conditions, (32) and 
(14), respectively, are different. Further, the BTT algorithm (33) corresponds to  the SNR 
algorithm (23 ) ,  where the stochastic correlation pL[x(T)]&(t + l )  is used instead of dt + l) 
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or error sensitivity. Thus, in contrast to the BTT algorithm, the SNR algorithm does not 
need to solve the back-propagation equations (31) and (32). 

For N{n; n ;  . . . ; n) layered networks, the time complexity (computational cost) of up- 
dating a connection weight by means of the BTT algorithm (31)-(33) is O(n),  because of 
the summation involved in (31). In consequence, the time complexity of updating all the 
connection weights in a layer by means of the BTT algorithm is 0(n2) .  On the other hand, 
the complexity of updating a connection weight by means of the SNR algorithm is O(1); i.e., 
the total time complexity is 0(n), which is much smaller than that of the BTT algorithm. 
5.2. Simulation results 
Both the SNR and BTT algorithms were used to perform numerical simulations for the 
N(3; 3; 1) and N(7;  n;  I )  layered networks, and their convergence behaviors were compared. 

e framework described in Subsection 4.2 was used for both algorithms. For BTT sim- 
11 of the framework was modified to  calculate the update increments based 

on (33) as SW,, (t} := 5w,, (t)  - 0, ( t  + 1)S, (t) for t = 0 ,1 ,2 ,  . . . , T - 1, which means the 
back-propagation of error derivatives should be performed in this step. 

For training patterns (i.e., sets of input and desired output vectors), logical OR and 
XOR patterns were used for N(3; 3; l) ,  and a mirror symmetry (SYM) pattern was used 
for *W(?; n; l). In the OR pattern, only two hidden units (including a threshold unit) are 
required, while the XOR and SYM patterns require at  least three hidden units for neural 
learning. Note that the SYM pattern is used to  detect mirror symmetry in an input vector of 
six bits; when an input vector is symmetric - (0 ,0 ,0 ,0 ,0 ,  0), (1 ,0 ,0 ,0 ,0 ,  l),  (0 ,1 ,0 ,0 ,1 ,  Q),  
( 1 ,1 ,0 ,0 ,1 ,  l) ,  (0 ,0 ,1 ,1 ,0 ,  0), (1 ,0 ,1 ,1 ,0 ,  l) ,  (0 ,1 ,1 ,1 ,1 ,  Q ) ,  (1,1, 1,1,1,1) - the output is 
1; otherwise, the output is 0. This symmetry detection is rather a difficult problem since 
all the neighbors of symmetric vectors within Hamming distance 1 are asymmetric. 

In Step 7 of the framework, an input vector was prepared as follows: a desired output 
value S: was selected randomly from 1 and 0, and an input vector was then selected randomly 
from vectors corresponding to the selected output. Each component in an input vector took 
a value of either +l or - 1. Once an input vector (X!, x i )  or ( X : ,  . . . , X:) had been set, the 
network states and the following decision function was calculated: 

1 when S(T) is correct, 
0 when S(T) is incorrect, 

where S(T) is said to  be correct when 

+l > Si(T) > 0 iff +1 > 5'; > 0, 
- l<S i (T )<O iff - 1 < S , * < 0 .  

Sirnulations started with each connection weight initialized to a Gaussian white 
(with zero mean and unit variance), and terminated when the following conditions 
both met: 

J = (L[x(T)]) < 0.01; and, 
1 - (D[S(T)]) < 0.01, 

noise 
were 

where (m) denotes the average value in a running phase. The simulation was aborted if 
the number of iterations exceeded M ,  i.e., if the simulation did not converge. For the 
OR and XOR patterns, M = 1000, and for the SYM pattern, M = 5000. Throughout this 
numerical study, Gaussian white noise was injected into the hidden and output units, except 
in the second case of BTT simulation for the OR pattern (Figure 5), where the network was 
completely noise-free. 
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I t e r a t i o n s  vs. v- of SNR (OR) 

- : tf of iterations - : Failure ratio (g) 

I t e r a t i o n s  vs. u. of BIT (OR) 

- : # of iterations 
- : Failure ratio ($1 

Figure 3: Average convergence time and Figure 4: Average convergence time and 
failure ratio of the SNR algorithm for an failure ratio of the BTT algorithm for an 
OR pattern, plotted against p OR pattern, plotted against p 

The running phase consists of R = 100 runs to compute the network states and D [ S ( T ) ] ,  
and to accumulate the update increments, i.e., the second terms in the right-hand sides of 
(23) and (33). After the running phase, each connection weight is modified in the update 
phase. A value range [-10, +l01 was specified for each of the connection weights. In the 
evaluation phase, the conditions for termination are checked, and if the simulation converges, 
the convergence time is recorded. 

For simulations of the OR and XOR patterns, the learning rate p varies over a range 
of values from 0.1 to 16.0, and 100 simulations were conducted for each value of p. For 
simulations of the SYM pattern, p is always set to  5.0; on the other hand, the number of 
hidden units n (including a threshold unit) varies over a range of values from 2 to 20, and 
100 simulations were conducted for each value of n. The average value of the convergence 
time and the number of failed runs among the 100 simulations are defined as  the average 
convergence time, and as the failure ratio, respectively. 

Comparison of the SNR and BTT algorithms for the OR pattern (Figures 3 and 4) shows 
that  simulations always converge for both algorithms when p is in a certain range, and that  
SNR has basically the same performance characteristics as BTT. The average convergence 
times of both algorithms are almost the same for small p. 

When BTT was used in a noise-free environment, on the other hand, where no noise 
was injected into the hidden and output units, BTT's performance was very poor. Figure 
5 shows the result of using the BTT algorithm for the OR pattern without noise injection. 
Comparison of Figures 4 and 5 reveals that,  to  obtain better performance, the BTT al- 
gorithm should be used in a stochastic environment just as the SNR algorithm. This is 
related to  the recent findings of the enhanced performance of neural networks with additive 
noise (e.g., [16]), and constitutes one of motivations for investigating the present stochastic 
learning algorithm. 

Figure 6 shows the result of using the SNR algorithm for the OR pattern while using a 
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Iterations vs, p of noise-free l3lT (OR) 

- : # of i terat ions - : Failure ra t io  (g) 

Figure 5: Average convergence time and 
failure ratio of the BTT algorithm for an 
OR pattern, plotted against p. No noise 
was injected. 

step function 

Si (t) = step [xi (t)] = 

Iterations vs. fi of SNR/step (OR) ? O 0 1  - : i7 of i terat ions 
- : Failure ra t io  (%l 

Figure 6: Average convergence time and 
failure ratio of the SNR algorithm with a 
step function for an OR patternl plotted 
against p 

+l when xi(t) 2 0, 
-l when xi(t) < O1 

for normal units at t = l and t = T (T = 2). Note that the obvious relation S%(t)  = xz(t) 
was assumed for units at t = 0 and for threshold units. Comparison of Figures 3 and 6 
reveals that the SNR can perform neural learning while using a step function as well as 
with a sigmoid function. Note that the BTT algorithm does not work with a step function 
because (32) and (33) explicitly differentiate the signal function. 

Simulations were conducted in a similar manner for the XOR pattern (Figures 7 and 8). 
In contrast to  the OR patternl the failure ratios of both the SNR and BTT algorithms depend 
strongly on p, and no single value of p guarantees convergence of the BTT algorithm. Which 
means determination of a proper learning rate is crucial and tedious for both algorithms. 
Note that the failure ratio of SNR becomes higher than that in Figure 7 when the value 
range is not set, and that determination of a proper value range is important for SNR. 

The result of the SNR algorithm while using the step function (Figure 9) reveals that 
SNR can train the neural network for the XOR pattern as well as with a sigmoid function 
(Figure 7). Note that both the number of iterations and the failure ratio can be decreased 
by increasing the number of hidden units or by adjusting the noise variance, and that the 
experimental setup used here may not be optimal for both algorithms. 

Simulation results for the SYM pattern (Figures l 0  and l l) show that the sensitivities of 
the SNR and BTT algorithms to the complexity of the network architecture (i.e.> the number 
of hidden units n) are basically the same. No single value of p guarantees convergence of 
the BTT algorithm as well as for the XOR pattern. Comparison of the results of the SNR 
algorithm with the sigmoid and step functions (Figures l 0  and 12) reveals that the choice of 
these signal functions does not greatly affect the convergence behavior and the architecture 
sensitivity of SNR. 
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Iterations vs. U of SNR (XOR) 
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Figure 7: Average convergence time and 
failure ratio of the SNR algorithm for an 
XOR pattern, plotted against p 

Iterations vs. U of SNR/step (XOR) 

- : # of iterations 
- : F d u r e  ratio (%l 

Figure 9: Average convergence time and 
failure ratio of the SNR algorithm with a 
step function for an XOR pattern? plot- 
ted against p 

Ite~ations vs. U of BTI (XOR) 

- : # of iterations 
- : Failure ratio (8 

Figure 8: Average convergence time and 
failure ratio of the BTT algorithm for an 
XOR pattern? plotted against p 

Iterations vs. hidden nodes of SNR (SW) 

- : # of iterations - : Failure ratio ( X )  

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 
# of hidden nodes 

Figure 10: Average convergence time 
and failure ratio of the SNR algorithm 
for a mirror symmetry pattern, plotted 
against the number of hidden units 
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I t e r a t i o n s  vs, hidden nodes of B'IT (SM) 
5000 - : # of i t e r a t h w  - : Failure ra t io  (g) 
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I t e r a t i o n s  vs. hidden nodes of  SNR/step {$+M) 
100% - : # of i t e ra t iow - : Failure ra t io  ( X )  
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Figure l l : Average convergence time Figure 12: Average convergence time 
and failure ratio of the BTT algorithm and failure ratio of the SNR algorithm 
for a mirror symmetry pattern7 plotted with a step function for a mirror symme- 
against the number of hidden units try pattern7 plotted against the number 

of hidden units 

These results indicate that the SNR algorithm can be used to  train the neural network 
in a stochastic environment, and that the SNR and BTT algorithms have basically the same 
capabilities. For all the experiments iri this section? the failure ratio of SNR is generally 
smaller than that of BTT while the average number of iterations required by SNR is larger 
than that by BTT. As stated earlier, the time complexity of the SNR algorithm for updating 
a connection weight is smaller than that of the BTT algorithm; however, this advantage may 
be offset by an increase in the number of iterations needed for convergence. Consequently7 
the overall performance of the SNR and BTT algorithms may be comparable when suitable 
setups for the network architecture or the noise variances are realized for both algorithms. 

A new stochastic learning algorithm, referred to  as Subconscious Noise Reaction (SNR)? 
was developed for a class of discrete-time recurrent 11eural networks with time-dependent 
connection weights and additive Gaussian white noise. Tlie algorithm iteratively modifies 
connection weights as a stochastic reaction to the ubiquitous noise and to the global network 
objective. The present SNR algorithm has an advantage over standard back-propagation 
techniques in that it alleviates the need to  solve lengthy back-propagation equations by 
providing a comprehensive theoretical framework derived from stochastic sensitivity analy- 
sis using the variational approach. Moreover, SNR's computer implementations are much 
simpler than standard back-propagatiorl techniques; a simple, but non-differentiable step 
function can be used for the signal function, and SNR9s complexity of updating all the con- 
nection weights in a layer is much smaller than that required by BTT. For N(n;  n; . . . ; n) 
layered networks? SNR only requires O ( n )  updates while BTT requires O(n2) .  Further, SNR 
does not use the adja,cency information of the network connections in updating their weights. 

ecause of these properties7 SNR may be suited to  hardware (chip) implementations. 
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