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Abstract We study (batch arrival) M'/G/~ queues withlwithout vacations under random order of 
service (ROS) discipline. By considering the conditional waiting times given the states of the system when 
an arbitrary message arrives, we derive the Laplace-Stieltjes transforms of the waiting time distributions 
and explicitly obtain their first two moments. The relationship for the second mements under ROS and 
first-come first-served disciplines is shown to be precisely the same as that found by TakAcs and Fuhrmann 
for (single arrival) M / G / l  queues. 

1. Introduction 
We consider (batch Poisson arrival) Mx/G/ l queues wit h/wit hout vacations under random 
order of service (ROS) discipline. Messages arrive in batches a t  a buffer of infinite capacity 
and are served for generally distributed service times. A single server works continuously 
until the system becomes empty. When the server finds the system empty, he waits for 
the first batch to arrive a t  the system in non-vacation models, or he takes a vacation in 
vacation models. We assume that the lengths of vacations are independent and identically 
distributed. 

The Mx/G/ l  queues under first-come first-served (FCFS) discipline have been studied 
in the literature. For example, Burke [3], Cooper (sec. 5.10 in [5]), Kleinrock (prob. 5.11 and 
5.12 in [10]), and Takagi (sec. 1.4 in [17]) studied those without vacations, so did Baba [l] 
with vacations. Baba [2] also studied Mx/G/l  queues under last-come first-served (LCFS) 
discipline with and without vacations. 

Under the ROS discipline, the next message for service is selected at  random among 
messages waiting in the queue. The ROS discipline is one of the three basic queueing 
disciplines (FCFS, LCFS, and ROS) whereby a message is selected for the next service. 
Kingman [g], TakAcs [l6], Conolly [4], and Takagi and Kudoh [l81 studied (single arrival) 
M/G/ l  queues without vacations. Scholl and Kleinrock [l51 studied an M/G/ l  queue with 
multiple vacations. The results in this paper for M ^ / G / ~  queues with and without vacations 
under ROS discipline are new, and include all the above as special cases. 

As for vacations, we consider two cases (Doshi [6], Levy and Yechiali [13]). If the server 
returns from a vacation to find no messages waiting, in the multiple vacation case, he begins 
another vacation immediately; in the single vacation case, he waits for the first batch to 
arrive while keeping the system idle. 
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In this paper we study the following three models: 
NV Mx/G/ l  without vacations, 
MV Mx/G/ l  with multiple vacations, 
SV IMx/G/l with single vacations. 

Our objective is the derivation of the first two moments of the waiting time distribution 
for the above three cases. First, in Section 2 we derive the queue size distribution of messages 
in each model at  the beginning of service to a message. Next, we derive the waiting time 
moments for the NV model in Section 3, for the MV model in Section 4, and for the SV 
model in Section 5. We then make some comparisons with FCFS systems through numerical 
examples in Section 6. 

e following not at  ion: 
A arrival rate of batches, 

B(x} cumulative distribution function (CDF) for service time of a message, 

B* ( S )  Laplace-Stieltjes transform (LST) of B (X),  

b mean service time, 
i th moment of the service time, 

V vacation time, 
V(x) CDF for V, 
V*(s) LST of V(x),  

9k probability that the batch size (number of messages in a batch) is h 
G(z) generating function (GF) for g^,  
G(')(z) first derivative of G(z) ,  

9 mean batch size, 
gW zth factorial moment of the batch size, 
P traffic intensity (p = Agb) , 
W*(s) LST of the CDF for the waiting time of an arbitrary message, 
Â£[Iv' zth moment of the waiting time, 

E[-] expected value of a random variable. 
We assume the existence of the steady state in the system, namely, p < 1. We also 

assume that  the moments for the batch size, the service time, and the vacation time exist 
t o  the degree that appears in E[W]  and E[IV2], and that  V*(s) exists for MV as well as for 
SV models. 

2. Queue Size at a Service Start Point 
In this section, we derive the probability generating function (PGF) for the number of 
messages waiting for service in the queue a t  the beginning of service to a message in the 
steady state, denoted by @ ( z ) .  We can apply an identical approach to all the above models. 
Note that the queue size distribution is invariant to  the order of service as long as the service 
discipline selects customers in a way that is independent of their service time (sec. 3.4 in 
Kleinrock [l l]). 

First, we derive the PGF n(z) for the queue size a t  the departure point of an arbitrary 
message in the steady state, by using the method of the embedded Markov chain. By 
adopting each departure point as a Markov point in a manner which is standard in the 
analysis of M/G/ l  type queues (sec. 5.8 in Cooper [5], sec. 5.3 in Kleinrock [10], and sec. 
1.1 in Takagi [17]), we have the following equations for each model. 
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V* \\ - AG(z)} - V*{\) B* [\ - XG(Z)] B* [\-\G(z}l n ( ~ )  = 
l - V* (A)  z 

+ ( N Z )  - m] z 7 ( lb)  

where v. denotes the probability that  there are no messages in the system at the departure 
point. Solving (1) and determining v 0  by normalization condition II(1) = 1, we have 
NV 

We note that the expression in (2a) appears in Kleinrock and Gail (prob. 5.12 in [l2]) and 
Takagi (exercise 1.5 in [17]) as a correction to Kleinrock (prob. 5.12 in [10]). From (2) and 
by noting that the PGF of the number of messages arriving in a service time is given by 
B'[\ - AG(z)], we can obtain @(z) as follows. 
NV 
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3. Waiting Time for the NV Model 
The waiting time W of an arbitrary message is defined as the time interval from its arrival 
to the service start. Consider an arbitrary message, denoted by M ,  in a system without 
server vacations. First, we derive the conditional waiting time distribution of M  when it 
arrives during an idle period in Section 3.1, and that during a busy period in Section 3.2. 
Because Poisson arrivals see time averages (PASTA) (sec. 11.2 in Heyman and Sobel [8]), 
we have 

~ [ ~ ~ ] = ( 1 - ~ ) ~ [ ~ ~ ~ i d l e ] + p E W \ b u s ~ ]  i = 1 , 2 , . . - .  (4) 

3.1. Conditional waiting time - idle case 

If M arrives during an idle period, it has a chance to be selected for service immediately. 
Suppose that  M  arrives with k other messages in a batch to find the server idle. Denoting 
by n1 the number of messages, other than M, included in the batch, we have 

which yields 

Next, let W*) be the LST of the CDF for the waiting time of M  from the epoch 
that M gets a chance to  be selected for service, on the condition that there are k messages 
excluding M in the system at  the epoch. If M  is selected for the next service immediately, 
which occurs with probability l / ( k  + l), the waiting time is zero; otherwise M  is delayed, 
which occurs with probability k/{k+ l), and it will be served after a later service completion 
(Figure 1). Denoting by j the number of messages which arrive during the service time, 
thus there being k + j - 1 messages excluding M  in the system when the service ends, we 
have the following recurrence formula 

where B;(s) ( j  = 0,1,  . . .) denotes the joint LST of the CDF for a message service time and 
the probability that j messages arrive during that service time, and satisfies 

Equation (6) extends Kingman's result [g] which gives the formula for the M/G/1 queue. 
By following Takacs [16], we obtain the first two moments as follows (Appendix A). 
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butter l l >- 
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W 

for service 

Figure 1: The conditional waiting time when M is not selected with prob. k / ( k  + 1).  

From (5), (6 )  and (8), we obtain 

2g(3) b2 g ( 2 )  [(6 - ,o) b(2) + 2Ag(2) b3] 
E [W2 l idle] = + 

(2 - P)(3 - 2/49 (2  - / 0 ) ~ ( 3  - 2P)9 

3.2. Conditional waiting time - busy case 
If the server is busy a t  the arrival time of M, it is only after the completion of current 
service that  M gets a chance to  be selected for service. Let X be the length of the service 
which is going on when M arrives. First, we derive the waiting time conditioned on X .  The 
waiting time of M consists of the remaining time of X with the LST W z ( s x )  and the time 
thereafter until the start of a service to M with the LST W; (s ix)  (Figure 2).  Note that the 
two conditional waiting times are independent of each other. 
3.2.1. Derivation of W* ( s x )  

Since an arrival point is uniformly distributed over [O, X],  we immediately have 

3.2.2. Derivation of W;(s \x )  

When the current service ends, M gets the first chance to  be selected for service. Let ^ : ( X )  

be the probability that  there are k messages excluding M in the system when the service 
X ends, and I^(z; X)  be its GF. l^(z; X )  is given as the product of the following three 
independent terms. The first is (3a), the P G F  for the number of messages in the system 
when the service starts. The second is e A [ l G ( z ^ x  which represents the P G F  for the number 
of messages that  arrive during the service, excluding those in the batch M belongs to. The 
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Server 

Buffer 

Figure 2: The conditional waiting time when M arrives during a busy period. 

third is G^)(z)/g which represents the PGF for the number of messages arriving with M in 
a batch and excluding M. Hence we have 

3.2.3. Unconditioning on X 

The LST of the conditional waiting time distribution is given by 

We now uncondition this equation with respect to X.  The probability that a message arrives 
during a service of length X is proportional to  X as well as to the relative frequency of such 
length, thus given by xdB(x)/b (sec. 5.2 in Kleinrock [10]). Substituting (10) and (12) into 
(13) and then unconditioning, we obtain 

= km xd:(x) l - e P X  
E [e-'"' 1 busy] 

sx  

From (8), (ll), and (14), its first two moments are given 

(3 - 2p)gWb 
[ W  busy] = + 

2 ( l  - - 
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3.3. Unconditional waiting time 
By substituting (9) and (15) into (4), we get the first two moments of the waiting time 

4. Waiting Time for the MV Model 
In the MV model, if the server returns from a vacation to find no messages waiting, he 
begins another vacation immediately. A regenerative point (sec. 6.4 in Heyman and Sobel 
[8]) of this system is the epoch a t  which the system becomes empty and a vacation begins. 
The time interval between two such successive regenerative points is called a regeneration 
cycle (sec. 2.2 in Takagi [17]), whose length is denoted by K. The LST V; (S) of the CDF 
and the mean for VC are given by 

where @:(S) is the LST of the CDF for the length Qg of a busy period initiated with the 
service times of the messages included in a batch, and satisfies the equation 

which gives 

A vacation always appears once in a regeneration cycle, thus 

which gives 

Hence we have 

4.1. Conditional waiting time - vacation case 
We can derive the conditional waiting time similarly to Section 3.2. Letting X be the length 
of a vacation which is effective when M arrives, we have 

E [ e P W  [vacation] = 
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where 7rl(x) denotes the probability that there are k messages excluding M in the system 
when a vacation of length X ends. Those messages consist of the following two types of 
messages. The first is the group of messages that arrive during the vacation, excluding 
those in the batch M belongs to. The second is the group of messages arriving in the same 

M. Thus we have batch as M, excluding 

The first two moments of (23) are given by 

g^b (2 + p)E[V2] 
E[W lvacation] = + 

g(2 - P) 2(2 - P)E[VY ' 

4.2. Conditional waiting time - busy case 

By an argument similar to that in Section 3.2, we get the conditional waiting time if the 
server is busy when M arrives: 

where, by using (3b), 7rF(x) for the MV model is given by 
00 (1 - p){l - V*[\ - \ ~ ( z } ] } e - W - ~ ( ~ ) ] ~  G(l)(z)  
y. ̂(X)^  = .- 
M \gE[V] [B* [A - m)] - Z] g 

The first two moments of (26) are given by 
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4.3. Unconditional waiting time 
Substituting (25) and (28) into (22), we get the first two moments of the waiting time 

5 .  Waiting Time for SV Model 
In the SV model, if the server returns from a vacation to  find no messages waiting, the 
system becomes idle. A regenerative point of this system is the epoch a t  which the system 
becomes empty and a vacation begins as in the MV model. The generation cycle is again 
the time interval between two such successive regenerative points. The LST of the CDF 
and the mean for the length VC of a regeneration cycle are obtained by extending the result 
for the single arrival model (sec. 2.2 in Takagi [l71 with correction needed) as 

v; (S) = V* (S + A) I* (s)@;(s) + V* [S + A - A@; (S)] - V* (S + A ) ,  ( 3 0 4  

where @'(S) satisfies (18), and I*(s) is the LST of the length I of an idle period, given by 

Since a vacation appears exactly once in a regeneration cycle, we have 

The system enters an idle period of mean length l / A  if no messages arrive during a vacation. 
Thus we have 

Prob[idle] = v* (\}l\ - (1 - P)V*(A) 
E[-* (A)  + AE[V] 

which gives 
Prob[busy] = 1 - Prob[vacation] - Prob[idle] = p. (310 

From (31), we have 

for 2 = 1 , 2 , - m  -. 
The conditional waiting time distributions when M arrives to  find the server idle or on 

vacation for the SV model equal those in Section 3.1 and Section 4.1. Thus it remains us t o  
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derive the conditional waiting time distribution when M arrives during a busy period. By 
the same argument as in Section 3.2, we have 

im xd:(x) l - e P X  
E [e-' l busy] = E ~ Y x ) w ~ ( s ) ,  

sx k=O 

where, by using (3c), $(X) for the SV model is given by 

The first two moments of (33) are 

B*[\ - AG(z)] - z g 

(34) 
given by 

Substituting (g), (25) and (35) into (32), we obtain 
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6. Remarks and Numerical Examples 
In this section we make a few remarks on the results in Sections 3 through 5. We also 
present numerical examples in Figures 3 and 4, which show the mean and the coefficient of 
variation of the waiting time for each model under ROS and FCFS disciplines as a function 
of p, where we assume that  service times follow 3-stage Erlang distribution with mean 0.5, 
vacation times follow 2-stage Erlang distribution with mean 1.0, and batch sizes follow a 
geometric distribution with mean 2. 
6.1. Comparison between ROS and FCFS 

For each model, the mean waiting time under ROS equals that under FCFS; this is obvious 
from Little 'S  formula (Little [14]) and the fact that  the queue size distribution is invariant to  
the order of service. We can also confirm the following relationship on the second moment 
between the ROS and FCFS systems for each model, 

This agrees with the result for single arrival models, which was derived originally by TakAcs 
[l61 and interpreted by Fuhrmann [7] for single arrival M/G/1 queues. We note that  
Fuhrmann's technique does not apply to batch arrival models. Therefore, the relationship 
in (37) is first established for batch arrival models in this paper. 
6.2. Comparison of systems without vacations and with vacations 
From (16), (29) and (36), we see that  each moment in the vacation models consists of the 
corresponding moment in the NV model plus additional terms for each vacation model. 
Figures 3 and 4 show that as p approaches 1, the mean and the coefficient of variation of 
the waiting time distribution for the vacation models approach those of the NV model. This 
is because the probability that M arrives to  find the server on a vacation gets smaller. 

On the other hand, as p approaches 0, the mean and the coefficient of variation of the 
waiting time distribution for the SV model approach those of the NV model, because the 
probability that the server is idle becomes equally large for both models. 
6.3. Limiting values of the coefficient of variation 
As p gets close to 1, the coefficient of variation of the waiting time distributions under ROS 
becomes v̂ , while that under FCFS becomes 1. As p approaches 0, the coefficients of 
variation of the waiting time distributions for the NV and SV models converge to 

and that for the MV model to 

1 + 0 and -\Ã‘ + 0. Note that the two expressions agree when - 
E[Vl E[Vl 

Appendix A. Derivation of E[Wk] and E[Wz] in (8) 
Taking the first derivative of (6) at  S = 0, we get 
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traffic intensity 

Figure 3: The mean waiting time. 

1 0 . 2  0 . 4  0 . 6  0 . 8  

traffic intensity 

Figure 4: The coefficient of variation of the waiting time. 
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On the other hand, from (7) we have 

where 

If we assume the form E[Wk] = a k  where a is a constant, by substituting into (38) we get 

Substituting (39) into (40) and manipulating, we obtain (8a). Similarly we can derive E[Wi] 
by taking the second derivative of (6) at  S = 0, 

If we assume the form Â£'[W: = (3k(k - 1) + "/k where (3 and "7 are constants, from(41) we 
get 

Substituting (39) into (42) and manipulating, we obtain 

Since (43) is an identity with respect to k ,  solving for (3 and 7 yields (8b) 
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