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Abstract A compound dependability measure is proposed and analyzed under the Markovian assump- 
tion by Csenki (1996). We ext,end his analysis to  the semi-Markov setting and obtain the corresponding 
closed form expression. The analysis is quite simple and transform-free. The resulting formula has a clear 
probabilistic interpretation. As a numerical example, we explore the behavior of a multi-mode system with 
periodic maintenance. 

1. Introduction 

In this paper, we study a compound dependability measure arising from a semi-Markov 
reliability model. Each state is classified as functional (up) or under repair (down). In 
addition there is one absorbing state corresponding to an irrecoverable or complete failure. 
A number of reliability/performance measures are explored in the literature. Analysis based 
on Markovian assumption can be found in Rubino and Sericola [g] and Sumita et al. [l01 
among others. Semi-Markovian reliability/performance models includes Ciardo et al. [2], 
Kulkarni et al. [ G ] ,  Masuda [7] and Masuda and Sumita [8]. In a recent article [4], Csenki 
proposes an interesting dependability measure which incorporates both the cost and the 
benefit of the system. Specifically, the joint distribution of the cumulative up times and t,he 
number of repairs before the irrecoverable failure is examined. Underlying his model is t,he 
Markovian assumption. 

There are two main points in this paper. First, we extend the analysis of Csenki [4], 
who derives a closed form expression of the compound dependability measure under the 
Markovian assumption. We relax the Markovian assumption and extend the model to 
the semi-Markov setting. Second, our analysis is transform-free. On the other hand, tlhe 
analysis of Csenki [4] involves lengthy algebraic manipulations in the Laplace transform 
domain. Furthermore, our derivation is purely probabilistic and the correspondingly closed 
form formula has a clear probabilistic interpretation. 

The analysis in Section 2 is quite simple once we construct an appropriate new semi- 
Markov process with an extended state space. It is shown that the compound dependability 
measure of the original process is merely the absorption probability of the new semi-Markov 
process. Thus, a closed form formula can be obtained by applying the standard analysis of 
Markov renewal process. In Section 3, we demonstrate that our formula can be numerically 
implemented using a simple example. Specifically, we numerically explore the dependability 
measure of multi-mode system with periodic preventive maintenance. 
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Compound Dependability Measure 

2. Model and Analysis 
Let X be the semi-Markov process governed by a semi-Markov matrix A (X) = [Aij (X)] with 
finite state space N, which is partitioned into three non-empty subsets G, B, {W}. We 
interpret G (B) as the set of functional (repairable, respectively) states while W as the state 
of irrecoverable failure. All states in G U B communicate and are transient. W is the unique 
absorbing state of Yt. 

Csenki (1996) defines a compound dependability measure in the following manner. Let 
TG and NB, respectively, be the cumulative time spent by K in G and the cumulative 
number of transitions of from G to B. For notational convenience, let Pi (-)  = P(- \Yo = i) 
and define the conditional expect ation &( - ) similarly. Of interest is the joint dist,ribut,ion 
of t,hese random variables 

Fi(t, n) = R(Tc 5 t ,  NB 9). 

This captures the dependency between the cost factor (NB) and the benefit factor (To) of 
the system, and reflects the dependability of the system. 

To keep the analysis tidy, assume for a moment that the system is functional at time 0, 
i.e., YQ E G. To evaluate Fi(t, n) for a specific n, construct a new process Y ~ ,  s 2 0, on tjhe 
extended state space ({O, 1, , n} X (G U B))  U {W, W'} in the following manner: 

0 Xt is same as Yt except that all states in B are instantaneous, i.e., the dwell time of 
at each state in B is replaced by zero. 

Jt counts the total number of transitions of Xt from G to B up to time t. 

A { 
(J t ,Xt)  if Jt < n and Xt # W ;  

K =  W if Jt n and Xt = W ;  

W' i f J t > n .  

Since the dwell time in B is eliminated, Xt = W if and only if TG < t. Thus, the desired 
probability is given as 

Fi(t, n) = P,(% = W ) .  

It can be seen that g is also a semi-Markov process. Then, the evaluation of Pi(TG S 
t ,  NB < n), a seemingly nontrivial task, is reduced to the evaluation of the absorption 
probability of the new semi-Markov process. We note however that it is not a new idea to 
use an absorption probability for evaluating an entity of interest, see e.g. Keilson [5]. In the 
following, the semi-Markov matrix governing fi is identified and a closed form expression 
of Fi{t, n) is derived. 

For notational convenience we suppress the set B of instantaneous states, and redefine 
y( on ({O, l, - - , n} X G) U {W, W'}. In the rest of the paper, always refers to the process 
defined on ({O, 1, , n} X G) U {W, W'}. Let AGG (X) = [Aij ( x ) ] ~ , ~ ~ .  Similar notations will 
be used for other sub-matrices and vectors. From the construction of the new process, it can 
be seen that the behavior of 8 in the set of transient states {O, 1,. , n} X G is described 
by the following defective semi-Markov matrix Cn(x) of order (n + 1) Gl: 
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where B+(x)  is defined by 

P(the first transition occurs to (l, j) at 
some time r 5 x \ ( J o ,  Xy}  = ( 0 , ~ ) )  

The expression of B+(x) in terms of A(x) can be found from the following argument. For 
( Js, Xs) to reach (l, j) within one transition at some time T 5 X given that ( Jo, Xo) = (0, i) ,  
the following sequence of events of Y f  must take place: 

e the original process Y f  makes a transition from i to some k G B at some time T < X ,  

e visits some state I E B after making m t,ransitions within B for some m E {O,  1, - . - } ,  
and 

e a transition of Y f  takes place from I to j E G. 

Thus, it can be seen that 

- (m) 
m 

where Aij = limz+m Ay (X) and is the (A;, l )  th component of (ABB) . In the matrix 
notation, 

where I is an identity matrix of appropriate order. 
The transition behavior of Y )  from {O, 1, - n} X G to W is described in terms of A(x) 

as follows. For i E G and m = 0,1,  , n  - 1, let 

Biw (X)  = P(the dwell time of E in (m, i )  is less than X 

and the following state is W \ Jg = m, Xs = i )  

This definition is meaningful since the right hand side clearly is independent of m for 
m <: n - 1. Biw(x) consists of two components. The first component corresponds to 
the direct transition of the original process Y f  from i to W ,  which is given by A^(x). The 
second component corresponds to the transition of Yt to W through B. Thus, following t,he 
argument similar to the derivation of Bz(x) in (2), one has 

In the vector notation, 

When ( JS, Xs) = (n, i )  , terminates in W' if K makes another transition to B. Thus, 

P( the dwell time of yS in (n, i) is less than X and the (4) 
following state is W \ Js = n,  Xs = i) = Ak(x).  
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Define the Markov renewal function associated with ( Js , Xs) by 

R(t) = ( R k m  (t))k=o 7 

R k m  (t ) = (Rkm:ij (t))QeG 

Rkm:i3 (t) = E (the number of visits by ( Js , Xs) 

to ( m , j )  in time interval [0,t\ \ (Jo, Xo) = (k,i)) .  

Note that Rkm(t) = 0 for k > m and that only Rom(t), m = 0,1, , n, will be used in the 
following analysis. For Yf = W to happen given Yo = i E G, the process (Js, Xs) has to visit 
(m, j) for some m E {O, 1, , n} and j E G at some time r < t , followed by a transition 
from (m, j) to W within t - r time units. Thus, from (3) and (4), the desired probability is 
given by 

For the purpose of numerical evaluation, the following recursive formula of FG (t , n) is useful. 

It now remains to derive Rom(t) for obtaining a closed form expression of Pi(TB < t ,  NB < 
n), i G. Since R(t) = Cim)(t) (see e.g. qinlar [3]) where CLm) is the m-fold matrix 
convolution of Cn with itself, it can be seen from the structure of Cn( t )  in (1) that, 

where 

and * represents a convolution operation. 
We now turn our attention to the case where the original process starts from B. We 

first note that given Yo = i E B 
m the probability that Ye terminates in W before ever visiting G is given by the ith 

-1 - 
component of (I - ABB) ABw, and 

m the probability that Yg  visits G for the first time at j E G is given by the (2, j ) th 
-1 - 

component of (I - ABB) ABG. 
As long as Ys stays within B starting from Yo = i E B, both the cumulative up time and 
the failure count do not increase. Thus FB (t, n )  = (Fi(t, n))iEB can be expressed in terms 
of FG (t , n)  as 

In summary, the compound performability measure Fi (t , n) = PdTo < t ,  NB < n,) is 
given by (5) and (9) where Rom(t) and BGw(t) are given by (7) and (3), respectively. 
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3. Mult i-mode System wit h Periodic Preventive Maintenance 
In this section, we consider a multi-mode system with preventive maintenance modeled as a 
semi-Markov process. The system transitions are depicted in Figure 1. The system has tJwo 
operational modes, normal (state 1) and degraded (state 2), one maintenance state (state 
3) and one irrecoverable failure state (state 4). The behavior of the system is as follows. 

The system in the normal state fails with probability Pp or becomes degraded with 
probability 1 - Pp after X units of time where the distribution of X is Erlang with 
paramet er (m, A).  
The system in the degraded mode is on service and also under repair. The repair time 
is exponentially distributed with parameter m. At the end of the repair period, the 
system is brought back to the normal mode. The system just after repair is as good 
as a new one. While the system is in the degraded state, it may fail with constant 
failure rate u,p- 

e The system in the normal mode is taken out of service for periodic preventive main- 
tenance, which takes place as soon as it completes c units of time continuously in 
the normal mode. The maintenance takes d units of time. The system just after the 
preventive maintenance is as good as a new system. 

e The irrecoverable failure is the unique absorbing state of the system. 
All the random variables are independent. 

Figure 1: System Transitions 

1: Normal 
4-b 

We note that, since Erlang distribution has an increasing failure rate, it is meaningful to 
perform preventive maintenance that makes the system as good as a new one. 

Let G be the distribution function of X and G the corresponding survival funct,ion. Let 
p = ~ f i  + iip. Then, the semi-Markov matrix A(x) of Yt is given by the following: 

2: Degraded 

(1 - Pp) (G(x)U(c - X) + G(c)U(x - c ) ) ,  
G(c)u(x - c), 

-?F (G(x)U(c - X) + G ( c ) ~ ( x  - C ) ) ,  

Lip 
- (1 - exp(-Px)) , 
a 

and all the other entries of A(x) are zero where U(t) is the step function defined by U(t) 
= 1 if t 3 0 and U ( t )  = 0 otherwise. Of interest is the joint distribution of the cumulative 
up time TG and the number NB of preventive maintenance before the irrecoverable failure. 
In other words, we set G = {l, 2}, B = {3} and W = 4. 
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In the actual numerical experiment, the following parameters are used: 

We assume that the system is new and in the normal mode at time zero, i.e., Yo == 1. 
The evaluation of the exact formulas (6), (7) and (3) is done symbolically in the Laplace 
transform domain. The numerical method employed here is quite straightforward, however, 
the recursive formula (6) makes a significant contribution toward the numerical efficiency. 
The resulting Laplace transform e-^Fi (n, t)dt is then inverted back to the real domain 
using the transform inversion method of Weeks [l11 implemented by Cheng et al. [l]. All 
the procedures are implemented on Mat hematica 2.2. 

In Figures 2, Po(TG < t ,  NB < n) for n = 0,1, . 5 is depicted. To see the impact of 
NB on TG, the conditional distribution Po(TG < t \ NB = n) is also given, see Figure 3. 
Clearly, given NB = n, TG > nc with probability 1, which is observed in Figure 3. Also, TG 
given NB = n is stochastically increasing in n for the set of parameters (ll), which would 
be consistent with our intuition. 

V t i m e  

0  5 0  1 0 0  1 5 0  2 0 0  

Figure 2: PO (TG <t, NB < n) 

time 
50  100 150 2 0 0  

Figure 3: Po(TG < t \ NB = n) 
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