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Abstract We consider a generalized optimum requirement spanning tree problem (GORST problem) 
which is an extension of the problem studied by Hu. In the GORST problem, the degrees of vertices 
are restricted and the objective function is generalized. We will show that a particular tree T*, which is 
obtained by a sort of greedy algorithm but is explicitly definable, is a solution to the GORST problem 
when a condition similar to the Monge property is satisfied. Also, we will define a problem of finding a tree 
network which minimizes the probability that a request of communication is not realized when the network 
has k failures (called a "k-failure problem"), and show that T* is an explicit solution to the k-failure problem 
for any k when the maximum degree constraint is imposed and the Monge-like property is satisfied. 

1. Introduction 
We begin by introducing the optimum requirement spanning tree problem (ORST problem) 
studied by Hu [?l, which has motivated our studies. Let V = { O ,  1, . . . , n - l} be a set of n 

vertices, (v) the set of all pairs of distinct vertices in V, and T the whole set of undirected 
spanning trees on V. A tree T E T with an edge set E is denoted by T = (V, E), and 
the edge e E connecting two vertices V ,  U V is denoted by e = (v, U). Assume that 
a nonnegative value rvÃ is given to each pair {v, U }  E (:), where rvÃ = rÃ£ holds. Hu [7] 
defined an ORST as a tree T E which minimizes 

where d(v,u; 2') is the length of the path between v and U on T. ORSTs can be regarded 
as communication networks of tree type with the minimum average cost when the cost of 
communication between v and U is proportional to d(v, U; T) and rvu denotes the frequency 
of communication between v and U. Hu [7] showed that a tree minimizing f is obtained by 
the Gomory-Hu algorithm [5] when the degrees of vertices are not restricted. 

The author and his colleagues have extended the ORST problem in various manners. 
Anazawa, Kodera and Jimbo [2, 31 considered the problem of finding a tree T E T which 
minimizes / under the constraint that, for each vertex v, the degree of v in T denoted by 
deg(v; T) cannot exceed a given integer lv, that is, 

deg (v; T) <, lv holds for all v E V, 

where 
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Figure 1: T* for n = 9 and l. = 4, ll = 3, = - = Is = 2. 

are assumed. (The problem for l* = ll = a = ln-1 = n - 1 is equivalent to Hu's one.) And 
they showed that if 

e a positive value pp is assigned to each vertex v E V, 
0 p0 > p1 2 * 2 pn-1 > 0 is satisfied (only strictly-decreasingness is assumed in [2]), 

and 
e rvu = cpvpu holds for all {v, U} E (I) (where c is a positive constant), 

then a particular tree T* = (V, E*) is an explicit solution to the problem. The definition of 
T* is as follows: Assuming that 

U- 1 

l v > l h o l d s f o r a l l v ~ V a n d  V l v > 2 ( u - 1 ) h o l d s f o r a l l u ~ { 1 , 2 ,  ..., n - l }  (3) 
v=O 

(condition (2) implies condition (3), which is proved in Appendix l), we set S-1 = 0, S, = 
ELo 1, - U (U = 0,1,.  . . , n - 1) and let N be the minimum integer satisfying n - 1 < SJV-I; 
also we define a function v on a set {l, 2,. . . , n - l} by 

if ~ ~ . ~ + l ~ v ~ s ~  for u = 0 , 1 , 2  ,..., N - 2  
T T ( ~ ) = { W - ~  if s ~ _ 2 + 1 < u < n - l  1 

and let E* = {el, ea, . . . , en_i} where e, = ( ~ ( v ) ,  v) (v = 1,2,.  . . , n - 1). Then we obtain 
T* = (V, E*). Appendix 1 shows that if condition (3) is satisfied then TT is definable and T* 
surely is a tree. Roughly speaking, the tree T* is constructed by the following procedure: 
First, to vertex 0, connect the remaining vertices by ascending order of vertex number as 
many as possible; secondly, to vertex 1, connect the remaining vertices by the same order 
as many as possible; and continue to connect the remaining vertices in the same manner 
until all n vertices are connected. This procedure can be regarded as a sort of "greedy 
algorithm". An example of T* (for n = 9 and l. = 4, ll = 3, Is = = ig = 2) is shown by 
Figure 1. Anazawa et al. [2, 31 also gave another interpretation of ORSTs as follows: They 
minimize the probability that a request of communication is not realized when there is one 
failure on a vertex or an edge (the probability for k failures will be shown in Section 5). 

Anazawa [l] considered the problem of minimizing f under constraint (1) satisfying 
11) = 2; = . = ln_! = L > 2 (where L is a commonly-given integer), and showed that T* is 
a unique explicit solution under the conditions that 

e rvu > rvu, holds for all v, U, U' ? V (U # v ,  U' # W, U < U'), and 
e rvu + rvw > rvu1 + rutu holds for all v, v', U, U' V (v < v', U < U') such that rvu, rdd ,  

ruuf and rutu are all defined. 
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Since the above inequalities hold if rm = cpvpu (c > 0) and p0 > p1 > > pn-1 > 0 
are satisfied, the conditions of {rvu} assumed by Anazawa [l] are more general than those 
considered by Anazawa et al. [2]. 

The aim of this paper is to generalize the problems and results discussed in the literatures 
[l, 2, 31. Let g(x) be an arbitrary real-valued function of real variable X such that it is 
monotone nondecreasing on [O, n - l], and consider a problem of finding a tree T E T which 
minimizes a function 

subject to constraint (1) satisfying (2). We call this problem a generalized optimum re- 
quirement spanning tree problem (GORST problem), and a solution to this problem an 
fg-optimum tree. Our main assertion on the GORST problem in this paper is that T* is 
an fg-optimum tree if rvu > rvut holds for all v, u,u' E V (U # v, U' # v, U < U') and 
r U  + rvtut 2 rvut + rutu holds for all v,vl, u,u' E V (v < v', U < U') such that run, rvtut, 
rÃ£Ã and rdu are all defined. Further, by introducing dummy vertices {v\v 2 n} and setting 
rÃ£ == 0 if v or u is dummy, the main assertion can be described more simply as follows: 

Main Theorem I/ {rvu} satisfies 

for ail 4-tuple {v,vl,ii,ii'} (v < vl,u < U') such that rvu, rvtut, rCTt and r,tu are ail defined, 
then T* defined above is fg-optimum. 

Remark (a) By setting v' 2 n in inequality (4), we have rvu 2 rvut. Also, we easily find 
that inequality (4) holds if rÃ£ = cp,pu (c > 0) and p0 >. p1 >. 2 pn-1 2 Pn == = 0 are 
satisfied. Therefore, the condition of {rvu} in Main Theorem is more general than those in 
the literatures [l, 2, 31. (b) It is easy to see that if rVu + rutu, > rvut + rutu holds for some 
4-tuple {v, v', U, U'} (v < v', U < U') then both v and U are non-dummy. In fact, it follows 
from rvu + rdut > 0 and rvu 2 rvut > rdut 2 0 that rm > 0 holds. 

It is of interest that condition (4) is closely related to the Monge property. A m X n 
matrix C = [cvÃ£ is called a Monge matrix if it satisfies the Monge property 

cvu + cvtut <- cvut + cutu for all 0 < v < v' < rn  - 1, 0 <- U < U' < n - 1. ( 5 )  

The property is named after the French mathematician Gaspard Monge, and is rediscovered 
by Hoffman [6] (compactly reviewed by Pferschy et al. [8] and Deineko et al. [4]). It is 
well-known that, in the classical Hitchcock transportation problem, if the cost matrix is 
Monge then a feasible solution obtained by the north-west-corner rule is optimum for any 
feasible demand and supply vectors. Also, Monge matrices make some NP-hard problems 
(ex. travelling salesman problem) efficiently solvable (see [8]). If C has unspecified elements 
and satisfies the first inequality in (5) for all 4-tuple {v, v', U, U'] (v < v', U < U') such that 
cvui cvtut, cvut and cutu are all specified, then C is called an incomplete Monge matrix. For 
{rvu} satisfying the condition in Main Theorem, if n X n matrix C is defined so as to satisfy 
cvu = arn_v_l,n-u_~ + b (where a (< 0) and b are arbitrary constants) with diagonal elements 
unspecified, then C is a symmetric incomplete Monge matrix. 

In this paper, after giving mathematical preliminaries in Section 2, we will show some 
properties of the tree T* in Section 3. The proof of Main Theorem will be given in Section 4. 
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As an example of the GORST problem, we will formulate in Section 5 a "k-failure problem" 
which is an extension of the "one-failure problem" discussed by Anazawa et al. [2, 31, and 
show that T* is an explicit solution to the k-failure problem for any k (0 < k < In - 1) 
when constraint ( l )  with (2) is imposed and the condition in Main Theorem is satisfied. 

. Preliminaries 
hout this paper, we use the following notation. For a graph G = (V, E) and a subset 

a subgraph G n U is defined by G' = (U, E'), where E' = {(v, U) E\v,  U 6 U}; 
ubgraph G \ U is defined by G" = (V \ U, E"), where E" = {(v, U) 6 q v ,  U E V \ U}. 

r a rooted tree T E T, if vertex v lies on a path (root, . . . , U) of T ,  then v is called the 
d(v, U; 7')-th ancestor of it (note that any vertex is the 0-th ancestor of itself); especially the 
first ancestor of U is called the parent of U. As to 7" defined in Section 1, v { v )  is the parent 
of W for v = 1,. . . ,n - 1 if vertex 0 is the root. Also, let y(v) = {u[,v is the parent of U}. 

vel of v is defined by d(v, roo 
P = (ul ,u2,Â¥ . ,u t )  of a tree (V, E) 6 7, let F be a forest defined by 

and T(ui) = (V (ui), E(ui)) (2 = l, . . . , k) the connected components of F each of which 
contains U,. 

An edge (v,u) such that v or U is a dummy vertex is called a dummy edge. For a 
tree T = (V, E),  we will sometimes construct another tree T = (V, B) satisfying V = 
V U {dummy vertices} and ,!? = E U {dummy edges}, i.e. T \ {dummy vertices} = T. 
Then it is obvious that A(T) = fg(T) holds. When constructing a dummies-added tree 
T = (V, E ) ,  we do not restrict the degrees of vertices in V. 

For a tree T = (V, E) E T satisfying (1) with (2) and a path P = (ul, . . . , ut) ( f e  = 
2 or 3) of T ,  we define an isomorphism ap. Let T (U;) = (V(ui), E (Ui)) be defined for 
P, and !f(ui) = (flu,), E{ui)) (2 = 1, k) be obtained by adding dummies to T(ui) = 
(V(ui), E(ui)) ( i  = l, k )  so that T(u1) and T(u~i.) can be isomorphic and the underlying 
isomorphism up : V(ui) Ã‘ V(uk) can satisfy the following two: 

( f ~ ( " l )  = "k a 

(ii) For any v 6 V(ui), if d v )  has at least one dummy vertex, then x(ap(v)) has no 
dummy vertices, where we regard HI as the root of T(uI) and uk as that of T(uk). 

We call such an isomorphism ap a forced isomorphism for P. Appendix 2 shows that ap 
can be defined for any tree T E T and any path P = (ul,.  . . , uk) (k = 2 or 3) of T. Also, 

= (V ,  I!?) where 

uV(uk) and B = E ( u ~ ) u  
2=2 

we consider the following transformation of T which may reduce the fÃ value: Let VC = {U 
V"(ui)jv > ap(v)}, and exchange v and op(v) for all v E VC. We call such a transformation 
biasing with respect to ap. Further, let T' be a tree obtained from T by biasing and 
T' = T' \ {dummy vertices}. (An example of constructing T' from T is illustrated by Figure 
2.) The following lemma assures us that T1 is also a tree belonging to 7 and satisfies 
constraint (1). 

r T and i ~ p  defined above and for an arbitrary vertex v E V{ui), let 

= {W E x(v)\w 5 n - l}, IV' = {W' 6 x(op(v))lwt 5 n - l}, 
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l biasing 

T = f' \ {dummy vertices} 

Figure 2: An example of constructing T' from T, where broken lines denote dummy vertices 
and edges. In T ,  we choose a path P = (u1,u2) with ul = 0 and u2 = 1, and define 
T(ul)  = ( V ( q ) ,  E(ui)) and T(ui) = (V(u2), E(u2)) for P where V(ul)  = { O ,  2,4} and 
V(u2)  = {l, 3,5,6}. T has two isomorphic dummies-added trees 'T(u1) = (p(ul ) ,  ~ ( u ~ ) )  
and T(u2) = (V(u2), ~ ( 2 4 2 ) )  where V(u1) = { O ,  2,4,8,9} and V{Uf) = {l, 3,5,6,7}. The 
underlying forced isomorphism up is defined by setting <rp(0) = 1, ~ ( 2 )  = 7 ,  up(4) = 3, 
up(8) = 5 and op(9) = 6. Hence, we have VC = {4,8, Q}. 
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Figure 3: The inclusion relation of N,  D,  NI, D and their subsets. In this figure, the 
left-right arrow indicates that the elements of Nc U DC and those of N& U D'(- are exchanged 
by biasing with respect to ap. 

The inclusion relation of N, D, NI, D' and their subsets is illustrated by Figure 3. Note 
that the following five relations are always satisfied: \N\ + \D\ = \N'\ + 1 D'\ , \ Nc\ + \Dc \ = 
P&\ + \D&\, \Nc\ + \DC\ = pc\ + \D&l, \N\ 5 l ,  - 1 IN1\ 5 l,,,.) - 1. 

(i) Since N = Nc (i.e. Nc = 0) and NI = N&uN& = 0, we have l 7 V c I + l ~ & l  = IN1 < (,-l 
and R1 + \Nc\ = 0. 

(ii) The proof is similar to that of (i). 
(iii) In this case, l. >. holds and D = 0 or D' = 0 is satisfied. When D = 0 holds, 

D& = 0 is obvious. Then we have \Nc \ = 1 N& 1. Hence, we find that 

\m + \Nc \  = V&\ + P&\ = IN1\ 5 l.,(.) - 1 

are satisfied. When D = 0 holds, we have IN1 < m. Since it is obvious that DC = 0 
holds, we obtain pc\ = pi-,\- Hence, we find that 

are satisfied. 
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(iv) The proof is similar to that of (iii) . 
Lemma 2 For a tree T 6 7" and a path P = (ui,  ..., uk) ( k  = 2 or 3) of T ,  let T be a 
dummies-added tree on which a forced isomorphism ap is defined. Also, let T' be a tree 
obtained from T by biasing with respect to  up and T = T \ {dummy vertices}. If {rvu} 
satisfies the condition in Main Theorem, then fg(Tt) <: fg ( T )  holds. 

Proof We have only to  show that fg (T1}  <, f . ( ~ )  holds. Let VC = v ( u i )  \ VC and 
Dvu = {g(dlv, U;  p))  - g(d(v, U ;  ~))}r,.. First, we consider the case of k = 2. Then 
fg(T1) - f g  (T)  is expressed by 

However, noting that the first six summations are all equal to zero, we have 

For two vertices v ? VC and u ? VC, let Svu = d(v,u; T )  and AV. = d ( v , Ã § ; f ' )  Then 
< Avu is obvious. Also, noting that 

and 
A,,, = d(v, U ;  p) = d(crp(v), ap(u); T') = d(v,ffp(u); T )  = d(ap(v),u; T ) ,  

we obtain 

Due to the assumption of {rvu}, the second factor of the summand in (7) is always nonneg- 
ative, and if it is positive then we find from the remark of Main Theorem that both crp(v) 
and U are non-dummy, which implies Auu < n - 1. Hence, we find from the assumption of 
g that f,(T") - /,(p) < 0 holds for k = 2. 

In the case of k = 3, f g  ( p )  - f g  ( T )  is expressed by 

However, the first three summations are all equal to zero. Hence, fa(P) - f , ( ~ )  < 0 is 
similarly obtained. The proof is just completed. 

3. Properties of T* 
Here, we show some properties of the tree T* = (V, E") defined in Section 1. Suppose that 
T* satisfies (2). Let V, = {0,1,. . . , v  - l }  ( 1  <. v n) and T; = T* n K. Note that 
T; (1  <: v <, n) are subtrees of T*. 
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Lemma 3 For each T* (v 2 2), let P = (ul, ui, . . . , uk) be an arbitrary path of Tz satisfying 
u~ < ut, and let rn = where [rJ is the maximum integer not exceeding x. Then 
U, < uk-+l and deg(ui; T') 2 d e g ( ~ ~ - ~ + i ;  T') hold for i = 1,2, . . . , m. 

Proof Let vertex 0 be the root of Tc. For two vertices v and U on T*, we find from the 
procedure of constructing T* that 

(i) if v is the d-th (d > 0) ancestor of U, then v < U holds, 
ii) if 0 < v < U, then v(v) < ̂ (U) holds, and 

iii) if v < u, then the level of v does not exceed that of U. 

r the path P, if ul is an ancestor of uk, then we find from (i) that U, < uk-i+l holds for 
, . . . m. Otherwise, continue to compare U, with uk-i+l by ascending order of i until 
ecomes an ancestor of ' K ( u ~ - ~ + ~ )  (this stopping condition is valid due to (iii) ). Then 

om (ii) that ui < uk-i+~ holds for z = 1,2,. . . ,m. 
the lemma is proved as follows. Since 7" satisfies deg(u; T*) = lÃ (U = 
2 < deg(1V - l ;T*)  $ ZN-1 and deg(u;T*) = l (U = N,N + 1,. . . , n  - l) ,  

S from condition (2) that (= T*) satisfies 

We also find that des{v(n - 1);T;) > 2 and deg(u;T;) = 1 (U = v(n - 1) + 1, . . . , n  - l) 
hold. Hence, considering a tree T', = T' \ {n - l}, we have 

deg(u; Ti)  - l if u = ir(n - l )  
deg(u; T-l)  = 

deg(u; Tn') otherwise, 

which implies that 

holds. Continuing to delete the last vertex, we finally obtain T* and find that 

holds. Hence, we have deg(ui; T;) > d e g ( ~ ~ _ ~ + ~ ;  T;) (i = l, 2 , .  . . , m). 

Lemma 4 Suppose that a tree T C T satisfies (1) with (2) and contains a subtree T* (i.e. 
T n  V, = T;). Let P = (ul,. . . ,uk) (k = 2 or 3) be an arbitrary path o f T .  For the tree T 
and the path P, let T be a dummies-added tree on which a forced isomorphism ap is defined, 
f" a tree obtained from by biasing with respect to Q, and T = 1" \ {dummy vertices}. 
Then T' also contains T*. 
Proof We have only to show that 7" contains T" Since the proof varies according as where 

lies on T, we should consider the following three cases: 
(i) k = 3 and V, C V(ui), 

(ii) k = 2 or 3, Vvnv(u i )  #0 and V,nv(uk)  = 0, 
(iii) k = 2 or 3, V, n q u i )  # 0 and V, f-l v (uk)  # 0. 

In case (i), it is obvious for 7" obtained by biasing to contain T*. In case (ii), since v 2 v 
holds for all v v(uis), it follows that V, D p(ul)  C VC. Hence, 7" also contains T> In 
case (iii), suppose that ul < uk holds without loss of generality. Then we find from Lemma 
3 that V, n V(uk) C ap(Vv n V( i l ) )  holds. We also find that v < ap(v) holds for any 
v E V, n V(ul). In fact, if (rp(v) E V, 0 V(uk), then v < ap(v) comes from Lemma 3; 
otherwise v < v <, op(v) holds. Hence, we have V,, n v(u1) C VC and V,, n V ( U ~ )  C ap(Vc), 
which imply that T' contains T*- 
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4. Proof of Main Theorem 
Let T* = (V, E*) E T be the tree defined in Section 1, and suppose that T* satisfies (2). 
For a tree T = (V,m E 7, let 

We will show that any fg-optimum tree can be transformed into T* with the fn value 
unchanged. 

Let T be an fg-optimum tree with VT < n. Note that T n {0,1,. . . , VT - l} = T;, 
(a subtree of T*). Also, let W* = ir(vT) in T*. Since UT < n, we can consider a path 
P = (v*, . . . , vT) of T. Among the vertices on P', a vertex adjacent to VT is denoted by v1 , 
and a vertex adjacent to v* is denoted by v2 (v2 may coincide with vl). Then we find that 
v* < vl holds. In fact, if v* = wi, then we have (vl, vT) = ('"'(vT), vT) E E, which contradicts 
the definition of VT; else, if v* > vi, then a certain vertex v' in {v < vT\v(v) = ul in T*} 
is pushed out by UT, that is, (vl, v') = (ir(vl), v') E E* and (~(v ' ) ,  v') 6 E hold, which 
contradicts the minimality of VT. Here, we consider the following two cases: (i) v2 < VT and 
(ii) v2 > UT. 

In case (i), let P = (ui,. . . , U&) be a subpath of P' satisfying 

d(v*,u~;T)  - l 
d(ul, v*; T) d(%, T) = (then k = 2 or 3). 

Let 5? be a dummies-added tree on which we can define a forced isomorphism v p  such that 
op(v*) = v1 holds and a vertex v** adjacent to v* satisfies op(v**) = WT and v** > VT (it is 
obvious that such v** exists). Also, let f" be the tree obtained from T by biasing with respect 
to op, and T' = (V, E') = T'\{dummy vertices}. Then we find from Lemmas 2 and 4 that l" 
is also fg-optimum and satisfies Tf n {O, l, . . . , UT - l} = T,* and (v*, uT) = (ir(wr), vT) ? E', 
that is, u p  > VT holds. 

In case (ii), let P = (ul, . . . , uk) be a subpath of P' satisfying 

d(ul, u2; T)  = d(uis, VT; T )  = d(v2'vT;T) - '1 (then k = 2 or 3). 
2 

Similarly to (i), let T be a dummies-added tree on which we can define a forced isomorphism 
crp satisfying op(v2) = VT. Also, let T' be the tree obtained from T by biasing with respect 
to crp, and T = 7" \ {dummy vertices}. Then we obtain vp  > V* in the same way with 
that of (i). 

By continuing this process, we find that T* is fn-optimum. 

5. An Example of the GORST Problem 
Finally, we show an example of the GORST problem, which is to find a tree network 
minimizing the probability that a request of communication is not realized when the network 
has k failures (called a "k-failure problem"). Let vertices be regarded as network hosts, edges 
as network cables, and { rm}  as relative frequencies of communication. A failure can occur on 
a vertex or an edge; if even one failure has occurred on a path (v,. . . , U), then v and U cannot 
communicate with each other. Let us define the probability that a request of communication 
is not realized on a tree network T = (V, E)  with k failures, denoted by p(T; k}. Consider 
a time interval 7 in which the number of failures on T does not change and at  most one 
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request of communication occurs on T. Let FT denote the number of failures on T in I ,  Rvu 
the event that a request of communication between v and U occurs in I, and RT the event 
that a request of communication between a certain pair on T occurs in I. Then the relative 
frequency of communication between U and U is expressed by rvu = Pr{RvuIRr}. We assume 
that each vertex (host) has enough ability of processing and, hence, the frequency of failure 
on each vertex does not depend on the amount of traffic. Also, we observe that an edge 
failure results mostly from incomplete connection at  the connector of a host (rarely from 
the snapping of a cable) and it occurs independently of a vertex failure. Hence, we assume 
that 

(i) a failure occurs equally often on n vertices, and so does it on n - 1 edges, where the 
probability of vertex failure is not necessarily equal to that of edge failure, 

(ii) any two failures occur mutually independently. 
om these assumptions, letting 

aij = Pr{z vertices and j edges are broken downlFT = a + l} ,  

we can assume that aij's do not depend on the structure of 7\ Let v H U be the state that 
the path (v,. . . ,U )  has no failure in I, and Ã the state that (v,. . . ,U) has at  least one 

. It is easy to see that 

Then the desired probability is expressed by 

The A-failure problem is to find a tree T minimizing p(T; k )  for each k .  
For afixed k (0 < k <, 2 n -  l), let 

which is obtained by replacing d(v,u;T) in Pr{=<4FT = k} by X. Then it is easy to 
find that g(x) is monotone increasing on [O, n - l]. Hence, the k-failure problem under 
constraint (1) satisfying (2) is a special case of the GORST problem. Further, if {rvu} 
satisfies the condition in Main Theorem, then T* defined in Section 1 minimizes p(T; k}  for 
any k (0 < k <. I n -  1). 
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Appendix 1 
First, we show that condition (2) implies condition (3). Note that condition (3) also satisfies 

1, > 2(n - 1). In fact, since ~~~~ l, > 2(n - 1 - 1) + 1 = 2n - 3 is obtained from (3), 
it follows from ln-1 > 1 that 

holds. Assume that {l,} with (2) also satisfies ,̂=1 l, <: 2(r - 1) for some v (< n). Since ~~~~ 1, = lÃ + 1, 2 2(n - l) ,  we have 2(r  - 1) + 1, 2 2(n - l), that is, ~~~ l ,  > 2(72- v). Then it follows from the monotoneity of {l.} that lÃ >. 2 holds. However, 
we also find that ~ f z i  lc > 2u holds, which is contradiction. 

Secondly, we show that if condition (3) is satisfied then v is definable and T* surely is a 
tree. Since condition (3) implies that $̂ E; l,  >, 2(n - 1) holds, we have sn_1 2 n - 1 under 
(3). This means that N in the definition of TT is surely determined. Also, it is easy to see 
that T" is a tree if v(v) < v holds for all v 6 {l, 2,. . . , n - l}. For any vertex v satisfying 
v(v) = U (0 < U < N - 1 < re), we have su_l + 1 <: v. On the other hand, we find from 
condition (3) that 

U-1 

U <  y l v - ( u - l ) + l  = S u - 1 + 1  
v=O 

holds. Hence, we obtain 7r(v) = U < v. 

Appendix 2 
For any tree T T and any path P = (ul,. . . , uk) (k = 2 or 3) of T, we can si- 
multaneously establish two dummies-added trees 'T(ui) = (V(ui), E(uil} (i = l, k) and 
a forced isomorphism op stated in Section 2 by using the following algorithm, where 
T(ui) = (V(ui), E(ui)) (i = l, . . . , k) are defined for the path P, and V(ui, l) is defined 
by {W P(ut) lthe level of W is l}. 

Procedure ~ a k e - ~ u ~ ) - f l u ~ ) - a n d - o ~  (T: tree; P: path); 
begin 

v(u1) := V(Ul); V(%&) := v(?&); E('U1) := E('U1); . J @ ( M ~ )  := E ( u ~ ) ;  
set cp(u1) = ujs;; 
dv := n; { dv denotes the current number of dummy vertex } 
I := 0; 
while V(ul, 1) U V(uis, I) has a vertex v with x(v) # 0 do begin 

for all v E V(u1, l) do begin 
d* := rnax{deg(v; T (ul)) , deg (op(v); T (ui))}; 
{ adding dummy vertices and edges so that 

deg(v; r(u1)) = deg(op(v); T(%))  = d* } 
if deg(u; T(u1)) < d* then 

for i := 1 to d* - deg(v; ~ ( u l ) )  do begin 
Y(u1) := Y(u1) U {dv}; 
JS(ul) := JS(u1) U {(v, dv)}; 
dv := dv+ l; 

end 
else if deg(op(v); ~ ( u k ) )  < d' then 
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for i := 1 to d* - deg(op(v); r ( u i ) )  do begin 
V(uk) := V(uk) U {dv}; 
E(%) := @(ut) U { ( ~ P ( u ) ,  dv)}; 
dv := d v +  l ;  

end; 
{ making one-to-one mapping from ^(v) to 'X.{op(w)) } 
for all W E %(v) do begin 

choose W' x(op(v)) to which any vertex in ~ ( v )  
is not mapped by ap\ 

set op(w) = W'; 
end; 

end; 
l := l + l ;  

end; 
end; 
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