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Abstract Let R(z) be a matrix function. We propose modified Newton's method to calculate zero points 
of detR(2). By the modified method, we can obtain accurate zero points by simple iterations. We also 
extend this problem to a multivariable case. Applications to the spectral analysis of M/G/1 type Markov 
chains are discussed. Important characteristics of these chains, e.g., the boundary vector and the matrix G, 
can be derived from zero points of a matrix function and corresponding null vectors. Numerical results are 
shown. 

1. Introduction 
Let R(z )  be a matrix function. In this paper, we consider Newton's method to obtain zero 
points of detR(z). At first, we propose a modification of the direct Newton's method and 
its extension it to a multivariable case. Second, applications of this work to the spectral 
analysis of M/G/1 type Markov chains are discussed. Important characteristics of these 
chains, e.g., the boundary vector and the matrix G, can be derived from zero points of 
detR(z) and corresponding null vectors of R(z).  Finally, numerical results are shown. 

An M/G/l  and a G/M/1 type Markov chains, introduced by Neuts [l11 are general- 
izations of an M/G/1 and a G/M/1 queue. Because these models have many applications 
to telecommunication techniques, they have received investigation in the last decade. The 
state space of these Markov chains is two-dimensional: the first element of state being level 
n = 0,1, . . . which can be interpreted as the number of customers in the system) and the 
second element of the state; the phase ( i  = 1, . . . , M ) .  By introducing a phase, we may rep- 
resent a state of a telecommunication system, i.e. a state of correlated inputs to the system 
or a state of service modes. The problem is to obtain the boundary vector of the stationary 
probability distributions from the transition probability matrix of a block Toeplitz form. 
The boundary vector is obtained by introducing the matrix G, the phase transition prob- 
ability matrix for the first passage time from a level n + 1 to a level n, and calculating 
the stationary probability vector of G (see Neuts [l11 and Lucantoni [g]). The matrix G 
is given by the minimal nonnegative solution of a nonlinear equation. When we calculate 
it numerically by an iteration method, at some point a truncation of level (n  = 0,1, . . .) is 
necessary. 

The transform method for the boundary vector has been studied in series of papers by 
Gail et al. [ 5 ] ,  [6] and [7]. The vector generating function of the stationary probability 
is represented by the boundary vector and the matrix function. If the process is ergodic, 
then by using zero points of determinant of the matrix function on the unit disk and corre- 
sponding null vectors, the boundary vector is uniquely determined by the system of linearly 
independent equations. 
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Newton's Method for Zero Points of a Matrix Function 397 

Recently in order to derive the boundary vector, several methods have been investigated. 
Algorithms for the calculation of the matrix G are obtained by using Newton's method in 
Latouche [8] and by using the cyclic reduction technique in Bini and Meini [2]. Under the 
assumption that R(z) is a matrix polynomial, spectral analysis is discussed in Mitrani [10]. 
To obtain null vectors of the matrix G, the invariant subspace approach is introduced by 
Akar and Sohraby [l] if the matrix function is rational. The fast Fourier transform is an 
approximate method with a wide use. Its application to an M/G/ l  type Markov chain 
is discussed (see Bini and Meini [2]). There is a trade-off between computation time and 
accuracy. If we want to obtain an accurate value of the boundary vector, we need a large 
amount of computational time and a large memory. 

The motivation of this paper is how to calculate accurate zero points numerically. For this 
purpose, we propose the usage of Newton's method because we can easily obtain accurate 
values of zero points by simple iterations. Moreover, suppose that a roughly approximated 
value obtained by some method. We may set it as the initial value of Newton's method. In 
Theorem 1, we modify the direct Newton's method. The direct usage of Newton's method 
implies M + 1 determinant calculations in each step of the iteration. By the modified 
method, however, it is executed by a sweeping-out method. The latter is accomplished 
by a smaller computational time than the former. In Theorem 2, the modified method is 
extended to a multivariable case. In Section 3, assuming that all eigenvalues are distinct, 
we get a simple proof that the boundary vector is uniquely determined by the system of 
equations in Proposition 3. And we also consider applications of Newton's method in a 
niultivariable case. It is proved in Theorem 4 that the spectral equation for a MAP/SM/l 
queue is divided into two equations of small size matrices. In Theorem 5, the similar result 
is obtained for a single server queue whose arrival process is a superposition of independent 
Markovian arrival processes. In Section 4, numerical calculations of eigenvalues of a M/G/l  
type queue are shown. The computational time and the speed of the convergence are shown. 

2. Newton's Method 
2.1. A single variable case 
Suppose that R(z) = [ry(z)] (i, j = 1,. . . , M )  is an M X M matrix function of 2. Let us 
consider the problem to solve the equation 

det R(z)  = 0 (1) 

by using Newton's method. 
Setting ZQ E C as an initial value and applying Newton's method to (l), we get the 

sequence {zk} such that 

Since 
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calculations of M + 1 determinants of M X M matrices appear in Equation (2). To reduce 
computational time of the direct Newton's method (2) to the problem (l), we propose the 
following theorem. 

Theorem 1 Suppose that a matrix X(zk) satisfies the linear matrix equation 

Equation (2) is rewritten as 

where t rX is the trace of a matrix X ,  

Proof. Consider the M X M matrix X(z)  = [xij(z)] (i,j = 1,. . . , M) which satisfies 

The j th  column of X(z)  satisfies 

By Cramer's rule, xjj(z), the j th diagonal entry of X(z),  is given by 

1 
xj3(z) = 

det R(z) 

Since trX(z) becomes 

we get 
d 
- det R(z) = det R(z) - trX(z). 
dz 

Substituting (7) to (2) leads to the conclusion. 
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In the iterative formula (5), trX(zk) can be calculated by a simple sweeping-out method 
as follows. Suppose that the matrix R(zk) and - ~ - R ( Z ) I ~ = ~ ~  are transformed to an upper 
triangular matrix [fi,(zk)] (i, j = l , .  . . , M) and [?!.(zk)] (i, j = 1,. . . , M) by the same 

zJ. 

elementary transformation, respectively. That is, (5) is written as 

Then xjj(zk) ( j  = 1, . . . , M), the j th  diagonal entry of X(zk),  is obtained from the formula 

To compute [Fij(zk)] (i, j  = 1,. . . , M) and [?'.,{zk)] (i, j = l , .  . . , M )  requires :M3 + 0 ( M 2 )  
multiplications in the elementary transformation. And M3 + 0(M2) more multiplications 
are needed in the procedure to determine all diagonal entries of X(zk). So the total com- 
putational cost of each step by using ( 5 )  is 0(M3).  The other way, in the iterative formula 
(2), calculations of M + 1 determinants of M X M matrices are needed. Since the cost 
of calculation for a determinant of an M X M matrix is $M3 + 0 ( M 2 )  , the cost in each 
step is O(M4). Thus the iterative formula (5) has an advantage over the formula (2) in 
the computational time. Moreover, the iterative formula (5) is simpler than (2). So it is 
well-suited for creating programs of numerical computations. 

2.2. A multivariable case 

In this subsection we consider multivariable Newton's method solving zero points for de- 
terminants of matrix functions. For f = l, . . . , I<, let R6(z1, . . . , zI<) = [rÃˆe(z1 . . . , zIc)] 
(i, j = 1, . . . , Me) be Mf X Mf matrix functions of I{ variables 21, . . . , ZK. We now consider 
the problem to solve the system of K equations 

det Rl(zl , . .  .,Q) = 0 

det -RIi-(;?!,. . . ,zK) = 0. 

(0) Setting (zl , . . . , z P )  as a initial vector and applying Newton's method to the ~roblem (g) ,  
(k)  we get the vector sequence {(% , . . . , z y ) }  such that 

where 

-L det R1 (zl, . . . , zK) - . -̂ - azv det R1 (zl , . . . , zIt-) 
J(z1, .  . . , zIi-) = 

. . . , zI{) . - - -^- det R I ~ ( z ~ ,  . . . , q) SZK 
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where the symbol T means the transposition of a vector. We can rewrite (9) as 

Theorem 2 For f , r ,  = 1 , .  . . , A', let ~ ( ( ~ ) ( z ( ~ ) )  be the M[ X M( matrix defined b y  

Put 
t r ~ ( ~ ~ )  ( z  W) . - t r ~ ( ~ ~ ~ - ~ ( z ( ~ ) )  

T (z (~ ) )  = 

t rxWl)  ( z  . trxiKK@) 

Then (10) can be rewritten as 

where = (1,. . . , l )  is the 1 'S column vector of size K .  

Proof. For r̂/ = 1, . . . , K ,  consider the M^ X M^ matrix X̂ {z) = [xij(tq) (z)]  ( i ,  j = 

1 , .  . . , M[) which satisfies 
9 

Rt(z)X(tq)(%) = &Rt(z)-  (12) 

For the j t h  column of X(&) (z) , we get 

By Cramer's rule, xjjiM(z), the j t h  diagonal entry of X(,tq)(z), is given by 

- - 1 
det R< (z )  
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Since 

we get 

Therefore, 

J ( z ) - ~  = 

a 
- det R f ( z )  = det R<(z) - t rX(z).  
QZr, 

det Rl ( z )  

0 

det RI<-(%) 
1 

det -RI (Z)  

0 

1 
det RK(Z} 

Substituting (13) to (10), we get the conclusion. 

3. Applications of Newton's Method for the Spectral Analysis 
The first problem in analysis of an M/G/l  type Markov chain is to obtain the boundary 
vector of the stationary distribution. The boundary vector is calculated by using all zero 
points (\z\ 5 1) of a matrix generating function and corresponding right null vectors. In 
this spectral analysis, these zero points should be calculated with great accuracy. Newton's 
method in the previous section is efficient because for a appropriate initial value, the se- 
quence {zk} converges rapidly to the zero point. In this section, we will argue applications 
of the spectral analysis to queueing systems. 
3.1. An M / G / l  type Markov chain 
We consider an irreducible discrete time Markov chain C with a state space { (n ,  i); n = 
0,1,. . . ; i = 1,2, . . . , M], where n and i are the level of the chain and the phase of the 
arrival process, respectively. For the sake of simplicity, suppose that the chain C has one 
boundary level. That is, the transitions from level n + 1 ( n  > 0) to level n + m are governed 
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In this section we suppose that a(z) is analytic in \z\ < 1 and continuous in \z\ < 1. 
Moreover, a(1) is irreducible and aperiodic. A general Markov chain with a reducible a(1) 
is studied in [6]. Let TT = (no, x i , .  . .) be the stationary probability vector satisfying 

by the M X M matrix am (m >_ O), whereas the transitions from boundary level 0 to level 
m are given by the M X M matrix bm (m > 0). Transition matrix P of the chain C takes 
the form 

where the n th  vector nn is a 1 X M row vector and e = (1 ,1 , .  . . I T .  
From (14) 

n+ 1 

p =  

Define 

bo b2 
an  a l  a2 
0 a0 a1 a - -  

. . 

Then from (15) 

H(z)(zI  - a(z))  = xo(zb(z) - a(z)) ,  (16) 
where I is the M X M identity matrix. 

We assume that the chain C is ergodic. Denote m* as the probability vector given by 

Put  
00 00 

a(z) = anzn, b(z) = E bnzno 
n=O n = O  

z * a ( l )  = TT* and n*eM = 1, where e~ is l's column vector of size M. And consider the 
phase transition probability matrix G during the first passage time from level n + 1 to level 
n. The matrix G is given by the unique minimal non-negative solution of the nonlinear 
equation 

00 

G = V anGn. 
n=O 

(17) 

It is proved in Neuts [l11 that under the ergodicity, p r*a f ( l ) eM < 1, b'(1) < +m and G 
is stochastic. 

The spectral analysis to obtain the boundary vector no is introduced by Gail e t  al. [5], 
[6] and [7] as follows. The number (counting multiplicities) of zero points of det(zl  - a(z)) 
in the open unit disk is M - 1. And det(zI  - a(z}) has a single zero point at 2- = 1. 
The boundary vector T T ~  satisfies the system of linear equations constructed from these 
zero points and is uniquely determined. When zero points are not distinct, the system of 
equations for 71-0 becomes complicated. Assuming that there exist M distinct zero points in 
z\ < 1, we will show a simple proof of the uniqueness. 

Let 2-1, . . . , ZM (zi = 1) and v l ,  . . . , VM (vl  = eM) be distinct zero ~ o i n t s  on the unit 
disk and corresponding right null vectors, respectively. From (zJ - a(zi))vi = 0, we get 
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Since G is stochastic, G has exactly M - 1 eigenvalues in the open unit disk and one 
eigenvalue at z = 1. Comparing (18 )  with (li'), we conclude that Z; and v,  ( i  = 1, . . . , M) 
are also eigenvalues of G and corresponding eigenvectors, respectively. We can express the 
matrix G as 

G = V  

where V [v l , .  . . , vM].  From the property that the set of eigenvalues of G is the same as 
the set of zero points of det(zI - a ( z ) )  on the unit disk, we get the following proposition. 

Proposition 1 Suppose that the chain C is ergodic and zero points of det(zI  - a(z} )  on 
the unit disk are distinct. The boundary vector i r 0  is uniquely determined by M - 1 linearly 
independent homogeneous equations 

and the non homogeneous equation 

Proof. For i = 2, . . . , M setting z = zi and multiplying (16)  by v,, we can easily obtain 

If Z[ # 0, we get 
iro(b(zi)  - I ) v i  = 0. 

If 2, = 0, we have b(zi )  = bo and aovi = a ( z i ) v ;  = 0. Then 

where the second equation comes from the fact that ir0 = nobo + x1ao for n = 0 in (15) .  
Hence, the system of equations (19 )  is obtained. 

For i = 1, r o ( b ( l )  - a ( l ) ) e M  = 0 is not a constraint equation to T O  because of (b(1)  - 
a ( l ) ) e ~  = 0. Therefore 

ir0(b(zi)  - I ) v i  = 0. ( i  = l , .  . . , M )  (21)  

is equivalent to the system of equations (19) .  Rewriting (21)  as a matrix form, we get 

iro[(b(-2'i) - I)fi, (b(z2) - *2, - - , ( ~ ( z M )  - I ) ~ M ]  = 0- 
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Define the matrix in the  brackets by B and represent it by G as 

Since from the ergodic condition, P  =. bnGn is the transition probability matrix of the 
embedded Markov chain from level 0 to level 0 at service completion epochs, ~ a n k ( ~  - I )  = 
M  - 1. Therefore M  - 1  homogeneous equations in (19) are linearly independent. 

The last non homogeneous equation for TTQ is obtained as follows. It is well known that 
I - a(1) + e M x *  is nonsingular and n * ( J  - a(1) + e M n * )  = TT*. From (16) a t  z  = 1  we get 

Differentiating (16) a t  z = 1  and multiplying it by e ~ ,  we get 

Eliminating 11(1) in the above two equations leads to the last non homogeneous equation. 
0 

Thus using the spectral method, we can obtain the boundary vector T T ~  and the matrix 
G numerically. By Ramaswami [l51 the n th  vector (n = 1, . . .) are recursively calculated 

where 

In order to  obtain the zero points of det (z I  - a ( z ) )  on the unit disk with great accuracy, 
Newton's method is efficient. It is, however, important how to select the initial values of 
Newton's method. Suppose that a roughly approximated value obtained by some method 
([l], [2], [S], [l11 and etc.). Setting it as the initial value of Newton's method, the accurate 
zero point is easily obtained. If there is no information about zero points, we use lattice 
points on the unit disk by a suitable interval as the initial values of Newton's method. In 
this case we take a large amount of computational time to obtain all zero points on the 
unit disk. In the next section we give a numerical example that it takes a,bout 2 hours to 
calculate all zero points of a 15 X 15 matrix function (See Figure 3).  
3.2. A M A P / S M / l  queue 

We consider a M A P / S M / l  queue in 191. The arrival process is a Markovian arrival process 
with M  X M  coefficient matrices { D Ã £  n > O}. Put D ( z )  = E",, Dnzn. And suppose that 
D = D ( l )  is irreducible and aperiodic. The successive service times are formulated as a 
semi-Markov process with N service modes. Let ffpn(i) be the transition probability that 
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the service of mode p  lasts up to t and the next service mode is q. Put H[t} = [Hpq( t ) ] .  
Then H = H(m) represents the transition probability matrix of service mode. Let ~ 1 " )  be 
an M  X M  matrix whose (i, j )  entry represents the transition probability that under the 
condition the service begins at mode p and the arrival phase is i ,  the next service mode is 
q,  the arrival phase is j  and the number of arriving customers during the service time is n. 

Put 

Then A p q ( z )  is given 

Let A(") be the M N  X M N  matrix ordered Apn lexicographically. Put 

where the symbol (g) denotes the Kronecker product form of matrices. Let MN X M N  
matrix B ( z )  be the generating function for the arrivals during the idle period. Then B ( z )  
satisfies 

1 
B ( z )  = - [ - D ^ [ D ( Z )  - Do] (g) 1} A ( z ) ,  

z 
where I is the N  X N  identity matrix. Let p(n,  i, q) be the joint stationary probability 
that at service completion epochs, the arrival phase, the service mode and the number of 
customers are i,  q  and n,  respectively. Put 

As its vector representation 

is M N  row vector listed in lexicographical order. Then 

Now, we consider how to obtain the boundary vector P ( 0 )  from zero points of det[zI - 
A ( z ) ] .  In (23), the arrange of service modes p = l, . . . , N-  are blocked. For the latter 
discussion, it is convenient to use the order such that arrival phases i = 1, .  . . , M  are 
blocked. Let M N  X M N  matrix Â  take a form as 

Note that the order of states 
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is not lexicographical. Put 

By the similar derivation to (22 ) ,  A(4 satisfies 

In the same way let B [ z )  be the reordered matrix of B ( z ) .  And put 

Then 
1 

B{Z) = - [-I g D ; ~ [ D ( z )  - D ~ ] ]  A(z )  
z  

and 
P ( z ) [ z  I - A ( z ) ]  = ~ ( 0 )  [ z ~ ( z }  - A ( z ) ]  

are derived by the similar way to the derivation of previous equations. 
If we get zero points of det(zI  - 42)) on the unit disk, we can obtain the boundary 

vector ~ ( 0 )  from (27 ) .  Let h p q ( s )  be the moment generating function of H p q ( t )  defined as 

and h ( s )  be the N X N matrix which takes the form as 

In general, for an M X M matrix W ,  we use notations as 

and 

[ :  

h l I ( W )  . - .  h l N ( W )  

h ( ~ )  = = LW d ~ ( t )  8 ewt7 

h ~ i ( W )  ~ N N ( W )  

where h p q ( W )  and h ( W )  are M X M and M N X M N  matrices, respectively. Then, from 
the rearrangement of the order in (25)  and (26 ) ,  A,,(z) and A{z)  are represented as 

A p q ( z )  = h p , ( D ( z ) )  and A ( z )  = h ( D ( z ) ) .  

Let us now consider the problem to solve the equation 

The equation (28)  for the matrix of size M X N is divided into two equations written by 
two matrices of sizes M and N as follows: 
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Theorem 3 Let i (121 5 1) be a solution of det(zI  - 42)) = 0 , Then there exists & 
( l &  + d\ < d} such that the pair (:, c?) satisfies 

where d is the maximal value of diagonal elements of -Do. 

Proof. Let 2 be a solution of det(zI - A(z)) = 0 (12 \ <: 1). Now, for every 2, we consider 
Jordan's canonical form J of D(;) such that 

where Q is M X M matrix. Then An,(?) is rewritten as 

Now we only discuss the case M = 2 and N = 2 because we can extend this discussion 
to the general case easily. Let al and a2 be the diagonal entries of Jordan's canonical form 
J. Then q, (U = 1,2) satisfy 

From (30) A(?) is written as 

?-l^! Let v  = (L;) be a right null vector of X - A(zl and put v' = ( Q - l v ) .  Then 

Note that hpq(J)  is an upper triangular matrix. By replacing rows and columns, we get 

0 = det 

2 - hn(a1) * - ^ 1 2 ( 0 1 )  * 
= det 

0 - hll(a<i\ 0 -h12(a2) 
4 2 1  (0'1) * 2 - h22(a-2) * 

0 4 2 1  (0 '2)  0 2 - h22(a2) 

2 - h l l ( ~ 1 )  -h^(%) * * 
-h21(0'1) ? - h22(01) * * 

= (-1)'det 
0 0 

l 
2 - h ^ ( % )  -h12(a2) 

0 0 -h21 ( a 2 )  5 - h22 (4 
= det (21 - ̂ (al)) det (21 - ̂ (a2)) .  

l 
From this we see that for i there exists & such that the pair (2, &) satisfies (29). D 
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For the existence region of &, we can find as follows. Considering the equation det(&I - 
D(?)) = 0, we get 

0 = det(&I - D(,?)) 

(y + I)) . 

Put Q(;) = [qi,(S)] = + I .  Then for 121 5 1, 

Hence we can conclude that & exists at least in l&  + d\ < d. 
Since both existence regions of z and a (see Figure 1) are compact, we select a pair of 

lattice points by suitable intervals in both regions as the initial values of Newton's method to 
obtain all solutions of (29). A right null vector of z l -  A [ z )  is represented by the Kronecker 
product of right null vectors of al - D(z) and z I  - h(&). It is proved that in those regions 
there are M X N pairs of (i, G), if all zero points of d - A{z) are distinct (see Nishimura 
and Jiang [l 31). 

T h e  e x i s t e n c e  r e g i o n  o f  a .  T h e  e x i  s t e n c e  r e g i o n  o f  z. 

Figure 1: The existence region of the solutions of (29) 

Remark 
In general we can not obtain the explicit expression of A(z) because A{z) takes the form as 
(26). But considering the system of equation (29), we can get zero points of det (z I - ~ ( z ) ) .  
In a case of N = 1, a MAP/SM/ l  queue reduces to a MAP/G/ l  queue. Let H(t )  be 
the distribution function of service time with its moment generating function h(a). Then 
solutions of det ( z I  - a ( z ) )  = 0 ( 1  zl 5 1) satisfy 

where a(z) = (r e D w d ~ ( t ) .  Therefore, if h,-'(z), the inverse function of z = h(&), exists, 
we can obtain zero points of det(zI - a(z)) on the unit disk from the equation 

det(h-'(X)! - D(z)) = 0 (121 5 l ) .  (31) 
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In general, for a MAP/G/ l  queue, solving the equation 

de t ( a I -  D(h(a))  = 0 ( \ a  + d\̂ d), 

we can obtain all zero points on the unit disk. Especially, for a MAP/ D11 queue with a 
deterministic service time T, h(a) = e07'. Although h l ( z )  = $logs is not unique, we may 
solve the equation 

de t (a I  - ~ ( e ~ ~ ) )  = 0 ( \a + d\ <: d ) ,  (32) 

and put z = h(a).  
3.3. A Superposition of independent Markovian arrival processes 
We consider a MAP/G/ l  queue whose arrival process is a superposition of I{ independent 
Markovian arrival processes ([3] and [4]). The vth process (U = 1,. . . , K )  is formulated 
as the M. X M. coefficient matrices {FnlÃ£, = 0,1, .  . .}. Put FJz) = FnlV~" and 
suppose that F. = Fv( l )  is irreducible and aperiodic. Then the generating function for the 
arrivals at service completion epochs is given by a(z) = f̂  e D ( z ) t d ~ ( t ) ,  where H{t) is the 
distribution function of service time and D(z) Fl(z) Q) F&) @ Fx(z) is a matrix 
function for the arrival process. The size of the matrix function D(z) is M X M,  where 
M = nf=l MW. The symbol @ denotes the Kronecker sum of matrices. From the results in 
Section 3.2, in order to obtain zero points of det ( z I  - a(z)) on the unit disk, we solve the 
equation 

de t (a I  - D(h(a)))  = 0 ( \a  + W), 
where d is the maximal value of diagonal elements of -Do (Do Fo1 Q) - - @ Fo,K)i and put 
z = h(a).  From the property of the Kronecker sum, we get the following theorem. 

Theorem 4 Let & be a solution of det (aI  - D(h(a))  = 0 (la + d\ <: d). Then there exists 
( a l ,  . . . , a&-) satisfying a = al + a2 + . + O.K and 

1 det (al I - Fl (h(&))) = 0 

det (aJ  - FIc(h(&))) = 0. 

The existence region of a. (v = 1, . . . , I() is given by IQ;(, +Q <_ d., where &, (v = 1, . . . , K )  
is the maximal value of diagonal elements of -Fo,.. 

Proof. For every v (U = 1,. . . , I<), let pi" (i = 1 , .  . . ,My)  be eigenvalues of Fv(h(&)). 
According to the same discussion in Theorem 4, pi. satisfies 

det(&,I - F,(h(&))) = 0 ( i  = l , .  . . , M,). (35) 

Considering Equation (35)) we get 

Since lh(&)l <: 1, the maximum row sum of the absolute value of the entries of the matrix 
F" ( h ( & ) )  

du + I is less than or equal to 1. Therefore 1 %  + 11 5 1, that is IDi,,, + d.1 $ d.. 
From the property of the Kronecker sum, & (the eigenvalue of D(h(&)) = Fl(h(&)) Q) 

@ Fv(h(&))) is the sum. of eigenvalues of each Fv(h(&)) (v = l , .  . . , A'). So there exist 
cq, C {ftllV,. . . , (v = 1, . . . , I<) such that & = a1 + - - - + W. D 
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We can apply Theorem 2 to the problem (34). Put a^ = (a?), . . . , n g ) )  and &W = 

a^ + - - + a^. For f ,  7 = 1,. . . , K, let ~ ( ^ ( a ( ~ ) )  be the M( x M( matrix defined by 

where ~ : ( h ( & ( ~ ) ) )  = n ~ ~ ( h ( a W ) ) " - l .  Then setting 

we get the Newton's iteration formula 

where ev is the l 's  column vector of size K .  The existence region of (v = 1 , .  . . , I{) are 
given by \a,, + du\  <, &. 

4. Numerical Examples 

In this section, considering some examples of queueing models, we show results of calcu- 
lations for zero points by Newton's method and discuss their accuracy and computational 
times. 
(1) A M A P / M / l  queue 

For a M A P / M / l  queue, we now consider to obtain the zero points of det(zI - a(z}} on 
the unit disk. Let He(t) and he(a )  be the exponential distribution of the service time with 
mean -1- and its moment generating function, respectively, that is, 

In order to obtain zero points of det(zI - a(z}), from (31) we solve the equation 

det (h i1  (z) I - D(z))  = det ( ̂ l ) ~ - D ( z ) ) = O  (lzl < 1). 
z (37) 

We consider two cases of M A P / M /  1 queue. In the first case for Newton's method, selecting 
initial points on lattice points in the unit disk, we compare the computational time of several 
size matrices with complex zero points. In the second case, all zero points in the unit disk 
are real in (0, l]. We compare the accuracy and computational time for Newton's method 
and those of Lucantoni's method. 

The first case. Let p = 2 and 
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be the matrix function of size M. Note that this MAP is the same as a Poisson process but 
this is not an essential assumption. When we use information of range where zero points 
are distributed, computational times become short. Our aim is to calculate all zero points 
in the unit disk by selecting all lattice points of the interval S = 0.05 as initial values of 
Newton's method. 

In Table 1, the solutions and corresponding absolute values of det(h;l(z)I - D(z)) are 
shown when the matrix size of D(z) is 7 X 7. 

Table 1: The solutions of det(h;l ( z ) I  - D(z)) = 0. 

In Figure 2, these zero points are plotted on the complex plane. In Table 2, the behavior 
of convergence to the solution z = 0.465457458510102 + 0.257899144795876 i is represented 
with 1 d e t ( h l  (zk) I - D(zk)) 1 as evaluation of the accuracy. For M = 2, . . . ,15, M distinct 

Figure 2: The distribution of the solutions. 

zero points are obtained. In general, as the size of D(z) becomes large, the computational 
time increases. In Figure 3, the computational time is plotted as a function of the size M 
(CPU: Pentium 166Mhz, Memory: 32MB, OS: Microsoft Windows 95). It takes about 2 
hours to calculate all zero points in the case matrix size is 15 X 15 without using information 
about zero points. If we can use the knowledge of an region which contains all zero points 
in the unit disk, we may save the computational time. 

The second case. Let {j = 0, ,m} be the state space of the underlying process. 
Suppose that D(z) is an (m + 1) X (m + 1) matrix whose (i, j) element (j, k = 0, , m) is 
given by 
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Table 2: The behavior of convergence to the solution. 

k Z k 1 de t (h2  - D(2k))  1 
0 0.4 + 0.31 551.16 
1 0.453962570419582 + 0.261846986767771 39.947 
2 0.464050383948272 + 0.257665548947691 4.2392 

sec 

~ 0 0 0 1  

Figure 3: The computational time. 

( 0 otherwise, 

where the traffic intensity is p = 3(m + l )x/2.  Since arrival rate at state j is j, this numerical 
example possesses burstness of traffic. We will use the following steps. At first decide an 
interval where zero points are distributed. Next as initial points of Newton's method select 
equally spaced 5m points on the interval. 

(i) Comparison of Newton's method and Lucantoni's method when p = 0.5. The results 
of Newton's method and Lucantoni's method is completely the same. Using both methods 
we can get accurate results. In Table 3, computational times of Newton's method and 
Lucantoni's method are given when p = 0.5 and m = 5,10,15,20. Since in this case all zero 
points are real, Newton's method is very effective. 

Table 3: Computational times (sec) 

m 5 10 15 20 
Newton's method 1.54 10.61 35.53 116.94 

Lucantoni'smethod 160.32 838.16 2525.86 5519.25 

(ii) Put m = 20 and p = 0.99. In authors' computations of the matrix G by Lucantoni's 
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method) the calculated G is not stochastic because its row sums are not equal to l. The 
lowest row sum of the matrix G is 0.959 with 5465.8 second computational time. 

On the other hand) in our Newton's method) selecting l00 initial points in the interval 
[0.87)1], we get all 21 zero points. The smallest zero point is 0.8796392 .. This calculation 
is executed during 119 seconds computational time. For Newton's method computational 
times do not depend on the traffic intensity p. In this heavy traffic case, the calculated 
matrix G contains negative numbers of order 1op6 by using double precision. Therefore, 
authors calculate the matrix G by using computer calculations of l000 figures for Decimal 
BASIC (free ware) made by K. Shiraishi (kazuo.shiraishiQnifty.ne.jp). Then calculated G 
becomes stochastic. 

(iii) When m = 50 and p = 0.99, selecting 250 initial points in the interval [0.93)1]) we 
get all 51 zero points listed in Table 4. Accuracy of zero points is also checked because 
the calculated matrix G is stochastic. Authors also execute this check by using computer 
calculations of l000 figures for Decimal BASIC. 

Table 4: The list of zero points for m = 50 and p = 0.99. 

(2) A MAP/D/ l  queue 

For a MAP/ D11 queue, let HD(t) and hD(a)  be the service time distribution (the service 
time is T )  and its moment generating function, respectively. Then 

In order to obtain zero points of det(zI - a(z)) on the unit disk, from (32) we solve the 
equation 

de t (a I  - D(hD(a))  = det(aI  - ~ ( e ~ ~ ) )  = 0 ([a + dl 5 d ) ,  (38) 

where d is the maximum value of diagonal entries of -Do. 
Put T = $ and 

r -1 z2 o o 1 

Then the solutions of (38) obtained by using Newton's method are 0, -1.1256 - )  

-0.95107 + 0.15089 i and -0.95107 - 0.15089 i. Substituting these solutions 
into z = hD(a),  we get zero points. In Table 5) the solutions) their absolute values of 
det (aI  - D(effT)) and corresponding zero points are shown. 
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Table 5: The solutions of det (a1-  D(eaT)) = 0 and their corresponding values of z. 
ff 

z 1 det(aI  - D(eaT)) 1 
Q 0 
1 

-1.1256637738136 - 6.24043216044599 X 10-16i 2.96969 X 10-l7 
0.324437043056382 - 2.02462735752905 X 10-16i 

-0.95107027160039 + 0.150890530571235i 4.44089 X 10-l6 
0.381937723896332 + 0.058072184463382~" 
-0.95107027160039 - 0.150890530571235i 4.44089 X 10-l6 
0.381937723896332 - 0.058072184463382i 

(3) A M A P / S M / l  queue 

For a M A P / S M / l  queue, we consider to solve the equation 

det(zI  - A(z)) = 0 (121 5 l ) .  

As an example, put 

To obtain the solution of (39), from Theorem 4 we solve the system of equations 

where 

Table 6 gives the pair (z, a )  which satisfies (40). 

Table 6: The solutions of (40). 
z 1 det(a1-D(z))l 
a 1 det(z1-h(a))l 

l 0 
0 0 

0.72219474048098 + 6.81050711456 X 1 0 ~ ~ ~ 2  2.77556 X 10-l6 
-0.501410751741313 + 1.426421813062 X 2.22045 X 10-l6 

-0.292221505080965 + 3.994082 X 3.9968 X 10-l5 
-1.49979398221541 + 3.537063 X l ~ - ~ O i  1.11022 X 10-l6 

-0.526240073716001 0 
-0.196088706216173 1.11022 X 10-l6 
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5. Conclusions 
Comparing direct Newton's method with the method given in Theorem l and 2) the latter 
has a simpler structure and is executed with less computational time than the former. h a 
single variable case) the latter computational cost is 0 (M3)  whereas the former is 0 (M4) .  

For a MAP/G/ l  queueing system) calculation of the matrix G is first important problem. 
Lucantoni's method is very efficient. But heavy traffic systems, its convergence is slow. We 
propose the usage of Newton's method to calculate zero points of det(zI - a(z)). There 
are two problems for usage of Newton's method. The first problem is the assumption that 
zero points in the unit disk are simple. We can not encounter multiple zero points if we do 
not make artificial examples. In our numerical examples) all zero points are simple. This 
assumption seems not to be so strong in applications. However, it seems that Gail et al.'s 
method [5] may be aspplied if there are zero points with multiplicity. Second problem is how 
to select initial points. To save the computational time the following steps are suggested. 
At the first step) find a restricted region which contains zero points. In authors7 experience 
this step is not difficult because zero points are distributed in a small region. At the second 
step) select efficient number of initial points so as to find all zero points in the unit disk) 
since the number of zero points in the unit disk we need is equal to the size of D(z). Another 
application of Newton's method is that when we have a roughly approximated matrix G by 
some method) we may set its eigenvalues as the initial values of Newton's method. 
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