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Abstract Let R(z) be a matrix function. We propose modified Newton’s method to calculate zero points
of detR(z). By the modified method, we can obtain accurate zero points by simple iterations. We also
extend this problem to a multivariable case. Applications to the spectral analysis of M/G/1 type Markov
chains are discussed. Important characteristics of these chains, e.g., the boundary vector and the matrix G,
can be derived from zero points of a matrix function and corresponding null vectors. Numerical results are
shown.

1. Introduction

Let R(z) be a matrix function. In this paper, we consider Newton’s method to obtain zero
points of detR(z). At first, we propose a modification of the direct Newton’s method and
its extension it to a multivariable case. Second, applications of this work to the spectral
analysis of M/G/1 type Markov chains are discussed. Important characteristics of these
chains, e.g., the boundary vector and the matrix G, can be derived from zero points of
detR(z) and corresponding null vectors of R(z). Finally, numerical results are shown.

An M/G/1 and a G/M/1 type Markov chains, introduced by Neuts [11] are general-
izations of an M/G/1 and a G/M/1 queue. Because these models have many applications
to telecommunication techniques, they have received investigation in the last decade. The
state space of these Markov chains is two-dimensional: the first element of state being level
(n = 0,1,... which can be interpreted as the number of customers in the system) and the
second element of the state; the phase (: = 1,..., M). By introducing a phase, we may rep-
resent a state of a telecommunication system, i.e. a state of correlated inputs to the system
or a state of service modes. The problem is to obtain the boundary vector of the stationary
probability distributions from the transition probability matrix of a block Toeplitz form.
The boundary vector is obtained by introducing the matrix G, the phase transition prob-
ability matrix for the first passage time from a level n + 1 to a level n, and calculating
the stationary probability vector of G (see Neuts [11] and Lucantoni [9]). The matrix G
is given by the minimal nonnegative solution of a nonlinear equation. When we calculate
it numerically by an iteration method, at some point a truncation of level (n = 0,1,...) is
necessary.

The transform method for the boundary vector has been studied in series of papers by
Gail et al. [5], [6] and [7]. The vector generating function of the stationary probability
is represented by the boundary vector and the matrix function. If the process is ergodic,
then by using zero points of determinant of the matrix function on the unit disk and corre-
sponding null vectors, the boundary vector is uniquely determined by the system of linearly
independent equations.
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Newton’s Method for Zero Points of a Matrix Function ‘ 397

Recently in order to derive the boundary vector, several methods have been investigated.
Algorithms for the calculation of the matrix G are obtained by using Newton’s method in
Latouche [8] and by using the cyclic reduction technique in Bini and Meini [2]. Under the
assumption that R(z) is a matrix polynomial, spectral analysis is discussed in Mitrani [10].
To obtain null vectors of the matrix GG, the invariant subspace approach is introduced by
Akar and Sohraby [1] if the matrix function is rational. The fast Fourier transform is an
approximate method with a wide use. Its application to an M/G/1 type Markov chain
is discussed (see Bini and Meini [2]). There is a trade-off between computation time and
accuracy. If we want to obtain an accurate value of the boundary vector, we need a large
amount of computational time and a large memory.

The motivation of this paper is how to calculate accurate zero points numerically. For this
purpose, we propose the usage of Newton’s method because we can easily obtain accurate
values of zero points by simple iterations. Moreover, suppose that a roughly approximated
value obtained by some method. We may set it as the initial value of Newton’s method. In
Theorem 1, we modify the direct Newton’s method. The direct usage of Newton’s method
implies M + 1 determinant calculations in each step of the iteration. By the modified
method, however, it is executed by a sweeping-out method. The latter is accomplished
by a smaller computational time than the former. In Theorem 2, the modified method is
extended to a multivariable case. In Section 3, assuming that all eigenvalues are distinct,
we get a simple proof that the boundary vector is uniquely determined by the system of
equations in Proposition 3. And we also consider applications of Newton’s method in a
niultivariable case. It is proved in Theorem 4 that the spectral equation for a MAP/SM/1
queue is divided into two equations of small size matrices. In Theorem 5, the similar result
is obtained for a single server queue whose arrival process is a superposition of independent
Markovian arrival processes. In Section 4, numerical calculations of eigenvalues of a M/G/1
type queue are shown. The computational time and the speed of the convergence are shown.

2. Newton’s Method
2.1. A single variable case

Suppose that R(z) = [rij(2)] (4,7 = 1,...,M) is an M x M matrix function of z. Let us
consider the problem to solve the equation

det R(z) = 0 (1)

by using Newton’s method.

Setting 2o € C' as an initial value and applying Newton’s method to (1), we get the
sequence {z;} such that

det R(z)
= 2 — . 2
Zkt1 = Zk T det R(2)lon, (2)
Since
4 %rll(z) ri2(z) - rim(2)
Ezdet R(z) = : : :
ad—erl(z) ramz(z) o0 ram(z)
ru(z) (=) rs() o r(2)
n ) . ) ;
er(z) d%er(z) TMg(Z) e T'MM(Z)
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398 S. Nishimura & A. Harashima

ri(z)  ri(z) - ‘—ii'l;rlM(z)
+ s : : : (3)
rami(z) Tap(z) - f;rMM(z)
calculations of M + 1 determinants of M x M matrices appear in Equation (2). To reduce

computational time of the direct Newton’s method (2) to the problem (1), we propose the
following theorem.

Theorem 1 Suppose that a matriz X(z,) satisfies the linear matriz equation

d
R(zp) X (21) = B—;R(z){z__.zk. (4)
Equation (2) is rewritten as
ot = 2k — (5)
tI‘X(Zk)

where trX is the trace of a matriz X .

Proof. Consider the M x M matrix X(z) = [z;;(2)] (1,7 =1,..., M) which satisfies

R(2)X(z) = %R(z). (6)
The jth column of X (z) satisfies
ri(z) oo rim(2) z15(2) £ri(2)
ran(z) o () | | aan(2) 2rmi(2)

By Cramer’s rule, z;;(z), the jth diagonal entry of X(z), is given by

1 ru(z) oo ora(z) gra(e) mon(z) o mw(2)
i) = G RE) | ' | ' '
r(2) o o gea(2) Erm(2) rgea(2) o mam(2)

Since tr X (z) becomes

trX(z) = z11(2) + z92(2) + - + zum(2)

1 %7‘11(2) 7“12(2) e TlM(Z)
= -_— . . : + e
det R(z ’ : :
%) Lrai(z) raa(z) o0 ram(z)
7‘11(2) s 7‘1M—1(Z) ;%T‘lM(Z)
-+ : : : ,
ran(2) o0 rvam—1(2) 2w (2)
we get J
o det R(z) = det R(z) - trX(2). (7)
z
Substituting (7) to (2) leads to the conclusion. =
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In the iterative formula (5), trX (2x) can be calculated by a simple sweeping-out method
as follows. Suppose that the matrix R(zj) and - R(2)|;=, are transformed to an upper
triangular matrix [Fi;(z)] (5,7 = 1,...,M) and [;(2)] (4,7 = 1,..., M) by the same
elementary transformation, respectively. That is, (5) is written as

Ffu(ze) -+ Fiv(zk) zu(ze) -0 zim(zk) Palzk) o (k)
0 <o Fonr(2zk) zor(zk) -+ zom(zk) _ For(ze) o0 Tonr(zk)
0 - FMZ\/}(zk) CEMI'(Zk) . xMA,;(zk) Ff\,“.(zk) e ﬂw'M.(zk)

Then z;;(z) ( = 1,..., M), the jth diagonal entry of X(z}), is obtained from the formula

oy (5) = =Ty ()

M-1-i
zii(z) = :*1—— (F;J‘(zk) -y fiM_z(Zk)a?M—zj(zk)) (i=M-—-1,...,7).
7ii(zk) =

To compute [F(z;)] (4,5 = 1,..., M) and [7};(z)] (4,5 = 1,..., M) requires 2M? 4+ O(M?)
multiplications in the elementary transformation. And éM 3 + O(M?) more multiplications
are needed in the procedure to determine all diagonal entries of X (zx). So the total com-
putational cost of each step by using (5) is O(M?). The other way, in the iterative formula
(2), calculations of M + 1 determinants of M 'x M matrices are needed. Since the cost
of calculation for a determinant of an M x M matrix is $M® + O(M?) , the cost in each
step is O(M*). Thus the iterative formula (5) has an advantage over the formula (2) in
the computational time. Moreover, the iterative formula (5) is simpler than (2). So it is
well-suited for creating programs of numerical computations. '

2.2. A multivariable case

In this subsection we consider multivariable Newton’s method solving zero points for de-
terminants of matrix functions. For £ = 1,..., K, let Re(z1,...,2K) = [rije(z1,-..,2K)]
(e, =1,..., M) be Mg x Mg matrix functions of K variables zi,. .., zx. We now consider

the problem to solve the system of K equations
det Ry(z1,...,25) =0
z (8)
det R]{(Z]_, ey ZK) ={.

Setting (z%o), - ,z}?)) as a initial vector and applying Newton’s method to the problem (8),

we get the vector sequence {(z§k), . ,z}f))} such that

ZFHD {0 det R, (27 ... ,z}f))
. = E - J_l(z§k)""’z1(‘-(]?)) E ) (9)
Zl(Klf-‘_l) Z}xk) det RK(zgk)a . --azg’c))
where
-E,—Z—ldet Ri(z1,. .. 2) - 851( det Ry(z1,. .., 2K)
J(Zl,...,Z](): '
g%;’det RI{(ZI,...,Z]() v 351{ det R]((Zl,...,ZK)
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Put

k k
20 = (9, AT

bl

where the symbol T' means the transposition of a vector. We can rewrite (9) as

det Ry ()
Theorem 2 Foré,n=1,...,K, let X(gn)(z(k)) be the M, x M, matriz defined by
0
R&(Z(k))X(én)(z(k)) = —Re(2)] 220
0z,
Put
trX(u)(z(k)) DR tI'X(IK’)(Z(k))
T(z") = e s
tI’X([{l)(Z(k)) e tl‘X(KK)(Z(k))
Then (10) can be rewritten as
20 = 20 71 (zWey (1)

where egr = (1,. .., 1)T is the 1’s column vector of size K.

Proof. For £,n =1,...,K, consider the M x M, matrix X, (z) = [:ci]-(gn)(z)] (1,5 =
1,..., M) which satisfies

0
Be(2)Xen)(2) = 5—Re(2). (12)
“n
For the jth column of X, (2z), we get
rig(z) o Tive(2) | [ @i (2) 72, 1it(2)
rie(2) o MMee(2) || Eugien (2) o TMié (%)

By Cramer’s rule, z;;(en)(z), the jth diagonal entry of X(s,)(2), is given by

. re(2) o mere(z) o Tivge(2)
Tji(en) (%) = W : : :

riee(2) o aaMee(2) o TMMee(Z)
Hence trX (¢, (2) becomes

trX(en(2) = Tuen(2) + -+ Tumen(2)

arie(2)  rie(z) o mige(2)
= —-—-————1— . . : _I_...
~ det Re(2 : : :
%) o TMe1e(2) TM2e(2) e TMmee(2)
re(z) o rimpmie(2)  pmivee(2)
+ : :
rvee(2) o rveme-16(2) oMM ()
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Since
5 %Tll,e(z) rigg(z) o Tige(2)
—det Re(z) = : : : 4.
8z’” 3 e M
'a';;ngl,&(z) rM.fZﬁ(z) 7M§ngf(z)
rue(z) o rige-re(2)  serivee(2)
n ) : ) ’
rafere(2) 0 raae-1,6(2) gg:lngME,ﬁ(z)
we get
9 det Re(z) = det Re(2) - 12X (2).
0z,
Therefore,
[ det Ry(2) - trXay(z) -+ det Bi(2)- trX1x)(2) -
J(z)7 = : :
L det RK(Z) . tI‘X(Kl)(Z) .-+ det R[{(z) . trX(KK)(Z)
(T -y 1
WRE ][ et )
L det Rig(z) | L trXxny(2) -+ -+ triXxr(2) 1)
I dEt.Fél(Z) O |
= TY(z) (13)
1
L det Ry (2) ]
Substituting (13) to (10), we get the conclusion. 0

3. Applications of Newton’s Method for the Spectral Analysis

The first problem in analysis of an M/G/1 type Markov chain is to obtain the boundary
vector of the stationary distribution. The boundary vector is calculated by using all zero
points ([z| € 1) of a matrix generating function and corresponding right null vectors. In
this spectral analysis, these zero points should be calculated with great accuracy. Newton’s
method in the previous section is efficient because for a appropriate initial value, the se-
quence {2z} converges rapidly to the zero point. In this section, we will argue applications
of the spectral analysis to queueing systems.

3.1. An M/G/1 type Markov chain

We consider an irreducible discrete time Markov chain C with a state space {(n,7);n =
0,1,...;¢ = 1,2,..., M}, where n and 7 are the level of the chain and the phase of the
arrival process, respectively. For the sake of simplicity, suppose that the chain C has one
boundary level. That is, the transitions from level n+1 (n > 0) to level n +m are governed
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402 S. Nishimura & A. Harashima

by the M x M matrix a,, (m > 0), whereas the transitions from boundary level 0 to level
m are given by the M x M matrix b,, (m > 0). Transition matrix P of the chain C takes
the form

[ by b by
ag a; ag

P = 0 Qg a;

o

Put " .
a(z) = Y axz", b(z) =Y byz".
n=0 n=0

In this section we suppose that a(z) is analytic in |z| < 1 and continuous in |z < 1.
Moreover, a(1) is irreducible and aperiodic. A general Markov chain with a reducible a(1)
is studied in [6]. Let o = (g, 7y, ...) be the stationary probability vector satisfying

m=7wP , we=1, (14)
where the nth vector m, is a 1 x M row vector and e = (1,1,...)7.
From (14)
n+1
T, = mob, + Z TmGnyl—m- (]5)
m=1
Define N
I(z) =) m,z"
n=0
Then from (15)
II(2)(2] — a(z)) = mo(2b(2) — a(2)), (16)

where [ is the M x M identity matrix.

We assume that the chain C is ergodic. Denote m®* as the probability vector given by
7*a(l) = w* and m*ey; = 1, where e;; is 1’s column vector of size M. And consider the
phase transition probability matrix G during the first passage time from level n + 1 to level
n. The matrix G is given by the unique minimal non-negative solution of the nonlinear
equation

[eo]
G=)Y a,G" (17)
n=0
It is proved in Neuts [11] that under the ergodicity, p = 7*d/(1)ep < 1, b'(1) < +00 and G
is stochastic. \

The spectral analysis to obtain the boundary vector g is introduced by Gail et al. [5],
[6] and [7] as follows. The number (counting multiplicities) of zero points of det(z/ — a(z))
in the open unit disk is M — 1. And det(z/ — a(z)) has a single zero point at z = 1.
The boundary vector o satisfies the system of linear equations constructed from these
zero points and is uniquely determined. When zero points are not distinct, the system of
equations for wy becomes complicated. Assuming that there exist M distinct zero points in
|z| <1, we will show a simple proof of the uniqueness.

Let z1,...,2pm (21 = 1) and vy,..., vy (v; = ep) be distinct zero points on the unit
disk and corresponding right null vectors, respectively. From (z; I — a(z;))v; = O, we get
- .
Z;v; = Z anzl';. (18)
n=0
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Since G is stochastic, G has exactly M — 1 eigenvalues in the open unit disk and one
eigenvalue at z = 1. Comparing (18) with (17), we conclude that z; and v; (1 =1,..., M)
are also eigenvalues of G and corresponding eigenvectors, respectively. We can express the

matrix G as
21

G=V v
M

where V = [vy,...,v3]. From the property that the set of eigenvalues of G is the same as
the set of zero points of det(z/ — a(z)) on the unit disk, we get the following proposition.

Proposition 1 Suppose that the chain C is ergodic and zero points of det(zI — a(z)) on
the unit disk are distinct. The boundary vector 1y is uniquely determined by M — 1 linearly
independent homogeneous equations

rolb(z) — D=0 (i=2,....M), (19)
and the non homogeneous equation

mo [(b(1) — a(1)(I — a(1) + eprm) /(1) + 1 + H'(1) — '(1)] ens (20)
=1—n"d(1)em.

Proof. For:=2,..., M setting z = z; and multiplying (16) by v;, we can easily obtain

TTO(Zib(Zi) - a(Zi))’U,' = ziwo(b(zi)'vi — ’Ui)
= Ziﬂ'o(b(zi) — I)’Ui
= 0.

If z; # 0, we get
ro(b(zi) — I)’Ui = 0.

If z; = 0, we have b(z;) = by and aov; = a(z;)v; = 0. Then

mo(b(z;) — Nv; = wo(bo — I)v;
= T1497;
= 0,

where the second equation comes from the fact that wy = woby + 7100 for n = 0 in (15).
Hence, the system of equations (19) is obtained.
For i =1, mo(b(1) — a(1))ensr = 0 is not a constraint equation to 7y because of (b(1) —
a(1l))enr = 0. Therefore
wo(b(zi) — Nv; =0. (i=1,...,M) (21)

is equivalent to the system of equations (19). Rewriting (21) as a matrix form, we get

wo[(b(z1) — I)v1, (b(22) — Dwg,. .., (b(zar) — I)vp] = O.
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Define the matrix in the brackets by B and represent it by G as

B = [(b(z)) — Doy, (b(z3) — Dvg, ..., (b(z31) — T)vad]

= [D_buzlve, ..., ) bazipom] — [v1,. .., vM]
n=0 n=0
oo 24

= [Z bnv V—l *[]V
n=0 ZIT\L4

= [5G IV

n=0 :

Since from the ergodic condition, pP= 3% b, G™ is the transition probability matrix of the

embedded Markov chain from level 0 to level 0 at service completion epochs, Rank(f’ -I)=
M — 1. Therefore M — 1 homogeneous equations in (19) are linearly independent.

The last non homogeneous equation for my is obtained as follows. It is well known that
I —a(l) + epm™ is nonsingular and 7*(/ — a(l) + eprw*) = 7*. From (16) at z = 1 we get

(1) = 7 + 7o(b(1) — a(1))(I — a(1) + eprm™) ™",
Differentiating (16) at z = 1 and multiplying it by es, we get
I(1)(I — a'(1))en = mo(b(1) + (1) — a'(1))em-

Eliminating II(1) in the above two equations leads to the last non homogeneous equation.
O

Thus using the spectral method, we can obtain the boundary vector 7y and the matrix
G numerically. By Ramaswami [15] the nth vector 7, (n = 1,...) are recursively calculated

as
n—1

T, = wOBn + Z 7rn6_ln+1_m (I - dl)_l ? Z 1,

m=1

where

G = Z a,G"™ by, = Z b, G"™™ m > 0.

In order to obtain the zero points of det(z/ — a(z)) on the unit disk with great accuracy,
Newton’s method is efficient. It is, however, important how to select the initial values of
Newton’s method. Suppose that a roughly approximated value obtained by some method
([1], [2], [8], [11] and etc.). Setting it as the initial value of Newton’s method, the accurate
zero point is easily obtained. If there is no information about zero points, we use lattice
points on the unit disk by a suitable interval as the initial values of Newton’s method. In
this case we take a large amount of computational time to obtain all zero points on the
unit disk. In the next section we give a numerical example that it takes about 2 hours to
calculate all zero points of a 15 x 15 matrix function (See Figure 3).

3.2. A MAP/SM/1 queue

We consider a MAP/SM/1 queue in [9]. The arrival process is a Markovian arrival process
with M x M coefficient matrices {D,,n > 0}. Put D(z) = 322, D,z". And suppose that
D = D(1) is irreducible and aperiodic. The successive service times are formulated as a
semi-Markov process with N service modes. Let H,,(¢) be the transition probability that
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Newton’s Method for Zero Points of a Matrix Function 405

the service of mode p lasts up to ¢ and the next service mode is g. Put H(t) = [Hp(t)].
Then H = H(oo) represents the transition probability matrix of service mode. Let A;Z) be
an M x M matrix whose (z,7) entry represents the transition probability that under the
condition the service begins at mode p and the arrival phase is 7, the next service mode is
q, the arrival phase is j and the number of arriving customers during the service time is n.

Put -
Ay(z) = Z Ag’;)z”.
n=0

Then Apy(z) is given by
Apg(2) :/ eD(z)thpq(t)-

0
Let A be the MN x M N matrix ordered A,, lexicographically. Put

Az) = > AMm,
n=0
Then A(z) is given by
A(z) = /D P @ dH (1), (22)

where the symbol ® denotes the Kronecker product form of matrices. Let MN x M N
matrix B(z) be the generating function for the arrivals during the idle period. Then B(z)

satisfies .
B(z) = ~ [~ D5 [D(2) — Dol ® I] A(2),

 where I is the N x N identity matrix. Let p(n,i,q) be the joint stationary probability
that at service completion epochs, the arrival phase, the service mode and the number of
customers are 1, ¢ and n, respectively. Put

Pig(2) = i p(n,i,q)z".

n=0

As its vector representation
P(z) = (p1a(2), -, p1n(2), P21(2), - ., P2 (2), - PN (2))- (23)
is M N row vector listed in lexicographical order. Then
P(2)[z] — A(2)] = P(0)[zB(2) — A(2)]. (24)

Now, we consider how to obtain the boundary vector P(0) from zero points of det{z] —
A(z)]. In (23), the arrange of service modes p = 1,..., N are blocked. For the latter
discussion, it is convenient to use the order such that arrival phases : = 1,..., M are

blocked. Let M N x M N matrix A(™ take a form as

AD A
A = : :
AQ - AGh
Note that the order of states
((1,1),...,(M,1),(1,2),...,(M,2),...,(1, N),...,(M,N)) (25)
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406 S. Nishimura & A. Harashima

is not lexicographical. Put
Az) =) A = [/_lpq(z)] :
n=0
By the similar derivation to (22), A(z) satisfies

A(z) = / T dH(t) @ PEX, (26)

0

In the same way let B(z) be the reordered matrix of B(z). And put

P(z) = (Pl,l(z), <o aPM,l(Z),Pl,z(Z), e aPM,z(Z)7 e 7PM,N(Z))-
Then

B(z) = - [-I & D;'[D(=) — Du]] A(:)

and

P(z)[z] — A(2)] = P(0)[zB(z) — A(2)] (27)

are derived by the similar way to the derivation of previous equations.

If we get zero points of det(z/ — A(z)) on the unit disk, we can obtain the boundary
vector P(0) from (27). Let h,,(s) be the moment generating function of H,,(t) defined as

hpq(s) = /0 dH p(t)e™
and h(s) be the N x N matrix which takes the form as

hi(s) -+ hin(s)
h(s) = : :
th(S) hNN(S)

In general, for an M x M matrix W, we use notations as
hpg (W) :/ deq(t)eWt
0

and

his(W) - hay(W) .
W)= | | = [ e
ha(W) -+ hyn(W) °

where A, (W) and A(W) are M x M and MN x M N matrices, respectively. Then, from
the rearrangement of the order in (25) and (26), A,,(z) and A(z) are represented as

qu(z) = hpy(D(2)) and A(z) = h(D(2)).
Let us now consider the problem to solve the equation
det(zI — A(z)) =0 (l]z| <1). (28)

The equation (28) for the matrix of size M x N is divided into two equations written by
two matrices of sizes M and N as follows:
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Theorem 3 Let 2 (|2| < 1) be a solution of det(2] — A(z)) = 0 . Then there ezists &
(|& + d| < d) such that the pair (2,&) satisfies

{ det(&l — D(2))
T he

~0
det(5] — h(&)) = 0 , (29)

where d is the mazimal value of diagonal elements of —Dy.

Proof. Let 2 be a solution of det(2I — A(z)) = 0 (|z| < 1). Now, for every 2, we consider
Jordan’s canonical form J of D(%) such that

D(2) = QJQ7,
where @ is M x M matrix. Then A,,(%) is rewritten as
Apg(2) = _/Oo deq(t)eD(é)t
0
= Qhy())Q7". (30)

Now we only discuss the case M = 2 and N = 2 because we can extend this discussion

to the general case easily. Let a; and «y be the diagonal entries of Jordan’s canonical form
J. Then a, (v =1,2) satisfy

det(a, ] —D(2)) =0 (v=1,2).
From (30) A(2) is written as

A(3) = [ Qhu(J)Q™ Qhi2(N)Q7! ]
Qha (NQ™Y Qhaa(N)Q™ |°

Let v = (112) be a right null vector of 21 — A(2) and put v’ = (8:15;) Then

21 — hy1(J) —hy2(J) "—0
—ha(J) B —hyp(J) |V T

Note that hp,(J) is an upper triangular matrix. By replacing rows and columns, we get

[ 21— hiy(J)  —hua(J)
0 = det < 11 X 12
¢ —hgl(J) ZI — h22(J)
[z — hn(al) * _h12(a1) *
— det 0 Z — hy(cg) 0 —hia(ay)
—hai(cu) * Z — hoa(as) *
L 0 —h21(a2) O 2? —_ hgz(ag)
zZ— hll(al) —h12(a1) * *
—hoi(a1) £ — ho(ar) * *
— (—1)2det 21( 0 2la)
( ) © 0 0 z — hll(ag) —hlg(ag)
0 0 —h21(02) ZA — h22(a2)

= det(2] — h(oy))det(21 — h(ay)).

From this we see that for Z there exists & such that the pair (2, &) satisfies (29). O
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For the existence region of &, we can find as follows. Considering the equation det(&/l —
D(2)) =0, we get

0 = det(al — D(2))

; 5 D(3)
= qMdet | L7 22

= dM det <(%+ 1) I— (D((;) +I>> .

Put Q(2) = [g;;(2)] = Z& + I. Then for |3| < 1,

l

Hence we can conclude that & exists at least in |& 4+ d| < d.

Since both existence regions of z and o (see Figure 1) are compact, we select a pair of
lattice points by suitable intervals in both regions as the initial values of Newton’s method to
obtain all solutions of (29). A right null vector of zI — A(z) is represented by the Kronecker
product of right null vectors of al — D(z) and zI — k(). It is proved that in those regions
there are M x N pairs of (2,&), if all zero points of 21 — A(z) are distinct (see Nishimura
and Jiang [13]).

+1

Q.|| Q>

<max}_|g;(?)] < L.

J

The existence region of z.

The existence region of .

Figure 1: The existence region of the solutions of (29)

Remark

In general we can not obtain the explicit expression of A(z) because A(z) takes the form as
(26). But considering the system of equation (29), we can get zero points of det(zl — A(2)).
In a case of N = 1, a MAP/SM/1 queue reduces to a MAP/G/1 queue. Let H(t) be
the distribution function of service time with its moment generating function h(a). Then

solutions of det(z] — a(z)) = 0 (|z]| < 1) satisfy

{ det(al — D(2)) =0

z—h(a) =0 (Jz| < 1,|a+d| < d),

where a(2) = [5° P dH(t). Therefore, if h7!(2), the inverse function of z = h(«a), exists,
we can obtain zero points of det(zI — a(z)) on the unit disk from the equation

det(h™'(2)[ — D(2)) =0 (Jz| < 1). (31)
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In general, for a M AP/G/1 queue, solving the equation
det(al — D(h(a)) =0 (Ja+d| < d),

we can obtain all zero points on the unit disk. Especially, for a M AP/D/1 queue with a
deterministic service time T, h(a) = T, Although h~!(z) = % log z is not unique, we may
solve the equation

det(al — D(e*T)) =0 (Ja+d| <d), (32)
and put z = h(a).
3.3. A Superposition of independent Markovian arrival processes
We consider a M AP/G/1 queue whose arrival process is a superposition of K independent
Markovian arrival processes ([3] and [4]). The vth process (v = 1,..., K) is formulated
as the M, x M, coefficient matrices {F,,,n = 0,1,...}. Put F,(z) = >02, Fn,2" and
suppose that F, = F,(1) is irreducible and aperiodic. Then the generating function for the
arrivals at service completion epochs is given by a(z) = [5° eP*)dH(t), where H(t) is the
distribution function of service time and D(z) = Fi(z) ® Fa(z) & - -+ & Fk(z) is a matrix
function for the arrival process. The size of the matrix function D(z) is M x M, where
M =TI%, M,. The symbol @& denotes the Kronecker sum of matrices. From the results in
Section 3.2, in order to obtain zero points of det(z/ — a(z)) on the unit disk, we solve the
equation .

det(al — D(h(a))) =0 (Ja+d| < d), (33)
where d is the maximal value of diagonal elements of — D, (Do=Fo1®--- @ Fo i), and put
z = h(a). From the property of the Kronecker sum, we get the following theorem.

Theorem 4 Let & be a solution of det(al — D(h(a)) = 0 (Ja +d| < d). Then there exists
(o1,...,ak) satisfying & = oy + ag + -+ - + ax and

det(c] — Fi(h(&))) = 0

det(on] — Fi(h(&))) = 0.

The existence region of o, (v = 1,..., K) is given by |, +d,| < d,,, whered, (v =1,...,K)
is the mazimal value of diagonal elements of —Fy,.

Proof. For every v (v = 1,...,K), let 8;, (i = 1,...,M,) be eigenvalues of F,(h(&)).
According to the same discussion in Theorem 4, §;, satisfies

det(Bi, ] — F,(h(8))) =0  (i=1,...,M,). (35)
Considering Equation (35), we get
0 = det(8i,I— F,(h(&)))

= dM det ((%«H) I— (igf&)—)—}—l)).

Since |h(&)| < 1, the maximum row sum of the absolute value of the entries of the matrix

M + [ is less than or equal to 1. Therefore ﬁ“’ +1| <1, that is |8;, + d,| < d,.
From the property of the Kronecker sum, & (the elgenvalue of D(h(&)) = Fi(h(&)) &
- @ F,(h(&))) is the sum of eigenvalues of each F,(h(&)) (v = 1,...,K). So there exist

ay € {B1p,---,Pm,n} (v=1,...,K) such that & = a; + - -- + ak. O
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We can apply Theorem 2 to the problem (34). Put a*) = (agk),...,a%)) and &) =
aﬁk) +---+ al({f). For {,n=1,...,K, let X(gn)(a(’“)) be the M, x M, matrix defined by

= [~ Fe(h(a))” RA@@)R(E®) (=)
(o7 = Fe(h(@®)] 7 [1 = Fyh(@®)R(@®)] (€ £ ),

where F{(h(a®))) = 22 nF, ¢(h(&®))"~!. Then setting

X(fn)(a(k)) =

trX(n)(a(k)) s trX(lK)(a(k))
T(a®) = : :
trX gy (@®) o X ey (a®)

bl

we get the Newton’s iteration formula
o™t = o™ _ 71 (a)eg, (36)

where ek is the 1’s column vector of size K. The existence region of a, (v =1,...,K) are
given by |a, +d,| < d,.

4. Numerical Examples

In this section, considering some examples of queueing models, we show results of calcu-
lations for zero points by Newton’s method and discuss their accuracy and computational
times.

(1) A MAP/M/1 queue

For a MAP/M/1 queue, we now consider to obtain the zero points of det(z/ — a(z)) on
the unit disk. Let H.(¢) and h.(«) be the exponential distribution of the service time with
mean —b and its moment generating function, respectively, that is,

H(t)=1—e™ (t>0), ha)= /0°° dH(L) = - £

In order to obtain zero points of det(z/ — a(z)), from (31) we solve the equation

det(h ' (2)I — D(2)) = det(u(%ﬁ[ —D(2))=0 (]z]<1). (37)
We consider two cases of MAP/M/1 queue. In the first case for Newton’s method, selecting
initial points on lattice points in the unit disk, we compare the computational time of several
size matrices with complex zero points. In the second case, all zero points in the unit disk
are real in (0, 1]. We compare the accuracy and computational time for Newton’s method
and those of Lucantoni’s method.
The first case. Let u = 2 and

[ —3+42 2

-3+z 2

D(Z): ' ..
-3+ =z 2

2 -3+ 2z |
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be the matrix function of size M. Note that this M AP is the same as a Poisson process but
this is not an essential assumption. When we use information of range where zero points
are distributed, computational times become short. Our aim is to calculate all zero points
in the unit disk by selecting all lattice points of the interval § = 0.05 as initial values of
Newton’s method.

In Table 1, the solutions and corresponding absolute values of det(h;'(z)] — D(z)) are
shown when the matrix size of D(z) is 7 x 7.

Table 1: The solutions of det(h]'(z)[ — D(z)) = 0.

- [det(h- ()] = D(2))]

1 0
0.46545745851010 + 0.257899144795876 ¢ 1.9333 x 10712
0.46545745851010 — 0.257899144795876 ¢ 1.9332 x 10712

0.33546343391086 + 0.137010803145644 1 3.9816 x 10712
0.33546343391086 — 0.137010803145644 2 3.9816 x 1012
0.30176978238141 + 0.042247367116245 1 2.6022 x 1072
0.30176978238141 — 0.042247367116245 2.6022 x 10~12

In Figure 2, these zero points are plotted on the complex plane. In Table 2, the behavior
of convergence to the solution z = 0.465457458510102 + 0.257899144795876 1 is represented
with | det(h'(zx)I — D(zx))| as evaluation of the accuracy. For M =2,...,15, M distinct

.
\

S~

Figure 2: The distribution of the solutions.

zero points are obtained. In general, as the size of D(z) becomes large, the computational
time increases. In Figure 3, the computational time is plotted as a function of the size M
(CPU: Pentium 166Mhz, Memory: 32MB, OS: Microsoft Windows 95). It takes about 2
hours to calculate all zero points in the case matrix size is 15 x 15 without using information
about zero points. If we can use the knowledge of an region which contains all zero points
in the unit disk, we may save the computational time.

The second case. Let {7 = 0,---,m} be the state space of the underlying process.
Suppose that D(z) is an (m + 1) X (m + 1) matrix whose (7, j) element (j,k=0,--+,m) is
given by
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Table 2: The behavior of convergence to the solution.

k 2%k [det(h; " (z) ] — D(zi))|
0 0.4+0.3: 551.16
1 0.453962570419582 + 0.261846986767771 39.947
2 0.464050383948272 + 0.25766554894769: 4.2392
3 0.465450359403075 + 0.257879543480031 0.061518
4 0.465457462871815 + 0.257899145730752 0.000013165
5 0.465457458510102 + 0.25789914479587« 1.9333 x 10712
Sec
7000 '
6000
5000 .
4000
3000 -
2000 .
1000 - ® )

2 4 6 8 10 12 14 size

Figure 3: The computational time.

J(z—=1)—2 ifyj=k,and 7#0, m
j(z=1)—1 ifj=k,and j=0, m
2 if|j—kl=1
0 otherwise,

d;x(2)

where the traffic intensity is p = 3(m+1)z/2. Since arrival rate at state 7 is j, this numerical
example possesses burstness of traffic. We will use the following steps. At first decide an
interval where zero points are distributed. Next as initial points of Newton’s method select
equally spaced 5m points on the interval.

(1) Comparison of Newton’s method and Lucantoni’s method when p = 0.5. The results
of Newton’s method and Lucantoni’s method is completely the same. Using both methods
we can get accurate results. In Table 3, computational times of Newton’s method and
Lucantoni’s method are given when p = 0.5 and m = 5,10,15,20. Since in this case all zero
points are real, Newton’s method is very effective.

Table 3: Computational times (sec)

m 5 10 15 20
Newton’s method 1.54 10.61 35.53 116.94
Lucantoni’s method 160.32 838.16 2525.86 5519.25

(ii) Put m = 20 and p = 0.99. In authors’ computations of the matrix G' by Lucantoni’s
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method, the calculated G is not stochastic because its row sums are not equal to 1. The
lowest row sum of the matrix G is 0.959 with 5465.8 second computational time.

On the other hand, in our Newton’s method, selecting 100 initial points in the interval
[0.87,1], we get all 21 zero points. The smallest zero point is 0.8796392 - - -. This calculation
is executed during 119 seconds computational time. For Newton’s method computational
times do not depend on the traffic intensity p. In this heavy traffic case, the calculated
matrix G contains negative numbers of order 10~® by using double precision. Therefore,
authors calculate the matrix G' by using computer calculations of 1000 figures for Decimal
BASIC (free ware) made by K. Shiraishi (kazuo.shiraishi@nifty.ne.jp). Then calculated G
becomes stochastic. '

(iii) When m = 50 and p = 0.99, selecting 250 initial points in the interval [0.93,1], we
get all 51 zero points listed in Table 4. Accuracy of zero points is also checked because
the calculated matrix G is stochastic. Authors also execute this check by using computer
calculations of 1000 figures for Decimal BASIC.

Table 4: The list of zero points for m = 50 and p = 0.99.

k Zk k 23

0 i i

1 0.99938050663062681 47 0.94392538084580664
2

3

0.99805441835114526 48 0.94253106926812916
0.99616334925627522 49  0.94095250041013433
- 50 0.93897545256846729

(2) A MAP/D/1 queue
For a MAP/D/1 queue, let Hp(t) and hp(a) be the service time distribution (the service
time is T') and its moment generating function, respectively. Then

Hp() :{ . g z g - ho(a) = [ ety () = 7.

In order to obtain zero points of det(z] — a(z)) on the unit disk, from (32) we solve the
equation

det(al — D(hp(@)) = det(al — D(e*T)) =0 (Ja+d| < d), (38)
where d is the maximum value of diagonal entries of —Dj.
Put T = % and
-1 22 0 0
0 -1 =22 0
bE=1 "9 o o 2

005 0 0 —0.5540.52

Then the solutions of (38) obtained by using Newton’s method are 0, —1.1256-- -,
—0.95107 --- + 0.15089 - -2 and —0.95107 .-+ — 0.15089---:. Substituting these solutions
into z = hp(a), we get zero points. In Table 5, the solutions, their absolute values of
det(al — D(e°T)) and corresponding zero points are shown.
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Table 5: The solutions of det(al — D(e*?)) = 0 and their corresponding values of z.

¥ [det(al — D(eT))]

0 0
1

—1.1256637738136 — 6.24043216044599 x 10~1%; 2.96969 x 10~17
0.324437043056382 — 2.02462735752905 x 10716,

—0.95107027160039 + 0.1508905305712352 4.44089 x 10~1¢
0.381937723896332 4 0.058072184463382:
—0.95107027160039 — 0.1508905305712352 4.44089 x 10~1¢

0.381937723896332 — 0.058072184463382:

(3) A MAP/SM/1 queue
For a MAP/SM/1 queue, we consider to solve the equation

det(z] — A(2)) =0 (Jz] <1).

As an example, put
[ -12+42 0.2
Diz) = [ 0.05  —0.15+0.1z l

0.1(1— e2) 0.9(1 — &)
H{t) = [ 0.7(1—e) 031 —e™) ]

To obtain the solution of (39), from Theorem 4 we solve the system of equations

{ det(al — D(z)) =0

det(el —h(a)) =0 (FISL letd <d)

where , ,
. 0.1 % o 09 X o
h(a)_[o.wL 0.3><L]'

1—a -«
Table 6 gives the pair (z, ) which satisfies (40).

Table 6: The solutions of (40).

z [det(aT-D(z))]
a {det(zI—h(c))]|
1 0
0 0

0.72219474048098 + 6.81050711456 x 10~ %% 2.77556 x 10~1¢
—0.501410751741313 + 1.426421813062 x 10=2%;  2.22045 x 107'°

—0.292221505080965 + 3.994082 x 1073% 3.9968 x 107'°

—1.49979398221541 + 3.537063 x 10~ 1.11022 x 10716
-0.526240073716001 0
-0.196088706216173 1.11022 x 10716
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5. Conclusions

Comparing direct Newton’s method with the method given in Theorem 1 and 2, the latter
has a simpler structure and is executed with less computational time than the former. In a
single variable case, the latter computational cost is O(M?) whereas the former is O(M*).

For a M AP/G/1 queueing system, calculation of the matrix G is first important problem.
Lucantoni’s method is very efficient. But heavy traffic systems, its convergence is slow. We
propose the usage of Newton’s method to calculate zero points of det(zI — a(z)). There
are two problems for usage of Newton’s method. The first problem is the assumption that
zero points in the unit disk are simple. We can not encounter multiple zero points if we do
not make artificial examples. In our numerical examples, all zero points are simple. This
assumption seems not to be so strong in applications. However, it seems that Gail et al.’s
method [5] may be applied if there are zero points with multiplicity. Second problem is how
to select initial points. To save the computational time the following steps are suggested.
At the first step, find a restricted region which contains zero points. In authors’ experience
this step is not difficult because zero points are distributed in a small region. At the second
step, select efficient number of initial points so as to find all zero points in the unit disk,
since the number of zero points in the unit disk we need is equal to the size of D(z). Another
application of Newton’s method is that when we have a roughly approximated matrix G by
some method, we may set its eigenvalues as the initial values of Newton’s method.
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