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Abstract This paper proposes an integrated analyticd/simulation approach for designing an automated 
guided vehicle system (AGVS) which consists of AGVs, machines with input buffers and a dispatching 
station in a just-in-time (JIT) envkonment. The objective is to determine the number of AGVs, the input 
buffer capacities and locations of the machines that minimize a cost function under the constraint that the 
planned utilization of each machine is achieved. 

The integrated analytical/simulation approach employs a simulation model to evaluate the performance 
of the AGVS and an analytical approach to reduce the repetition number of simulations in searching an 
optimal solution. The analytical approach leads to an efficient iterative procedure based on monotonicity 
properties of the cost function and the machine utilization in each design factor, and lower bounds of the 
number of AGVs and the input buffer capacities. Moreoverl initial locations of the machines are derived 
from the HLP inequality. Computational results are given to demonstrate the efficiency of the proposed 
procedure. I t  is observed that the lower bounds m d  the initial locations aze the optimal solution in case of 
deterministic processing times at  machines. 

I. Introduction 
Traditional approaches to modeling manufacturing systems can be categorized as either ana- 
lytical based or simulation based (Mahadevan and Narendran 1993). Analytical approaches 
which model the systems by means of mathematical equations often need unrealistic assump- 
tions, while simulation models are often time-consuming and do not provide exact solutions. 
Shantikumar and Sargent (1983) defined four hybrid analyticd/simulation models. Their 
analytical and simulation models are developed independently, and their corresponding so- 
lution procedures are combined in problem solving. Class four type in their hybrid models 
is defined as a model in which a simulation model is used as an overall model of the total 
system, and it requires values from the solution procedure of the analytic mode1 of a por- 
tion of the system for some or all of its parameters. Most of conventional hybrid approaches 
employ a simulation model as an overall model of the total system and an analytical model 
only for determining some of its initial parameters of the simulation model. However, the 
conventional approaches are not sufficient to reduce the repetition number of simulations 
after setting the initial parameters- 

In many problems of designing manufacturing systems7 the cost functions and constraints 
have monotone structure in design parameters. For example7 as the number of facilities 
increases, both the total cost and production rate of the system increase. As the buffer size 
between machines increases, the production rate of the system increases. As the performance 
of facilities becomes higher, the rnakespan becomes shorter. Such monotone structure has 
been considered in analytical approaches (Buzacott and Shanthikumar 1993? Glasserrrian 
and Yao 1994)- This paper proposes an integrated analytical/simulation approach which 
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is based on the monotonicity properties. The monotone structure makes a tree search 
algorithm efficient and gives initial design factors for the optimization. The integrated 
idea using analytical properties of manufacturing systems described in this paper is not 
included in the hybrid approaches defined by Shantikumar and Sargent(1993). Thus, we 
use "integrated" instead of "hybrid". 

The problem studied in this paper is to design an automated guided vehicle system 
(AGVS). AGVSs are popular in modernized factories to utilize workstations or machines 
effectively under changes in demands. The design of AGVSs is a complex task since a design 
engineer has to take into account the following design factors which many researches have 
addressed (for example, Sinriech and Tanchoco 1992, Egbelu 1993, Kim and Tanchoco 1993, 
Hwang et al. 1996, Egbelu and Tanchoco 1984, Occefia and Yokota 1991, Kim and Klein 
1996) : 

(1) Number of AGVs 
(2) Guided path layout 
(3) Unit load size 
(4) Dispatching rule 
(5) Buffer capacity 
(6) Location of workstations or placement of pickup and delivery points 

Mahadevan and Narendran (1993) and Malmborg (1994) considered the trade-offs be- 
tween those factors using hybrid analytical/simulation models. Their overall model is a 
simulation model and an analytical model is used to estimate a starting point of design fac- 
tors in the simulation solution procedure. Maxwell and Muckstadt (1982), Egbelu (1987), 
and Nahadevan and Narendran (1993) estimated the initial number of AGVs by evaluating 
empty and loaded trips of AGVs. 

The AGVS studied in this paper consists of AGVs, machines with input buffers and a 
dispatching station in a just-in-time (JIT) environment. The objective is to determine the 
number of AGVs, the input buffer capacities and locations of the machines that minimize a 
cost function under the constraint that the planned utilization of each machine is achieved. 
An example of AGV loop configuration is illustrated in Figure 1. Such AGVSs are popular 
in mass production systems. Since travel times of AGVs are constant, the AGVS can not 
be analyzed rigorously by the queueing theory. Johnson and Brandeau (1993) considered 
an AGVS in the JIT environment which had no buffer capacities in front of machines, 
and cost function and constraints different from those in this paper, and formulated it as 
a binary integer programming problem and an M/G/c queueing system. That is, they 
used only an analytical approach. Malmborg (1994) considered a looped AGVS which had 
a vehicle initiated dispatching rule instead of the JIT dispatching rule, and employed a 
hybrid analytical/simulation approach with two random search procedures: a greedy and a 
simulated annealing procedures. 

This paper present S an integrated analytical/simulation approach, which leads to an 
efficient iterative procedure based on the monotonicity properties that the cost function 
and the utilization of each machine are increasing in the number of AGVs and the buffer 
capacities. The procedure uses tight lower bounds of the number of AGVs and the buffer 
capacities which are obtained analytically from the planned machine utilizations. The theory 
of majorization(Marshal1 and Alkin 1979) is used to set the initial locations of machines. 
Computational results are given to demonstrate the efficiency of the proposed procedure. 

The organization of the paper is as follows. Section 2 describes the AGVS and a cost 
function of the number of AGVs, the buffer capacities and the locations of workstations as 
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0 : Possible Location 
of W orkstation 

Central Buffers 

Figure 1: Example of AGV loop configuration 

design factors. In section 3 the lower bounds of the number of AGVs and the buffer capacities 
are derived analytically. The optimal locations of the workstations for the lower bounds are 
also presented. Moreover, we prove the monotonicity properties of the cost function and the 
machine utilization in each of the design factors. Section 4 proposes an iterative solution 
procedure integrating the monotonicity properties and simulation. Numerical results are 
given in section 5. 

2.  Statement of Problem 
We consider the AGVS in the JIT environment, which consists of AGVs, a dispatching 
station, and several workstations. The workstations are numbered 1 through N and process 
N types of parts. Workstation i consists of machine i and input buffer i ( i  = 1,2, , N) . 
Part i is processed only at machine i. Parts processed are assumed to be instantaneously 
extruded outside the system without blocking. 

AGVs deliver part i to workstation i and are assumed to carry one unit at a time. 
The number of AGVs is denoted by M. All AGVs are unidirectional and have the same 
performance. The possible locations where the workstations can be placed are numbered 1 
through L(> N). The delivery time when any AGV goes from the dispatching station to 
location j is denoted by uj. The delivery time includes the pickup time at the dispatching 
station and the deposit time at the workstation. The return time of any AGV from location 
j to the dispatching station is denoted by 6,. Then the total travel time denoted by r]j is 
given by uj + tj. All u7, t7 and r], are assumed to be constant. The waiting times to avoid 
collisions at the intersections of the routes are assumed to be insignificant. In addition, it is 
assumed that AGVs are not blocked by other AGVs because AGV routes have the unloading 
routes as shown in Figure 1. Therefore, r]j, uj are constant. 

It is assumed that the dispatching station has N central buffers. Part i is stored in 
central buffer i. The distribution of the processing times of part i at machine i is generally 
distributed with mean l/Ui. The capacity of the input buffer in front of machine i is denoted 
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by bi. In the JIT environment, when the level of component inventory at an input buffer falls 
below a threshold level, a delivery order is placed at the dispatching station. JIT systems 
are known to have the ability to adapt to changes in demands while maintaining greatly 
reduced work-in-process inventories (Monden 1993, Ohno et al. 1995). Machine i is referred 
to as a withdrawing machine if its order is not yet filled. Since the unit load size of an AGV 
is one, the threshold level can be set as bi without loss of generality. The threshold level of 
the input buffer at the machine equals to the number of withdrawal kanbans of the machine. 

Let U ;  be the utilization of machine i and Si the planned utilization of machine i that 
is determined from a forecast demand of the completed components of machine i. The 
utilization U, is a nonlinear function of decision factors described below. The value of u, is 
obtained by simulation in this paper, because the queueing theory can not solve the AGVS 
with constant travel times of AGVs. The components are dispatched to the withdrawing 
machine that has the maximum value of G - ui among withdrawing machines. 

We consider the problem of determining the number of AGVs, the buffer capacities and 
locations of the workstations. In this problem, the throughput of completed components a t  
each workstation is required to achieve a forecast demand. Therefore, the objective is to 
minimize a cost function subject to the forecast demand constraint. The following notation 
is used to describe the cost function: 

CA = fixed unit cost of an AGV, which includes the investment cost 
CB = fixed cost per unit capacity of input buffer, which includes the space, initial 

setting and maintenance costs 

CD = fixed travel cost per distance unit on the guide path. It corresponds to the 
operating cost of AGVs and includes the batteries, recharge and maintenance costs. 

Di =' forecast demand per unit time for completed components of part i 
X - .  1-3 = 1 if workstation i (i = l ;-- ,  N)  is located at location j ( j  = 1 , - - - , L )  

and 0 otherwise 
2 = location matrix (xi,), i = 1, - - - , N, j = 1, , L 
b = buffer capacity vector (bl, - - , bN) 

The cost function is denoted by ^{Ad, b, 2 ) .  The objective is to minimize the sum of 
costs of AGVs, input buffers and locations of workstations under the constraint that the 
planned utilization of each machine is achieved, namely, 

subject to  

u;(M, b, 2) 2 Si,  i = l , - - - , N  
M : positive integer, 

bi : non-negative integer, i = 1, - - 7 N, 

X i j  = O or 1, i = l , * - -  N ,  7 = l , . - - , L ,  
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Note that the throughput of completed components of part i equals to ui (M, 6, x}pi (i = 

1, , N). Thus, constraint (2) is obtained from ui(M, b, i ) p i  2 D, = Gipi(i = 1, . , N). 
The problem seems essential in designing mass production systems in such as automobile 
industry. 

Let H be the set of (M, b, 5) which satisfies constraint (2), (M*, b*, a'*) e Q be the vector 
of (My by 2 )  that minimizes ^ ( M ,  b, a'), and !P* be the minimum value. 

3. Properties of Problem 
3.1. Lower bounds 
At first, we consider the lower bound of M. Let Ehome be the average number of AGVs 
waiting at the dispatching station and THi be the throughput at workstation i .  Once 
workstation i is placed at some location, the delivery time and the total travel time are 
fixed and denoted by gi and d;, respectively. Since the total travel time for an AGV to go 
to workstation i is di and T E  components per unit time must be delivered, the average 
number of AGVs going to or returning from workstation i is equal to THidi from Little's 
formula (see, for example, page 50 in Buzacott and Shanthikumar 1993). Consequently, the 
following equation holds: 

N 

i=l 

It follows from Le 2 0, THi = ui(M, b, a')^, and constraint (2) that 

M ^ y Gipid,. 
i=1 

Let fiB be the lower bound 
N 

where [XI is the smallest integer 
Next, we deal with the lower 

(3)  

of M under constraint (2). Then it follows that 

(4) 

greater than or equal to X. 
bound of bi, i = 1, - , N. Suppose an extreme case where 

machine i has just completed a processing when AGVs enough to serve the calls from 
workstation i wait at the dispatching station. Then machine i gets a component from the 
input buffer and calls an AGV for delivery. Since the components consumed by machine i 
during the AGV delivery time to machine i are given by Gqigi, bi must satisfy the following 
inequality: 

bi 2 %pigi, i = l , - - .  7 N .  (5) 
Then the lower bound, biLB, of bi under constraint (2) is given by 

bm = \uipigil, i = 1;- - , N .  (6) 

3.2. Optimal location 
We consider optimal locations of workstations when M and b are given by the lower bounds 
fiB and bLa, respectively, where bLB = (blLB, - - - , bNLB). Equations (4) and (6) are rewrit- 

L L ten using di = G = l  'pjxij and gi = U ~ X +  i = 1, - , N as follows: 
N L  
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From cost function (1) and D, = Uipi(i = l ,  - , N ) ,  we consider the following lower 

i=i 7=1 

The well known HLP inequality derived from the theory of majorization( for example, 
Proposition A.3 in Marshal1 and Alkin 1979) is that if a; and c;, i = 1, - , N ,  are two sets 
of numbers, then 

N N N 

a(i)C[i] S E aici S E a(i)C(i) 
i=l i= l i= l 

where am and c m  i = 1, , N denote the elements rearranged in decreasing order and 
1 ,  \ ,  

qi, , i = 1, , N denote the elements rearranged in increasing order. Similarly, the elements . 
of {uiPi, i = 1, - - - , N }  in decreasing order are denoted by ( G p - ) ( ; )  and the j th  elements of 

{ ( C A  +CD)iyj +CBvJIJ = 1, , N }  in increasing order are denoted by ((cA + c ~ ) ~ ~ + c B v )  
[,l- 

Then the HLP inequality implies 
N 

5) 2 ( U P )  ( i )  ( ( C A  + C D )  + CB V) [il 
i= l 

Therefore, the location matrix Z L B  that minimizes R B ( Z )  is obtained by the following rule: 

1 if ( i )  = [ j ] ,  

i = l , - - - , N ,  j = I , . - - , L .  

Equation (12) means that workstation ( i )  in increasing order of {Â£,pj j = 1, , N }  
should be located at location [i] in decreasing order of { (CA  + CD)iyj + CB^),  J = 1 ,  . , N }  
Note that locations [ l ] ,  [2], . , [NI are used and the other locations [N + l ] ,  [ N  + 21, , [L] 
are discarded. 
3.3. Monotonicity 
We prove the monotonicity properties of the cost function and the machine utilization. 
It is clear from cost function (1 )  that ^ ( M y  4 5 )  is increasing in M ,  b;, i = 1, , N and 

The monotonicity properties of the machine utilization are given in the following t heo- 
rem: 

Theorem 1 The machine utilization u i (M,  6 ,  Z ) ,  i = l ,  - - , N ,  is increasing in M and bi, i = 
1, , N ,  respectively, and decreasing in g;. 

Proof. The following notation is used only in this proof: 
F o r i = l , - - - , N  a n d n = 1 , 2 , - - - ,  

A i (n)  = the arrival epoch of the nth component at the buffer of workstation i, 
Di(n)  = the delivery order epoch to the dispatching station of the nth component of 

machine i ,  

E ( X )  = expectation of random variable X ,  

S i (n)  = the processing time including loading/unloading time of the nth component at 
machine z, 

T d n )  = the completion epoch of processing the nth component at machine i, 

W i ( n )  = the waiting time at the dispatching station of the nth component at machine i 
for an AGV which delivers it to machine i .  
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Since the machine utilization can be rewritten as 

ui(M9 5 ,  2 )  = limn+oon / { p i E  ( T , ( n ) ) }  , (13) 
it sufficies to prove that q n )  is decreasing in M and biJ respectively, and increasing in g;. 
Suppose that all buffers are full at time 0. Then 

A ; ( n ) = D i ( n ) = W i ( n ) = O  f o r n = l , . . - , b i , i = l , . o o , N .  ( l 4 )  
Since the processing of the nth component at machine i can start after it arrives at machine 
i and the processing of the ( n  - 1)th component completes, it holds that 

T i ( n )  = S W  + max{T;(n  - l ) ,  A i ( n ) } ,  (15) 
where T;(0)  = . The delivery order of the ( n  + bi)th component is placed at T,{n). That is, 
f 0 r n = b ~ + l , b ~ + 2 , . . . ~  

D;(n)  = Ti (n  - bi}. (16) 
Since the n th  component at machine i is dispatched at Di (n )  + Wi{n), A; (n )  is expressed as 

A ( n )  = A(^) + W;(^)  + gi. (17) 
Equations (15) and (1 7) lead to 

Z ( n )  = S ; ( n )  + max{T;(n  - l ) ,  D^n} + W ; ( n )  + gi}. (18) 
The dispatching rule of AGVs is to dispatch a component to the machine that maxi- 

mizes (& - %) among the withdrawing machines. This rule can be implemented in the 
following way: Delivery orders from each machine wait for AGVs in the arrival order in 
each separate queue at the dispatching station. When the delivery order of the nth com- 
ponent at machine 2 arrives at the dispatching station to find the delivery orders of the 
( n  - l)th,- -,[n - 1)th components waiting in the queue, the value of (Gi - U ; )  is given b y  

max;{Gi - ( ~ E : Y s , ( ~ ) )  / D&); m = n ,  - - , n - l } .  When an A G V  returns to the delivery 
station, it picks up a component for the queue with the maximum value of (Gi - ui) among 
withdrawing machines and delivers it to the machine. 

This rule determines the dispatching order D ( k ) ;  k = 1,2, - - - derived from all delivery 
orders { D ; ( n ) ;  n = bi + 1 ,  - - , i = 1, , N } .  For example, D(1)  = mini=l ,... ̂ { D o i  + l ) } .  
Define the transformations (2(k) ,  n ( k ) )  and k ( i ,  n )  b y  

D ( k )  = .Diw ( n ( k ) )  and Di (n )  = D ( k ( i ,  n ) )  , (19) 
that is, ( i ( k ) ,  n ( k ) )  means that the kth delivery order epoch is the n ( k ) t h  delivery order epoch 
of machine i ( k ) ,  and conversely k ( i , n )  means that the nth delivery order of machine i is 
the k ( i ,  n ) t h  delivery epoch. Then the waiting time Wi{n} can be expressed as 

M 
W i ( n )  = W (k(i7 n ) )  = max{O, max p(!) + W(1) + dqZ)}  - D ( k ( i ,  n ) ) } ,  =l,...,k(i,n)-l 

n = b i + l , b i + 2 , - - - ,  (20) 
where m a ~ ~ . . , ~ { y z }  denotes the M t h  largest value of the set of real numbers { y i } .  

Therefore, b y  equations (16) and (18)) 
Ti ( n )  = Si{n) + max {Ti  ( n  - l ) ,  gi + rnax{Tt[n - b,), 

M Since maxl=l,...,k(i,n)-l { D ( l )  + W ( l )  + diil\l and T i ( n  - l )  are decreasing in M and b;, respec- 
tively, equation (21) implies that T i ( n )  is decreasing in M and b;, respectively, and increasing 
in gi. The proof is concluded. U 

Theorem 1 implies that for any ( M ,  b, 2) e f t ,  it holds that ( M +  l ,  b, Z), ( M ,  b+ 1 1  , x ) ,  - + , 
( M ,  h + l;, g ) ,  - - -, and ( M ,  b + l N ,  2 )  t f t ,  where 1; is the vector ( 0 ,  - ,0 ,1 ,0 ,  - . , 0 )  o f  the 
same dimension as b with the 2th element equal to  1 and all other elements equal to  0. 
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Consider a case where ui(M, b, Z)  > 2; and uj(M, b, Z)  < UJ . Since ui(M, b, 5) is decreas- 
ing in gi, if gi > g,, it is useless to swap the locations of two workstations. Otherwise, the 
swap should be tried to expect the situation UJ > UJ. 

4. Solution Procedure 
A solution procedure to seek the optimal solution (M*, P ,  Z*) is developed by using the 
monotonicit y properties in the preceding section as follows: 

Solution procedure: 

Step1 : (Initialization) 
1.1. Set the search list F as an empty set. 
1.2. Obtain the initial location matrix itLB by using equation (12). 

L 1.3. Set di = q j x ~  and g. = U J X ~ , ,  i = 1, 7 N. 
1.4. Compute MLB and bLB from equations (4) and (6), respectively. 
1.5. Put the first node (MLB, bLB, iLB) into F. 
1.6. Set the iteration number I T E  = 0. 

Step2: (Selection, simulation and evaluation) 
2.1. Select the node at which ^(M, b, 2) takes the minimum value in F. If more than 

one candidate attains the minimum value, select the node which enters first in F. 
2.2. Compute ii = (ul,  u2, m - , U^} using simulation at the selected node. 
2.3. Set ITE = I T E  + 1. 
2.4. If u;(M,b,Z) 2 iii for all i(i = l , - - . ,  N), then go to step4. Otherwise go to 

step3. 
Step3: (Branch) 

The node selected in step2.1 is referred to as the parent node. 
3.1. Make two branch nodes, (M, h + A, 2) and ( M  + l, b, a"), where ( M ,  b + A, 5) 

represents the node with bi = bi + 1 for all its such that ui(M, 6, a") < 6,. Put the 
branch nodes into F. 

3.2. In the parent node, machine i is reordered in increasing order of g, and the 
rearranged machine is denoted by (i). 
3.2.1. Set (i) = 1. 
3.2.2. If U(,) > U(ii, then go to step3.2.5. 
3.2.3. Find the maximum (j) that satisfies both (j) < (i) and uy) > and 

make a branch node (M, b, g'), where a"' denotes a" with locations (i) and ( j )  
swapped. If such ( j )  does not exist, go to step3.2.5. 

3.2.4. If the cost of the branch node is smaller than the cost of the parent node, 
put the branch node into F. 

3.2.5. Set (1) = ( ? ) + l .  If (i) > N,  then go to step3.3. Otherwise go to step3.2.2. 
3.3. Put the parent node out of F. Go to step2. 

Step4: Print out 'S, M7 b, 2, ii and I T E ,  and terminate. 

It is clear that if 6, < 1 - e for a positive value e, i = 1, , N ,  then the solution 
procedure converges. 

5. Examples and Computational Results 
In this section, numerical results are given in order to observe the lower bounds and the 
monotone structure and investigate the efficiency of the proposed procedure. Let N = 
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L = 5. We adopt the AGV loop configuration shown in Figure 1.  The distribution of 
the processing times at machine i is assumed to be the Erlang distribution of phase ki 
with mean l / y i ,  whose variance 4 and coefficient of variation are given by l / ( k , - / ^ )  

respectively. A manufacturing simulator ROPS 11 (Nakano et al. 1994) is 
employed to evaluate the utilization d M ,  6 5 )  ( 2  = 1 ,  - - , 5 ) .  The travel times between 
the dispatching station and possible locations of the workstations are given in Table 1. The 
loading and unloading times are assumed to be 20, respectively. 

Table 1: Travel times for possible locations 

location j v f r] 

1 60 60 120 
2 100 60 160 
3 140 20 160 
4 140 100 240 
5 140 60 200 

At first, suppose that the processing times are deterministic, Gi = 0.95 ( i  = 1 ,  - - , 5 )  
and the layout is given by X E  = 1 and X{J  = 0 for i # J", i = 1, a , 5 .  Table 2 shows Cases 
1 through 8 with different processing times at machines. The pairs of MLB and bLB by 
equations ( 4 )  and ( 6 )  for the given layout are also shown in Table 2. Figure 2 shows the 
average machine utilization for different numbers of AGVs in Cases 1 through 6.  For these 
cases, the buffer capacity bi ( i  = 1 ,  - , 5 )  is set as three, which is greater than or equal 
to biLB shown in Table 2. The small circles in Figure 2 represent the corresponding Mrs. 
It is observed in Figure 2 that f iB satisfies the constraint m, h 2) > G; (i = 1 ,  - . - , 5 )  
for these cases. For Case 7 of Table 2 ,  the average and minimum machine utilizations for 
different numbers of AGVs under different buffer capacities are shown in Figures 3 and 4 ,  
respectively. In these figures it is observed that the pair of MLB = 11 and bLB = ( 2 , 1 , 4 , 1 , 2 )  
shown as small circles in Figures 3 and 4 achieves G,, 2 = 1 ,  , 5 .  

Table 2: Example cases and lower bounds for the given layout 

1 /^ i  - 

Case 1 2 3 4 5 M L B  ~ L B  

1 50 50 50 50 50 17 ( 2  2 3 3 3 )  
2 100 100 100 100 100 9 ( 1  1 2 2 2 )  
3 150 150 150 150 150 6 ( 1  1 1 1 1 )  
4 200 200 200 200 200 5 ( 1  1 1 1 1 )  
5 250 250 250 250 250 4 ( 1  1 1 1 1 )  
6 300 300 300 300 300 3 (1 1 1 1 1 )  

Next, numerical results in case of the non-deterministic processing times and the unfixed 
locations are illustrated. We use the ratios of 1.1 : 1 : 1 and 3.1 : 1 : 10 for CA : C B  : CD, 
and different phases of the Erlang distributions, ki = 1 ,2 ,5 ,10 ,20 ,30 ,  oo (deterministic) 
2 = 1 , - - - , 5 .  Let z be the vector ( z = i J " ~ i j , i  = 1 , - - - , 5 )  in convenience of~resentation.  
The results obtained for Case 7 using the proposed procedure are shown in Table 3.  
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1  3 5 7  9 1 1  1 3 1 5 1 7  

Number of AGVs 

Figure 2: Average machine utilization for different number of AGVs 

1 3 5 7 9 1 1 1 3  

Number of AGVs 

Figure 3: Average machine utilization under different buffer capacities 
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Figure 4: Minimum machine utilization under different buffer capacities 

Table 3: Optimal solutions for Case 7 

b C A , C ~ , C D  ki yt M* X ITE XI! 
1.1, 1, 1 1 1 13 (4 4 4 2 3) (2 3 1 4  5) 23 41.6 

2 0.71 11 ( 4 3 4 2 3 )  ( 2 3 1 4 5 )  10 38.4 
5 0.45 11 ( 3 2 3 2 2 )  ( 2 3 1 4 5 )  14 34.4 
10 0.32 11 (3 2 2 1 2) (2 3 1 4 5) 3 32.4 
20 0.22 11 (3 2 2 1 2 )  (2 3 1 4  5) 3 32.4 
30 0.18 11 (3 2 2 1 2) (2 3 1 4 5) 3 32.4 
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The results suggest that the larger the coefficient of variation Y,(i = 1, ,5)  is, the 
larger the required number of input buffer capacities should be. All iteration numbers ITE 
are at most three for Y,  <  ̂ 0.32(i = 1, - - ,5)  in Tables 3. This suggests that the proposed 
procedure is very efficient enough to be used in the design of the AGVS. 

Table 4 shows the results for Case 8 with different Erlang phases and different planned 
machine utilizations. In Table 4, itLB denotes the X with M = MLB and 6 = bLB, and 
X* denotes the optimal solution of it. In this table, k denotes (/ci, , /c^} and U denotes 
(Gi, ,UN). It is to be noted that the lower bounds (MLB, bLB, ?iLB) are the optimal 
solutions in cases of the deterministic processing times in Tables 3 and 4. This implies that 
steps 2 and 3 in the proposed procedure can be omitted in case of the deterministic processing 
times. Then the proposed procedure is non-iterative and the simulation is unnecessary. 
Hence the proposed procedure is useful in the practical design of the AGVS. 

Table 4: Optimal solutions for Case 8 

planned machine 
utilization (u) 

Erlang 
phases (k} M* b* X* ITE !P 

6. Conclusion 
The design problem including multiple decision factors for the AGVS in the JIT environ- 
ment is considered, and the integrated approach of analytical technique and simulation is 
proposed to minimize the cost function. The proposed procedure is based on the mono- 
tonicity properties of the cost function and the machine utilization in the design factors. It 
is enough simple to be employed in the practical design of the AGVS. The numerical results 
show that it becomes non-iterative in case of the deterministic processing times. 

In this paper, a workstation includes a machine and an input buffer. In the JIT environ- 
ment, our results still hold in case of multiple machines in series, by taking the distribution 
of the processing times at the first machine instead of that of the one machine. 

The following conjectures obtained from this study will be true for many other production 
systems: 
(1) In the case where all facilities have deterministic operating times, the lower bound 

estimated by the simple formula can be optimal as described in this paper. 
(2) For production systems with many design factors, the throughput or machine utilization 

increases with a bottleneck parameter. On the other hand, it behaves insensibly or in 
a saturated fashion with non-bottleneck parameters. We see it in a sigrnoid fashion 
in Figure 4 and a quadratic concave fashion in Figure 3. For example, in case of - 
b = (3 3 3 3 3)or(4 4 4 4 4) in Figure 4, we see a sigmoid fashion which includes a 
concave increasing situation in 1 < M < 11 and a saturated situation in 12 < M < oo. 
The concave fashion is expected also by Ozden (1988) and Sinriech(1992) from their 
simulation study. 

We believe that many design problems of manufacturing systems may have such mono- 
tone structure as described above. The idea of this paper originally came from analyzing 
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design processes of experienced factory designers. They often deal with complicated design 
problems of manufacturing systems today by intuition and hand-calculation. We can learn 
the above heuristic rules from their experiences. 
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