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Abstmct This paper deals with a multi-facility location problem on a tree. Given the number of facilities 
and the tree structure, the problem is to find the optimal locations of facilities so as to  maximize the service 
provider's gain obtained from customers accessing the nearest facility. Customers are located only at vertices 
of the tree. For each vertex, customers7 demand function is given, which is nonincreasing piecewise linear 
in the distance from the vertex to the nearest facility location. We modify the algorithm proposed by 
Megiddo-Zemel-Hakimi (1983), and show that it yields the exact optimum within a polynomial time. 

l. Introduction 
The poblem of facility location arises in many different contexts such as information net- 
works, logistic systems, and retail chain stores. The importance of efficient optimization 
rnet,hods for this problem can never be overemphasized. Unfortunately, t,he rn111t~i-facilit,~ 
location problem on a network including cycles is NP-hard. 

Multi-facility location problems on a network have been studied since the appearance 
of Hakimi [2] (see also Hakimi [S]). They are known as a p-median problem and p-center 
problem (see Tancel, Francis, and Lowe [g]). Matula and Kolde [G] and Kariv and Hakimi 
[S] presented polynomial time algorithms for the problems on a tree network. Megiddo, 
Zemel, and Hakimi [7] developed a polynomial time algorithm for the 10cat~ion problem of 
multiple facilities on a tree, given the const,ant, demand function wit>h a finite support for 
each vertex. 

In this paper, the p-median problem and the problem by Megiddo et al. [7] are extended 
by introducing a nonincreasing piecewise linear demand function at each vertex. Customers 
are located only at vertices of a tree. Associated with each vertex is a demand function, 
which is a nonincreasing piecewise linear function of the distance from the vertex to the 
nearest facility. When the trip distance exceeds a certain limit (the maximum trip distance) , 
the demand vanishes. For a given number p of facilities, a service provider aims at, finding 
locations of facilities to maximize the total gain obtained from the customers accessing the 
facilities. 

The facilities may be established anywhere on the network. We prove, however, that the 
locations of facilities can be restricted to a polynomial number of points on tJhe network. 
Then we develop an algorithm for the problem with nonincreasing piecewise linear demand 
functions that yields an optimal solution within a polynomial time. Our algorithm is based 
on the method proposed by Megiddo et al. 171. 

Megiddo et al. [7] state that the optimal gain function is concave in tthe nlsmber of 
facilities. This statement, however, is not valid in general. We show a simple example 
exhibiting that their algorithm does not yield an optimal solution. The ass~imption of the 
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concavity appears to bring abo~it, t,his failure. We make a modification to their algorithm, 
which enables us to attain an optimal solution in their model as well. 

In Section 2, we formally describe a location problem on a tree with m~ilt~iple facilities, 
and propose a new algorithm to compute an optima1 solution. In Section 3, we show that, 
the gain function is not necessarily concave through a simple example. Finally, in Section 
4, some concluding remarks are given. 

2. Multi-Facility Location Problem 
2.1. Model 
Consider a tree T = (V, E) (IVI = n, 1 El = n, - l), where V denotes the set of vertices and 
E the set of edges. Tree T can be embedded in Euclidean plane. For notational ~implicit~y, 
this embedded set is also denoted by T. Let V = {l, . . . , n,}, and e E E ~onnect~ing i ,  j E V, 
1 < - i < j < - n,, be represented by the closed interval [i, j]. The length of an edge [i, j] E E 
is represented by dij. For every pair of points X ,  y E T ,  let d(x, y) (= d(y, X)) be the length 
of the path connecting X with y. We associat,e a set Ci of customers with ea(:h z E V. For 
each Ci, the customers' demand is given by a nonincreasing piecewise linear f~inction $i of 
trip distance from i to a facility. ItJ may be reasonable to assume that for each #i there is a 
positive number ri such that q5i(d) = 0 whenever d > ri. $i is s~lpposed to have qi intervals 
[ S : ,  S;], [S;, S ; ] ,  . . . [sii, + m )  where S; = 0, sii = ri, on each of which $i is linear. We can 
collect some of the consecutive intrervals whenever q5i is convex over them since olir algorithm 
described later works as long as $i is composed of a finite number of convex pieces. Let, 

, . 
[oi, U;], [U;, oil, . . . , [o-ii, +m)  be the resulting unified intervals. Note that, ti 5 qi,  0; = 0, 
and 5 ri. 

We do not assume the continuity of q5i, but the finitely many number of point,s of dis- 
continuity. Thus, {U;. l j  = 2,  . . . , ti} incl~ides all the discontin~io~is points of q$. Even if $i is 
not contin~ious, the convexity of q5i over each unified interval holds true (see Figure 11.l 

Figure l: Piecewise Linear Demand Function 

Let, p be the number of faci1it)ies which the service provider can put on T. By t,he weight, 
wi, we mean t,he demand of Ci at, zero trip distance, i.e., wi = $i (0) = maxd>o q5i (d) . The 

- 

service provider obtains the gain $i(d(i, X ) )  from z if and only if the facilit,~ on X E T is 
the nearest from z among p facilities. Any point on T is feasible to locat,e facilities. The 
service provider's object is to maximize t,he totlal gain from the customers. Let, f (p) be the 
maximum gain which the service provider can obt,ain, and call it, the optimal gazn functzon 

Every nonincreasing function with a finite support can be approximated by a piecewise linear function 
a t  an arbitrary given level of accuracy. Thus, even if $i is not piecewise linear, our scheme is applicable to 
an approximated problem. 
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in pe2 Let X = {xll . . . , xp$ be the set of p points on T. The multi-facility locatzon problem 
can be formulated as follows: 

where d(il X )  = min15j5p{d(i, xj)}. On the other hand, the p-median problem is defined as 
follows: 

min wi - d(2,X). 
X on T iEv 

(2) is equivalent to the following problem for any constant, L. 

max x { - w i .  d(i, X)  + L}. 
X on T iEv 

If L is taken to be larger than or equal to maxiEv{wi ri}, -wi . ri + L is nonnegative for 
any i E V. Moreover, - wi d (2, X )  + L is linear and nonincreasing in trip distance d (2,  X). 
Accordingly, our multi-facility location problem is a generalization of the pmedian problem. 

Megiddo et al. [7] treat the following special case on demand f~inction: for any i E V, 
qi = ti = 2, q5i ( d )  = wi if d E [01 ri] and $i (d) = 0 if d E (ri, +W), which is convex on each 
of [0,ri] and [ri, +CO). 

Megiddo et al. [7] show t,hat, the multi-facility location problem on a netvvork including 
cycles is NP-hard in their scheme (see also Kariv and Hakimi [S]). It is a direct, consequence 
of Megiddo et al. [7] that our model is also NP-hard on a network incl~iding c-:y(:les (see 
Garey and Johnson [l]). 
2.2. Potential locations 
The facilities can be established at) any point, of T, as we stated in Section 2.1. We can, 
however, select in advance the potential locat,ions t,o maximize the service provider's gain. 

Now we construct, a tree T1 = (V', E') from T = (V, E) (IVI = n,, IEI = n, - l) in the 
following manner. Since each $i has ti convex pieces, for any e = [j, k] E E the n~~mber  T~ of 
points xe E e satisfying d(i, xe) = 0: for some i and for s o i e  S (l 5 S 5 ti) does not exceed 

tin The points xes are denoted by X:, . . . , x:~, where the subscript is arranged so as to 
satisfy d ( j , x ~ )  < d(j, x:+~), l = l , .  . . ,re - l. Let Xe = {xFll = l , .  . . ,re} and define the 
new vertex set as V' = V U (UeEE Xe)- All vertices i in UeEE Xe are assumed tro be wi = 0, 
i.e., $i(d) = 0, for any d 2 0. Let EL = {[X;, x;+~] 11 = 0, . . . , Te7 X; = j ,  x:e+l = k} and 
define the new edge set as E' = UeGE EL. The resulting tree T' (\V1\ = n,', lE1\ = nrl - l) has 
O(t(n, - l)) vertices, where t = ti. 
Lemma l There exzst some optzrnal locatzons X;, . . . ,X; E T' such that X;, . . . , X; E V'. 

Proof: We redefine the demand function $i of trip distance as a demand function of a 
point on T'. Let each qi(x) be the demand function of i E V' on X E T', which is also 
convex on any edge of E', since for any i E V and for any [j, k] E E?, 

d(i, j) < d(il k )  + [d (2,  j) , d ( 2 ,  k)] C [oil o:+~] for some S or 
[d(i, 4 2 1  v1 c [(Gi , +W),  

It is easy to see that f is monotone nondecreasing. Indeed, for l 5 S 5 p, f ( S )  = f ( S  + l) if f ( S )  = 
EjEv wj , and f ( S )  < f ( S  + l) otherwise since f ( S )  < xjEv wj implies the existence of an uilcovered j* E V. 
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[d (2, k) , d (2,  j)] C [oz , CT:+~] for some S or 
d(2, k) < d(2, j) =+ 

[d( i ,k) ,d( i , j ) ]  C [oii,+w). 

The total demand on X is represented by @(X)  = $2(x). Therefore, for any point 
y = A j +  (l - A)k, 0 5 A 5 l, we have 

This implies t,hatr if X; E [j, k], we can t,ake X: t,hat, coincides with j or k. Q.E.D. 

Consequently, our problem is reduced to that of finding a subset X of V' in (l). 
Figure 2 shows the demand on an edge between two adjacent vertices i , j  E V. If the 

service provider establishes a facility on i E V', he obtains the gain of wi + G j  ( 2 ) .  

,total demand 

Figure 2: Total Demand on an Edge 

2 -3. Algorithm 
The algorithm proposed here fundamentally consists of three routines INT(Hl T, r ) ,  EXT(H, 
T, r)? and ALLOC1(fl , . . . , f k ;  T) ,  which are based on the algorithm proposed by Megiddo 
et al. [7]. Instead of ALLOC1( fl  , . . . , f k ;  T) ,  they use ALLOC( fl  , . . . , f k ;  T) ,  where fis 
are restricted to concave functions. By the concavity of fi we mean that, fi(s) satisfies 
f2 (S) - fi(s - l) 3 fi(s + l) - fi ( S )  for any S. Recall that their model is a special case of our 
model. We will show through a counterexample in the next section that fi is not necessarily 
concave. This implies that their algorithm may not produce the optimal sol~it,ion. On the 
other hand, our algorithm of ALLOC1 does not, require the concavity of fis, and generates 
t,he optimal solution. 

First, we select an arbitrary vertex uo E V1 as a root of Tf .  For any pair of vertices i, j, 
let P(i, j) C V' U El denote the path between i and j . For each i E V1 we define K', E: 
as K1 = {jli E P ( u o , j )  n V'}, E: = {[a, b]l[a,b] C P(i,j) n E1,j  E K'} res~ect~ively. We 
call TL = (K', E:) t,he subtree rooted at, i. The m111t)i-facility location problem on T1 can be 
solved by acc~~mulat~ing the sol~~t~ions of 10cat~ion problems on subtrees. Indeed, if i E V' is 
a leaf, y1 is a sing1et)on and E: = 0. The so111t)ion of 10cat~ion problem on t,l~c> leaf is wi if 
p = l and 0 if p = 0. Thus, if all sons of z E V' are leaves, the location problem on Ti can 
be solved by using the solutions given on leaves, where by the son j of i we mean t,hat, J' is 
adjacent to z and j 6 P(uo ,  2 ) .  The iteration of the same procedure makes possible to solve 
the multi-facility location problem on subtree rooted at an arbitrary i E V'. 
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We now formally describe the algorithm. The following notations are used in the algo- 
rithm. H denotes a subtree rooted at vertex U E V', and let the sons of U be ul l . . . , uk. 
H% represents the subtree rooted at  vertex U%. Let ni be the number of vertices in Hi and 
d: 5 . , . 5 dk* the distances between ui and vertices of Hi- 

INT(H, n-, r) returns the maximum gain from H with n- facilities under the restriction 
that at least one of the 7r facilities is located at a distance less than or equal to r from 
U. This is a routine for the problem with T internal facilities on H. On the other hand, 
EXT(H, 7r, r )  returns the maximum gain from H with n- internal facilities when an additional 
facility is located outside of H at a distance r from U. This is a routine for the problem 
with one external facility and n- internal facilities on H.  ALLOC1 is a routine t,o construct 
a solution of the problem on H by using optimal solutions of subproblems INT(Hil T, r) 
and/or EXT(Hi, T, r )  (z = l, . . . , k). Given the solutions f l ,  . . . , f k  of the problems on k 
subtrees, ALLOC1(fl, . . . l f k ;  T) returns the optimal allocation of n- facilities among subtrees 
to maximize the sum of fz (z = l , .  . . , k) .  

The formal descriptions of INT, EXT, and ALLOC1 are presented as follows: 

INT(H,  7rl r )  
case l. [A facility is located on the root U of H.] 

Let fi (pi) = EXT(Hi, pi, d (ui , U)) ,  for i = l, . . . l k. The total gain is obt,ained by wu 
+ ALL0C1( f l ,  . . . , f k ;  7r - l). 

case 2, [A facility is not located on the root U of H.] 
Choose a subtree Hj (l 5 J' 5 k). For p E {d; l . . . , d i j }  such that p + d(uj l U) 5 r ,  let, 
fi(pi) = ExT(Hi7 pil + d ( ~ j  l ~ i ) )  for i # j (i l ,  . . . , k). Let, fj (pj) = INT(Hj, pj l p). 
Aj(p) G ALLOC1(f1,. . . l f k ;  n-) + ~u(p+d(u j ,u ) ) .  Aj = maxp{Aj(p)}, for j = l , .  . . , k .  

Thus, INT(H, 7r1 r) returns a maximum value among the Ajs in the case 2 and the value 
in the case l .  
EXT(H, T, r )  
case l. [Some facilit,~ is located on H within the distance r from u.] 

This isl by definition, EXT(H, n-, r )  = INT(H, n1 r) .  
case 2. [Some facility is not located on H within the distance r from u.] 

In this case, there already exists a facility at! the distance r outside of H. Therefore 
there are no interactions between the subtrees His. Thus, let fi(pi) = EXfT(Hi1 pil d(ui1 
U) + r), z = l , .  . . , k, and A = ALLOC1(fl,. . . , f k ;  T) + &(r). 

Thus, EXT(H, T, r )  returns a maximum value among the case l and the case 2. 
ALL0C1( f l ,  . - . , f k ;  n-) 
Let each fi (i = l , .  . . , k )  be monotone nondecreasing function of a nonnegative integer 
variable and T be a nonnegative integer. 

k 

Maximize F ( x )  = X fi (pi) 
z= l 

k 

subject t,o X pi = n- 
i=l 
pi : nonnegative integer. 

It is known that ALLOC' can be solved by using dynamic programming.3 The tot,al 
effort to solve ALLOC' is O(k7r2). For more details of the algorithm, one is referred to 
Ibaraki and Katoh [4]. 

Use F ( s )  := r n a ~ ~ ~ ~ ~ ~ { F ( s  - l) + fi(l)}, S = l, ...R recursively for i = l, ..., k .  
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Lemma 2 The above algorithm generates an optimal solution to ALLOC '(f1, . . . , f~ TV, 
within 0(k7r2) time. 

We see in Section 3 how INT, EXT, and ALLOC' run by using an example. 
The algorithm terminates when we obtain f (p) = 1NT(T1, p, r') , where r' represents the 

maximum value of the distances between UQ and the vertices of T'. There are 0 (n,') subtrees 
to be considered, where n' is the number of vertices in V'. Each subproblem INT(H, TT, r )  
or EXT(H, TT, r) on subtree has at most n,' values for the parameter r and n can take the 
values 0,1, . .. , p. Therefore, the number of different, snbproblems is 0(n,'2p). Thus, it takes 
O (n,'3p3) time to solve the multi-facility location problem since ALLOC' requires at most, 
0{nfp2) time. We conclude this section by the following theorem. 
Theorem 1 Our algorithm computes an optimal solution to the problem (1) within a poly- 
nomial time. 

3. An Example 
We shall abbreviate the algorithm proposed by Megiddo et al. [7] to M-Alg. 

In the model by Megiddo et al. [7], it is assumed that every customer in Ci has a 
common maximum trip distance ri to access a facility, as we stated in Section 2.1. They 
state that f i  is concave in the number of facilities. The proof, however, is not presented in 
Megiddo et al. [7]. Moreover, M-Alg proceeds by utilizing the concavity in ALLOC. For 
each S C V '  define the gain f~inct~ion W (S) = Eiey <^(d(i ,  S)) .4 It is known that W (S) 
is submodular5 on the powerset of V1(see Tamir [g]). Stibmodularity of W ( S ) ,  however, 
doesn't necessarily imply that f (p) is concave in p. The following example exhibits that, 
the optimal gain funct,ion on a subtree is not concave, which implies that M-Alg may not, 
produce an optimal solution. 

Example 

Figure 3: Tree T 

Table 1: Properties of Vertices in Tree 

When S = X ,  we can rewrite (1) as follows: f (p) = r n a x x o n ~  W ( X ) .  
W ( S )  is said to be submodular on the powerset of V  if for any S C R  C V ' ,  R  # V ' ,  and any z $ R, 

W(SU {i}) - W ( S )  > W ( R  U {i}) - W ( R )  holds. 

Vertex ( 2 )  

Maximumtripdistance(ri) 
Weight (wi) 

1 2 3 4 5 6 7 8 9 1 0  

1 2 1 6 6 6 1 6 6 6 
0 1 4 3 3 3 1 3 3 3  
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Consider a tree T described by Figure 3 and Table 1, where the length of each edge is 
assumed to be 5. For any vertex z, <j>i(d) = wi if d [O, ri] and &(d) = 0 if d C (ri, +m). A 
service provider is to establish 3 facilities on T. 

Now, let U, be the ri-neighborhood of z E V, i.e., U, = {x\d(z, X) $ r,}. For every set 
S C V, let Us = niGsUi. S is said to be rnaxzmal, if Us # 0 and UR = 0 for every R 3 S and 
R # S. Without loss of generality, we may assume that every facility belongs tlo Us for some 
maximal S. For every maximal S each X G Us brings the same gain to the service provider. 
Thus, for each maximal S, we can select a repre~entat~ive point ys E Us as a facilit,y locat,ion 
in the following manner: If Us includes some vertices, let ys = z E Us W .  Otherwise, choose 
any ys E Us and regard it as a new vertex possessing no customer and having zero weight,, 
i .e.  W = 0. Themaximalsets are Sl = {l}, S2 = {2,4,5,6}, Ss = {3}, S4 = {4,8}, 
Ss, = { S ,  g}, S6 = {6,10}, and s7 = {7}. Since i â Us, f l  V, z = 1 , .  . . ,7,  we ran select each 
i (1 < z < 7) as the facility location of Si. 

The optimal gain f (p) is obtained by INT(T, p, r ' ) ,  where T is rooted at ver-tex 1, p = 3, 
and r' = 15. There are no interactions among vertex 1, subtree T2, and T3, where T2 and T3 
represent the subtrees rooted at vertices 2, 3 respectively. Moreover, locating a facility at, 
vertex 1 doesn't make sense because the service provider gains nothing. It implies that it is 
sufficient to consider the case 2 of routine INT(T, p, r') to solve this example. The case 2 first, 
requires INT(T2, S, pi) and EXT(T3, S, p1 + 10) for S = 0,1 , .  . . , p  and each p1 c {O, 5,10} ) 

and secondly EXT (T2, S, p2 + 10) and INT(T3, S, p2) for S = 0,1, . . . , p and each p2 C {O ,5}. 
Thus, if we run M-Alg, the algorithm solves ALLOC( fl  , f a ;  3) at the final step, where f l ( S )  

and f2(s) are the optimal gains on T2 and T3 as follows: 

Table 2: Optimal Gains on T2 

Table 3: Optimal Gains on T3 

S 

1 

Since fi (2) - f l  (l) = 3 < fl(3) - fl(2) = 5, the optimal gain function fi is not concave. 
Thus, ALLOC is not applicable to this example. 

If we apply ALLOC', the function F is constructed from f1 (S) and f 2  (S)  as follows: 
F(0) = 0, ~ ( 1 )  = maxK,<1{f~(l- 1) + f2(L)} = fl(1) + f2(0) = 10, F ( 2 )  = maxo<1<2 {/l (2 - 

1 )  + f 2 ( 1 ) }  = fl(1) + fi(1) = 14, F(3) = maxo5is3{f~(3 - 1) + = f1(3) + f2(0) = 18. 
Thus, we have INT(T, 3,15)= F (3) = 18. This is the optimal solution to this example, that 

S 

locates facilities at vertices 4, 5, and 6. 

fl (S) 

10 

4. Concluding Remarks 

Location points 
2 

Covered maximal sets 

S 2  

f 2  (S) 

1 4 3  

In this section, we explore some possible extensions of this paper as concluding remarks. 

fl ( S )  - fi (S - 1) 
10 

Location points Covered maximal sets 
S3 

f 2  ( S )  - f 2  (S - 1) 
4 
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This paper describes the multi-facility location problem assuming that there is no existing 
facility. In practice, one may have to consider the problem of locating new facilities in 
addition to existing ones. This problem can be easily accommodated by setting demand 
function q&(d) to be zero for d larger than the distance between i and the nearest existing 
facility. 

Implicitly assumed in this paper is the uniformity of price. In some cases, it may be 
reasonable to consider that the commodity price at each facility is a control variable. This 
will bring another dimension to the optimizat$ion problem. 
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