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Abstract We study players' behavior in the prisoner's dilemma by using two stability notions: the stable 
set of von Neumann and Morgenstern with indirect domination and the largest consistent set defined by 
Chwe. Both notions assume possibility of sequential deviations and farsightedness of players. When players 
use only pure strategies, these two stability concepts provide us with the same outcome: { (Cooperation, 
Cooperation), (Defect, Defect)} when players behave independently; and { (Cooperation, Cooperation)} 
when players' joint, but not binding, moves are also considered. In the prisoner's dilemma with many 
alternatives such as the mixed extension of the prisoner's dilemma, the two notions produce completely 
different outcomes. In the stable set, every individually rational outcome could be stable in the former case; 
and only a Pareto efficient outcome is essentially stable in the latter case. The largest consistent set consists 
of all individually rational outcomes in either case. 

1. Introduction 
Recently, Chwe defined a new stability notion, called the largest consistent set 

(Chwe[1994]). The largest consistent set applies to situations in which players (or groups of 
players) act publicly with farsightedness. That is, players consider the possibility that once a 
player (or a group of players) shifts his/her strategy, another player (another group of players) 
reacts, a third player (or a third group of players) in turn shifts hislher strategy, and so on. A 
sequence of shifts might continue without limit. Hereafter shifts of strategies will be simply 
called "moves" or "deviations." Moves by groups of players are not binding; i.e., some players 
in a moving group may later deviate and make a new move with players within or even 
outside the group. A move by a group of players is called "binding" if no player can deviates 
after the move. The largest consistent set assumes that a deviation is deterred if a sequence of 
deviation ends with a stable outcome in which some players in the deviating group do not 
prefer. An outcome is stable if every possible deviation is deterred. Since whether an outcome 
is stable depends on whether other outcomes are stable, stability and instability of outcomes 
must be consistent as a whole. The largest consistent set provides a condition that guarantees 
the consistency. 

The largest consistent set is, in the definition, very close to a classical solution 
concept in game theory, the stable set defined by von Neumann and Morgenstern [1953]. 
Though the original stable set of von Neumann and Morgenstern has been applied mainly to 
coalitional form games, Greenberg [l9901 applied the concept to strategic form games. 
Though the stable set assumes myopic behavior of players, one may introduce farsighted 
behavior as done by Harsanyi [l 9741. 

Then there remains only a small difference between the largest consistent set and the 
stable set with players' farsighted behavior. We hereafter call the latter set, the modified stable 
set. The difference is just whether deviating players are optimistic (the modified stable set) or 
pessimistic (the largest consistent set) concerning other players' deviations that might follow. 
In the modified stable set players deviate if there exists at least one sequence of ensuing 
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deviations in which they end up with better payoffs, while in the largest consistent set players 
deviate only when in every possible sequence of deviations they are better off in the end. The 
modified stable set is always contained in the largest consistent set. 

Chwe presented interesting properties of the largest consistent set together with 
comparison with the modified stable set not only in abstract games but also in strategic and 
coalitional form games. To examine how useful the new stability concept, its applications to 
particular games are most desired, especially games that reflect conflicts often observed in our 
social/economic system. In this paper we pick up the prisoner's dilemma and examine what 
will come out through these stability concepts. 

This paper thus has two purposes. The one is to see whether the two stability notions, 
the modified stable set and the largest consistent set, produce different outcomes in the 
prisoner's dilemma. The other is to examine whether the two stability notions give us new 
insights into the study of the prisoner's dilemma. 

Principal findings are the following. When players use only pure strategies, they 
produce the same outcome: {(Cooperate, Cooperate), (Defect, Defect)} when only individual 
player's moves are assumed; and {(Cooperate, Cooperate)} when players' joint, but not 
binding, moves are also considered. 

In the mixed extension of the game, however, the modified stable set and the largest 
consistent set provide us with completely different outcomes. When only individual moves are 
assumed, there exist infinitely many modified stable sets and any individually rational strategy 
pair is contained in at least one of them. A vector of two players7 payoffs that gives them at 
least their maximin values is called individually rational; and a strategy pair is called 
individually rational if it gives an individually rational payoff vector. The largest consistent set 
is unique and consists of all individually rational strategy combinations. When joint, but not 
binding, moves are also assumed, modified stable sets are essentially singleton sets, each 
consisting of a Pareto efficient strategy combination, while the largest consistent set again 
consists of all individually rational strategy combinations. 

We hereupon remark on the mixed extension. One may claim that it is not real to 
assume that mixed strategies are observed, since strategies actually taken are pure ones. We 
would say that the mixed extension is just an approximation of the prisoner's dilemma with 
many alternatives. Results similar to those obtained in the mixed extension hold in the 
prisoner's dilemma with finitely many alternatives. 

Thus as to the paper's first purpose, we claim the following. In the mixed extension 
of the prisoner's dilemma or in the prisoner's dilemma with many alternatives, the largest 
consistent set does not provide a useful prediction concerning players' behavior. The modified 
stable set, however, gives us a very sharp and interesting prediction, i.e., only a Pareto 
efficient outcome results, in particular in the case where two players' joint, but not binding 
moves are assumed. Furthermore we claim from the stable set analysis that in the prisoner's 
dilemma two players9 joint moves are indispensable to exclude non-Pareto optimal outcomes; 
but joint moves are not necessarily binding. 

As to the paper's second purpose, analyses of the prisoner's dilemma have been done 
exclusively in terms of noncooperative game theory. It is well known that (Defect, Defect) is 
the unique Nash equilibrium if the prisoner's dilemma is played only once, though both 
players are better in (Cooperate, Cooperate). It holds that irrespective of whether players use 
only pure strategies or use also mixed strategies. Even if the prisoner's dilemma is played 
repeatedly, we did not go further if the number of repetition is finite. The unique equilibrium is 

If the prisoner's dilemma is repeated infinitely many times, however, the Nash 
ives us a completely different outcome. Repetition of (Cooperate, Cooperate) 
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could be equilibrium; but many other outcomes including repetition of (Defect, Defect) appear 
also as equilibrium outcomes. More precisely, all pairs of payoff vectors that are individually 
rational can be attained as equilibrium. This is called the Folk Theorem. Therefore the Nash 
equilibrium analysis succeeds in attaining a Pareto efficient outcome; but fails to give us a 
sharp prediction of players' behavior in the repetition of the prisoner's dilemma. 

One way to eliminate repetition of (Defect, Defect) is to use the notion of 
renegotiation-proof equilibrium. The renegotiation-proof equilibrium is a refinement of Nash 
equilibrium; and allows players to communicate with each other at the beginning of each 
repetition and to avoid Pareto inferior Nash equilibrium. Players coordinate their choices not 
only in the current stage but also in future stages; but even if they reach an agreement on 
coordination, the agreement is not binding. That is, they freely deviate from the agreement and 
take other choices. Though van Damme [l9911 succeeded in eliminating non-Pareto efficient 
outcomes by using one version, there exist many versions of the renegotiation-proof 
equilibrium, some of which fail to eliminate non-Pareto efficient outcomes. For example, see 
van Damme [1989]. 

Conceptually the stable set is completely different from the Nash equilibrium; but in 
the prisoner's dilemma the two notions give similar outcomes. If only individual player's 
moves are assumed, any individually rational strategy pair is contained in at least one 
modified stable set: the result is very similar to the Folk Theorem. When players7 joint moves 
are allowed, the modified stable set gives us a sharper result than the notion of 
renegotiation-proof equilibrium: the modified stable set always gives us only Pareto efficient 
outcomes, while many versions of the renegotiation-proof equilibrium fail to do so. 

The rest of the paper will be organized as follows. In the next section, definitions and 
notation will be given. In Section 3, we will describe the modified stable set and the largest 
consistent set in the prisoner's dilemma with pure strategies. In Section 4, these two sets will 
be studied in detail in the mixed extension. In Section 4, we will use a particular version of the 
prisoner's dilemma to make discussion as simple as possible. The two sets in a general version 
of prisoner's dilemma will be briefly discussed in the Appendix. The paper closes in Section 5 
with some remarks. 

2. Stable Set and Consistent Set 
Let G = (N, (Sj ]I,y,, {uJ be a strategic form game where N = {l, 2,- -;n} is the 

set of players, S, is the set of strategies of player i and u, is this player's payoff function, 
ul: S = S, X X X S -+ R (the set of all reals). A subset of players M c;N is called a 
coalition. 

For any two strategy combinations S = (sl , - - - ,S )  , t = (tl ,- -., t )  E S, we say S is 
induced from t via coalitionM c N if t, = S  for all i eN\M ; that is, the combination S 

is reached from t by moves only of players inM. It is easily seen from the definition that if S 

is induced from t via coalition M,  t is induced from S via coalition M .  Thus we denote 
this inducement relation by t <-> S . We say S indirectly dominates t , denoted s > t ,  if there 

M is a sequence of strategy combinations t = so, S', . . ., sp-l, sp = S and a sequence of sets of 
players U,- - -,Mp , such that for all j = 1," - , p  , -1 <->,/ S' and u (S) > ul (S'' ) for all 

\ i e M' . We sometimes say that S indirectly dominatest starting with M , denoted S > - I  t ,  to 
specify the set of players which deviates first from t l. 

In particular, when every M' is a singleton, we say S individually indirectly 
dominates t , denoted S D t , and s individually indirectly dominates t starting with i , 

We may assume MJ-' + M J  for all j = l,... , m since consecutive moves by the same set of players can be 
combined into one move. 
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denoted S D, t ,  in case we want to specify the player who first deviates from t .  The term 
"individually" may be omitted unless any confusion results. 

We hereupon remark that in the definition of indirect domination we implicitly 
assume that deviation by a group of players is not binding, i.e., some players in a deviating 
group may later make another deviation with players within or even outside the group. 
Similarly a single deviating player may later change hidher strategy again. 

When p = 1 in the definition of indirect domination, we simply say that S directly 
dominates t . When we want to specify a deviating player (or a group of players), we say, for 
example, S directly dominates t via player i (or a group of players M ). This direct 
domination was initially defined by von Neumann and Morgenstern [l9531 in characteristic 
function form games, and later defined by Greenberg [l9901 in strategic form games. Indirect 
dominations that are not direct ones will be called in the following indirect dominations with 
p 2 2. It should be noted that the indirect domination defined above is borrowed from Chwe 
[1994]. Though Harsanyi [ l  9741 first proposed the notion of indirect domination, his 

nition is slightly different. 
A set of strategy combinations K a S is a stable set w.r.t. D (resp. >- ) if (l) for any 

s,t(=K, neither s ~ t  (resp. s + t )  nor t ~ s  (resp. t + s ) ,  and (2) for any t Â £ S \ K  there 
exists S ̂ K such that S > t  (resp. S > t ). Property (1) and (2) are called internal and 
external stability, respectively. In what follows, stable sets w.r.t. D or >- are sometimes 
simply called stable sets unless any confusion results. 

The consistent set w.r.t. i> (resp. F )  is a set K S satisfying the following two 
properties. (1) For any S ^K,  any r ES and any such that S ̂ ->M r ,  there exists 
t 6 K such that [t = r or t D r (resp. t + r )] and U. (S) 2 U, (t) for at least one i E M. (2) For 
any t E S \ K there exist r ES and M<  ̂N with t ++M r such that for all S EK with 
[S  = .P or s D r (resp. S + r )], u,(s) > U, (t) for all i E M .  We call property (1) and (2), 
internal and external consistency, respectively. The largest consistent set is a consistent set that 

ntains all others 2. 

It should be noted that in the definition of the consistent set w.r.t. D (resp. >) if we 
replace "there exists" in (1) by "for all" , and "for all s EK '' in (2) by "there exists S E^", 

en we obtain the definition of the stable set w.r.t. i> (resp. >-). Thus it can be shown that 
et w.r.t. l> (resp. > ) is contained in the largest consistent set w.r.t. D (resp. > ). 
1994, Proposition 31 for the proof. Moreover the largest consistent set is always 

unique, but stable sets are generally not unique. 
We explain more in detail what external and internal stability (resp. external and 

internal consistency) imp in the definition of stable set (resp. consistent set). 
First pick a st le set. Suppose players have common understanding that each 

strategy combination (for simplicity hereafter called outcome) inside the stable set is "stable" 
and that each outcome outside the stable set is "unstable". Here the "stability" means that no 
player or no group of players has an incentive to deviate from it, and the "instability" means 

at least one player or one group of players that has an incentive to deviate from it. 
ernal and internal stability guarantee that the common understanding is never 
d thus continues to 

In fact, suppos internally and externally stable, and pick any outcome 
stability, no player (or no group of players) can be better or? 

ing deviations end up with hidher (or their) most favorable 
layer deviates or no roup of players reach an agreement to 

A union of any two consistent sets is a consistent set. See Chwe 11994, Proof of Proposition l]. 

As for a group of players, this means that there is at least one player who is not better off. 
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deviate; and thus each outcome in the set remains stable. A deviating player (or deviating 
players) may be better off if ensuing deviations end up with an outcome outside the set; but 
outcomes outside the set are commonly considered to be unstable. Thus a deviating player@) 
can never expect that ensuing deviations end up with such an outcome. 

Next pick any outcome outside the set. Then by the external stability, there exists at 
least one player who can become better if he/she deviates from it and ensuing deviations of 
other players end up with hidher most favorable outcome inside the set. As for the case of a 
group of players, all members in the group can be better off The final outcome is considered 
to be stable since it is in the set. Hence a player or a group of players will deviate. Hence each 
outcome outside the set remains unstable. 

It is to be noted that, in the internal and external stability of the stable set, a deviating 
player@) expects that ensuing deviations will be the most favorable one to hidher (or them). 

The consistent set has similar implication. The external and internal 
consistencyguarantee that the common understanding that each outcome inside the set is stable 
and each outcome outside the set is unstable is never disproved. The difference is whether a 
deviating player@) has an optimistic view (the stable set) or a pessimistic view (the consistent 
set) concerning other players' deviations that may ensue. In the consistent set, a deviating 
player@) expects that ensuing deviations will end up with the least favorable outcome to 
hidher (or them). 

3. Stability in Prisoner's Dilemma 
The following payoff matrix describes the prisoner's dilemma. 

2 Cooperate Defect 
1 

Cooperate a ,  a 0 ,  
Defect b. 0 c ,  c 

where a ,  b , c are reals satisfying b > a > c > 0. 
We first present the stable set and the largest consistent set when two players use only 

pure strategies. Thus the set of strategy combinations is S = {(Cooperate, Cooperate), 
(Cooperate, Defect), (Defect, Cooperate), (Defect, Defect)} where in each combination the 
former (resp. the latter) is player 1 'S (resp. 2's) strategy. 
3.1. Stability without coalitional moves 

If only individual moves are assumed, one may easily see that there is no indirect 
domination with p 2 2. Direct dominance relations are summarized as follows. 

(Cooperate, Cooperate) (Cooperate, Defect) 
V, UI 

(Defect, Cooperate) (~efect,  Defect) 
Here 3 denotes dominance relations. For example, (Cooperate, Cooperate) 3, (Cooperate, 
Defect) implies that (Cooperate, Defect) directly dominates (Cooperate, Cooperate) via player 
2. 

It is easily seen that the (unique) stable set w.r.t. D and the largest consistent set w.r.t. 
D are the same and given by the set {(Cooperate, Cooperate), (Defect, Defect)}. 
3.2. Stability with coalitional moves 

If coalitional moves are taken into consideration, (Cooperate, Cooperate) directly 
dominates (Defect, Defect) via coalition {1,2}; and thus we have the following chart of direct 
dominance relations. Since (Cooperate, Cooperate) >- (Cooperate, Defect), (Defect, 
Cooperate) and there is no other indirect domination with p 2 2 ,  the unique stable set w.r.t. > 
and the largest consistent set w.r.t. > are the same and given by the singleton set {(Cooperate, 
Cooperate)}. 
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(Cooperate, Cooperate) (Cooperate, Defect) 

(Defect, Cooperate) 
01 

(Defect, Defect) 
Hence if two players' coalitional, but not binding, moves are assumed and players are 

farsighted, the stable set and the largest consistent set both succeed in generating cooperation 
of players as the unique stable outcome. In the mixed extension, however, these two stability 
concepts produce completely different outcomes as will be shown in the next section. 

4. Mixed Extension of Prisoner's Dilemma 
We now study stable outcomes in the mixed extension of the prisoner's dilemma4. 

To make discussion as clear as possible, we will focus on the following particular version of 
the prisoner's dilemma. Similar results hold in the general prisoner's dilemma given in the 
previous section. Refer to the Appendix for detailed discussions. 

2 Cooperate Defect 
1 

Cooperate 4, 4 0, 5 
Defect 5, 0 1, 1 

In the mixed extension, we have N = (l, 2} , S, = S, = [o, l] where S, â‚¬ (resp. 
s2 E 4 )  is the probability that player 1 (resp. 2) takes "Cooperate"; and thus through simple 
calculations payoff functions are given as q (S,, s-, ) = l - 4 + 4s2 and u2(s1 ,s-, ) = 1 - s2 + 4s1 . It 
is easily seen that the maximin payoffs to players 1 and 2 are both 1 in this game. We hereafter 
call a strategy combination that gives both players at least (resp. more than) their maximin 
payoffs, an individually rational (resp. a strictly individually rational) strategy combination. 

In the next subsection, we study stable outcomes when only individual moves are 
assumed. 
4.1. Stability without coalitional moves 

Since all dominations are done via a single player, the term "individually" will be 
omitted in dominance relations throughout this subsection. For t E S ,  let Q, (t) = {S â‚¬ : 
t D, s } for i = 1,2 . Q, (t) is the set of strategy combinations that t indirectly dominates 
when player i deviates first. Then we have the following lemma concerning D, (t) and 
Q2 (t). 

Lemma 4.1 : Take any strategy combination / = (ll, t2 ). Let 0 = (0,O) , A = (1,O) , B = (0, l), 
C = (1,l) , D = (l,?-) , E = (1,114-t, / 4 + t 2 )  , F =  (114-t2 /4+t,,l) , G = (t,,l) , 

=(0 , - t l14+t2) ,  I=(- t2/4+tl ,0)  and G'=(t,,O) . The point E (resp. H) is the 
ersection of player 1's isoprofit line with U, = u,(t) and with the vertical line S, = 1 (resp. 

S, = 0). Similarly the point F (resp. I) is the intersection of player 2's isoprofit line with 
u2 = u2(t) and with the horizontal line s2 = 1 (re . s2 = 0 ). Then D. (t) = (triangle 
tDE) \ (line tE) and D, (t) =(triangle tFG) \ (line t~) ' .  

Proof: First it should be noted that in the region above (resp. to the right of) player l's (resp. 
2's) isoprofit line passing through t, player 1 (resp. 2) gains more than what he gains in t. 

4 As stated in Introduction, the mixed extension is used for an approximation of the prisoner's dilemma with many 

alternatives. 

6 In what follows, (triangle tDE ) \ (line tE ), (triangle tFG) \ (line tF tF), etc. will be simply written as ~ D E  \ tE, 

tFG \ tF, etc. unless any confusion results. 
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Hence player l's (resp. 2's) payoff increases as we move towards northwest (resp. southeast) 

S2 

B 1 G F C 

2's isoprofit line 

line 

Figure 1 D 1 (t) and D 2 (t) 

corner. On a line parallel to the horizontal axis (resp. vertical axis), player l's (resp. 2's) 
payoff increases as we move to left (resp. downward). 

We will prove D, (t) = tDE \ tE . A similar proof applies to (t) = tFG \ tF . Take 
any point q = (ql, q2) in tDE \ tE. Let r = (t, , q2) . If q is in (line tD) \ (point t) (simply 
denoted tD \ {t}), then t directly dominates q via player 1. If otherwise, u1 (t) > U, (q) and 
u2 (t) > u2 (r) ; and thus q ED, (t) . We next show that no point outside tDE \ tE is in D, (t) . 
No point above or on the line HE is in D, (t) because the payoff to player 1 is never below 
hidher payoff in t. Thus take any point q locating below HtD and suppose t D, q .  Since q is 
below HtD , q is not directly dominated by t . Thus there exist a sequence of strategy 
combinations q = s O , s \  ..., sm\sm = t  (ms2) ,  and a sequence of players l=z1,z2, ..., Ã ˆ  

such that s j l  ei, S' and uij (t) > uij (S'-' ) for all j = 1,. . . , m . Suppose first z m  = l ; then 
S'-' must be on tD \ {t} since ul (t) > U, (S"-') . Hence must be in tFG \ (tFu tG) since 
u2 (t) > u2 ( F 2  ) . Similarly S '" must be in tDE \ (tE u <D). Repeat this procedure; then we 
obtain that all of q = so7 S', . . ., S" = t are in tFG \ (tF u G) or tDE \ (<E U <D). This 
contradicts that q is taken from the region below HtD. The same contradiction follows when 
im = 2 . Thus we have shown that q is not in (t) and thus b1 (t) =tDE\ tE. Q.E.D. 

Theorem 4.2: (1) Let K' be a continuous curve connecting the origin 0 and a point on the 
edge B'C or K C  on which each player's payoff varies monotonically where OK (resp. OB') 
is player l's (resp. 2's) isoprofit line passing through 0. See Figure 2.  Then K I  is a stable set 
w.r.t. D . (2) The origin 0 is contained in all stable sets w.r.t. D ,  but no point in regions 
OAK \ OK or OBB' \ OB' is contained in any stable set w.r. t. D . 

Proof: (1) Internal and external stability follow from Lemma 4.1. (2) We note that by Lemma 
4.1 the origin 0 is not dominated by any other point, and thus by the external stability of the 
stable set it must be contained in any stable set. Since all points in OAK \ OK and 
OBB' \ OB' are indirectly dominated by 0 again by Lemma 4.1, any stable set must be in the 
region OA'CB'. Q.E.D. 

It is to be noted any strategy combination in the region OA'CB' is individually 
rational. Hence Theorem 4.2 shows that if only individual moves are assumed and players are 
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far sighted, then any individually rational strategy 
combination is contained in at least onestable set, and 

c thus could be stable. Recall the remark on stability of 
strategy combinations given in Section 2 just below 
the definitions of the stable set and the consistent set. 
Further it has been shown that (Defect, Defect) is 
always stable, and that any strategy combination that 
is not individually rational is never stable. 

The next theorem shows that the largest 
A' consistent set consists of all individually rational 

strategy combinations. 

S1 
Theorem 4.3: Let L be the set of individually rational 

Figure 2 A stable set w.r.t. D strategy combinations, i.e., 
L' = {s=(sl,s2)e~:u,(s),u2(s)Â£l} See Figure 3.  

Then L' is the largest consistent set w.r.t. D .  

Proof: Internal consistency: Take any point t = (t1,t2) in L' and any q = (q1,q2) in S and any i <= 
N such that t w i  q . Without loss of generality let i = l and q2 = t2. If ql > tl , then 
ul (t) > ul (q) ; thus the internal consistency holds if q is in L'. If q is not in L', then take t again; 
then since t directly dominates q, the internal consistency holds. Suppose qi < ti . Then we can 
take a point r = (r,, r,) E L' such that r, = q, , r2 < q2 (thus q <->, r and U,(?Â¥ > u2(q)) and 
ul(t) ul(r) . For example, we may take r on the line OK. Thus the internal consistency holds. 
See Figure 3. a 

External 

s2 consistency: Take any 

Figure 3 The largest consistent set without coalitional moves 

t = (tl , t2 ) outside L'. 
Without loss of generality, 
suppose U, (t) < 1 . Then 
we can take a point 
<^ = (<^l,ts2) <=L1 wit h 
ql < tl and q2 = t2 ; thus q 
directly dominates t via 
player 1. Note that in any 
point in L player 1 gains 
more than in t. Hence even 
if player 2 deviates from q 
and a sequence of 
deviation follows, player 1 
is better off in the end 
point of the sequence if it 

is in L .  See Figure 3.  Thus the external consistency holds. 
Finally we show that LI is the largest consistent set. Suppose there exist a consistent 

set L" that is larger than L' . Take a point t = (ll, t2) in L" \ L'. Without loss of generality 
we suppose t is in the region OAK \ OA'; thus ul (t) < 1. Pick q = (0,t2). Note that t <->, q .  
Since L" is a consistent set, by the internal consistency there exists r in L" such that [ r = q 
or r t> q ] and ul(r) < ul(t) . since U, (r) > ul (t) , neither r = q nor r b1 q holds. Thus 
r D, q . Let q = qO, ql,.  . ., q p  = r be the sequence of strategy combinations and il, i2, ..., f be 
the sequence of players which appear in r D, q . Thus i1 = 2 and i2 = l .  Since i1 = 2 ,  q 1 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



Farsighted Stability in Prisoner's Dilemma 257 

must be on OB and ui (g') 2 1 . Thus u^(q) > u1 (t) . Since r D q and i2 = l , we obtain 
U, (q')  > U, (t) ; and thus r > t , which contradicts the fact that both r and t in L". Q.E.D. 

In summary, when only individual moves are assumed, though the stable set w.r.t. 
indirect domination and the largest consistent set are different in their shapes, these sets 
provide similar implications concerning stability of strategy combinations: all individually 
rational strategy combinations could be stable. More precisely, every individually rational 
strategy combination is included in at least one stable set. Thus any of them could be stable if 
a stable set containing it would be realized. On the other hand, the largest consistent set 
consists of all individually rational strategy combinations; and thus all of them are stable. 

This similarity, however, disappears when coalitional, but not binding, moves are 
taken into consideration. 
4.2. Stability with coalitional moves 

For t eS , let >̂ , (t) = [s eS : t >  ̂S], M = {1},{2},{1,2] . The symbol >Ã ( t )  
denotes the set of strategy combinations which t indirectly dominates when A4 deviates first. 
Let (t) = >,,$ (?)U (?)U >-,,,,, (t) . Then we have the following lemma concerning 

( 0  - 

Lemma 4.4: (1) Take any strictly individually rational strategy combination t = (t1,t2) (i.e., 
in t, both players' payoffs are strictly greater than the maximin payoff, 1). Let A, B, C, D, E, F, 
G, H, I be as in Figure 1. See Figure 4. Then > (t) = tEAOBF \ (tEutF) (the shaded area in 
Figure 4). 

(2) Take a strategy combination t = (t,, t,) with a,(() 5 l, i.e., player l's payoff is 
not strictly individually rational. Let A, B, C, E and I be as in Figure 1, and let 
F=(1 ,4+t2-4 t l ) ,  H=(?,-4t2,0) and J=(tl-4t2,1) . The point F (resp. I) is the 
intersection of player 2's isoprofit line passing through t and the vertical line AC(resp. 
horizontal line OA); and the point E (resp. H) is the intersection of player 1's isoprofit line 
passing through t and the line AC (resp. line OA). The line HJ is parallel to the vertical axis. 
See Figure 5. Then >- ( t )  = tFCJHAE \ (tEu tF U HJ) (the shaded area in Figure 5). 

(3) Take a strategy combination t = (t, ,g,) with g,(() 2 1, i.e., player 2's payoff is 
not strictly individually rational. Let A, B, C, F and H be as in Figure 1, and let 
E = ( 4 + t 1  -4t2,1), I=(0,t2 -4t1) and J=(l , t2 -4t,). ThepointF(resp. 1)isthe 
intersection of player 2's isoprofit line passing through t and the horizontal line BC(resp. 
vertical line OB); and the point E (resp. H) is the intersection of player l's isoprofit line 
passing through t and the line BC (resp. line OB). The line IJ is parallel 1 to the horizontal axis. 
See Figure 6.  Then >- (t) = tFBIJCE\ (tEu tFu  IJ) (the shaded area in Figure 6). 

S2 2's isoprofit line 

Figure 4 >- (t) of Lemma 4. 
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S2 

I 2's isonrofit line 

line 

line 

isoprofit 

S1 

Figure 5 > (t)  of Lemma 4.4 (2) Figure 6 > (t)  of Lemma 4.4 

Proof: ( 1 )  >- ( t )  3 tEAOBF \ ( t E u  <F): Take a point q = (q,, q2 ) in tEAOBF \ ( tEu  (F). I f  q is 
in tED \ tE or tFG\ tF, then Lemma 4.1 shows that q is in ( t )  or >-{21 ( t ) ;  and thus q is in 
> ( t )  . Suppose next q is in tIOH \ ( t H u  t1). Then U ,  ( t )  > U ,  ( g )  and u2 ( t )  > v ,  (q)  ; thus q is 
directly dominated by t via coalition { 1,2} and thus in > ( t )  . Next take q in tDAI\ tD. Take a 
point r = (M) in tIOH \ ( t I u  tH) with r = q See Figure 4. Then t >- q since q e1 r , 
r e12 t , u1 ( t )  > ul (q) , ul ( t )  > M, ( r )  and u2 ( t )  > u2 ( r )  ; thus q is in >{t) . A similar proof 
applies to q in ^GBH\ tG. See Figure 4. 

Conversely take a point q in tECF. Then U ,  ( q )  2 ul ( r )  and U ,  (q )  > u2 ( r )  ; and thus q 
is not in + ( t )  . Thus > ( t )  = tEAOBF \ ( t E u  tF) holds. 

(2) The first half of the proof is the same as above. As for the second half, the fact 
that any point in tEF is not in > ( t )  is shown in the same manner as above. Take any point q 
in JBOH. Then u^{q) 2 ul ( t )  ; so if q is in + ( t )  , the first deviator in the indirect domination 
must be player 2. But even if player 2 deviates from q, the new strategy pair is still in JBOH; 
and thus again player l's payoff is greater than or equal to hislher payoff in t. Hence such an 

irect domination is impos le. Thus q is not in > ( t )  . 
(3 )  Similar to (2). 

Theorem 4.5: (1)Let K 1 = { t } ,  t=(t , , t , ) ,  1/4<t1 21 ,  t2 = l ,  or t, = l ,  1 /4<t2  Â£1 That 
is, t is a point on the edge A'C or B'C in Figure 7:  points A' and B' are excluded. Let 
K Z  ={(0,0), (1,114) } and K 3  = {(0,0), (114,l)). That is, K 2  consists of 0 and B' and 
consists of 0 an A'. Then K 1 , K 2  and K' are stable setsw.r.t. >. 

(2) Any point not contained in the three stable sets above is never be an element of 
any stable set w.r.t. >- ; and thus no stable set w.r.t. F exists other than K', K2 and K3. 

line 

Proof: ( 1 )  K' : Easily follows from Lemma 4.4(1). K : The following hold by Lemma 
4.4(2): All points not on the line OB are in >-(A'); all points on OB other than 0 are directly 
dominated by 0 via player 2; and A' is not in >- (0). Thus K is a stable set w.r.t. F. K 3  : A 
proof similar to K applies. Use Lemma 4.4(3) instead of 4.4(2). 
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(2) Take a point x = (X,, X:) not included in any of K', K2,  K3 and suppose x is in 
some stable set K. First suppose X is in the interior of the quadrangle OA'CB'. See Figure 8. 
Then by Lemma 4.4(1) and by the external stability of the stable set, there must exist at least 
one point of K belonging to the region xC'CC7'\ {X}. By Lemma 4.4(1) every point in this 
region dominates x which contradicts the internal stability of the stable set. 

Next suppose x = (X,, X,) is in OAK \ ({O} U {A'}). See Figure 8. A similar proof 
applies to the case where x is in OBB' \ ({O} U {B'}). By Lemma 4.4(2), any point in regions 

xA"A", and OGG'B is not indirectly 
dominated by X. Here the point A" (resp. 

B' . .... - . . . . . . . . . . * .  . .. . . . . . . . . . . . . .... . . . . . A'") is the intersection of player 2's (resp. 

7; player 1 'S) isoprofit line passing through x 

K' and the line AC, and the point G is the 
intersection of player 1 'S isoprofit line 
passing through x and the line OA. The 
line GG' is parallel to the vertical line OB. 
By the external stability of the stable set 
there must exist at least one 
pointy = (Vl, y2) of the stable set K in the 
region xA"A"' U OGG'B. By the same 
reason as above, y is not in xA"A"'. 
Further Y is not in 

Figure 7 Stable sets K', K ~ ,  K' w.r.t. > OGG'B \ (O'B"B U {G}) where 
0' = (0,x2) and B" is the intersection of 

player 2's isoprofit line passing through 0' and the line BC. In fact suppose y is in this region. 
Then if y2 > x2, then we can take a point z = (z, , z2 ) such that z2 = X,, u1 (z) < U, (y) and 
u2 (z) < u2 (y) as shown in Figure 8. Thus y indirectly dominates x since ul (y) > u, (X). If 
y2 = X,, y directly dominates x via player 1 since yl < X,. If y2 < X,, then we can take a 
point z' = (z[, zi ) such that zi = x2 and z[ = yl . See Figure 8. Then since u, (y) *X) 
and u2 (y) > u2 (2') , y indirectly dominates X. Thus y must be in 0'B"B U {G}. Then by 
Lemma 4.4(2),(3), any point in region OGG"0' \ {G} is indirectly dominated neither by x nor 
by y where G" is the intersection of O'x and GG' . Therefore the external stability of K fails. 
Q.E.D. 

This theorem shows that 
when players' coalitional, but not 
binding, moves are assumed, 

C' essentially a single Pareto efficient 
E point results as a stable outcome. We, 

however, have an exceptional case in 
D which (Defect, Defect) could be 

stable together with one Pareto 
efficient point in which one player 

A" 
\' 

gains the same payoff as in (Defect, 
Defect). 

V" The next theorem shows 
A 

sl that the largest consistent set consists 
of all individually rational strategy 

Figure 8 Illustration of x in Proof of Theorem 4.5 combinations: the same as in the case 
without coalitional moves. 
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Theorem 4.6: Let L be the set of individually rational strategy combinations, i.e., 
L = { S  = (S, , s 2 )  E S : u, ( S ) ,  u2 ( S )  2 l} . See Figure 9. Then L is the largest consistent set. 

Proof: Internal consistency: Take any point t  = (t, , t2 ) in L and any q = (ql , q2 ) in S and any 
M c N = {1,2} . When M = {l} or (21, the proof is the same as Theorem 4.3. Let M = {1,2}. 
Suppose q is not in L. Suppose q is in OBB'\ OB'; a similar proof applies when q is in 
OAK \ ON. See Figure 9. Then as shown in Figure 9, we can take r = (r,,r,) E L with 
/Â¥ = q1 , r2 < q^ , and thus q e2 r , u2 (r )  > u2 (q)  and U, ( t )  > ul ( r )  . For example, we can 

take r on the line OX. If q is in L, 
S2 then we may suppose 

ul(q)>ul(t} and u2(q)>u2(t) ; 
if otherwise, at least one player in 
M is worse off in q and thus the 
internal consistency directly 
follows. Then in a manner similar 
to the above, we can take a point 
r = ( r l , r 2 ) ~ L  such that q e 2  r ,  
a2 ( r )  >u^q) and u, (0 >u. ( r )  . 
Thus the internal consistency 
holds. 

External consistency: 
Take any t= (tl , t 2 )  outside L. 
Without loss of generality, 
suppose u, ( t )  < 1. Then as shown 

Figure 9 The largest consistent set and its consistency in Figure 9, we can take a point 
q = ( q l , q 2 ) e L  with a <tl  and 

q^ = t2 ; thus q directly dominates t  via player 1. Note that in any point in L player 1 gains 
more than in t. Hence even if player 2 deviates from q and a sequence of deviation follows, 
player 1 is better off in the end point of the sequence if it is in L. Thus the external consistency 
holds. 

Finally we show that L is the largest consistent set. Suppose there exist a consistent 
set L' that is larger than L. Take a point t  in L'\ L. Without loss of generality we suppose 
t  = ( l i ,  4) is in the region OAA' \ ON; thus u, ( t )  < 1. Pick q = (0, h). See Figure 9. Note that 
t  e, q . Since L' is a consistent set, by the internal consistency there exists r in L' such that 
[ r = q or r > q ] and zq ( r )  < U ,  ( t )  . Since U ,  (q )  > M ,  ( t )  , neither r = q nor r >  ̂q , 
A 4  = {l}, {l, 2) , holds. Thus r >& . Let q = q0 , q1 >. . ., q p  = r be a sequence of strategy 
combinations and M ,M 2 , .  . . M p be a sequence of players 1,2 or the player set { 1,2} which 
appear in r > ,  q . Thus M' = {2} and M 2  = {l} or { 1,2}. Since M' = {Z} , q1 must be on 

) 2 l . Thus U ,  ( q l )  > U ,  (9, which contradicts l E M ~ .  Q.E.D. 

5. Concluding Remarks 
We have shown in the prisoner's dilemma that the stable set with indirect domination 

and the largest consistent set produce the same result in pure strategies, but that in the mixed 
extension and thus in the prisoner's dilemma with many alternatives, outcomes are completely 
different. Though Chwe[1994] claimed an advantage of the largest consistent set over the 
stable set showing examples in which the former exists though the latter does not exist. As 

er, however, in games like the prisoner's dilemma the stable set gives us 
iction on players' behavior than the largest consistent set. Furthermore the 
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stable set analysis reveals that players joint move (though not binding) is indispensable for 
excluding inefficient outcomes in the prisoner's dilemma. 

As we noticed in Introduction, similarity exists between the outcomes obtained in this 
paper and the results obtained through equilibrium analysis in noncooperative game setup. It 
must be interesting to study more in detail relations between the stable set with indirect 
domination (also the largest consistent set) and equilibrium in two-person strategic form 
games and their dynamic extensions. To proceed this analysis, an alternating move dynamic 
game, for example, those proposed by Maskin and Tirole [l 9881 and Bhaskar [l 9891 could be 
a good setting since indirect domination assumes consecutive moves of players or groups of 
players. The analysis will be done in a future paper. 

Another interesting extension of the research is the study of a multi-person prisoner's 
dilemma, or sometimes called a social dilemma. This is also studied in a future paper. 

In concluding the paper, we remark that the stable set with only direct domination 
does not provide us with interesting prediction of players' behavior. When only individual 
moves are assumed, a typical stable set is given in Figure 10 which is similar to the one given 
in Theorem 4.2: see also Figure 2. This stable set could, however, locate in regions OAK and 
OBB'. Hence outcomes that are not individually rational could be stable. When coalitional 
moves are also taken into consideration, several types of stable sets exist. Figure 11 depicts 
one of them. This stable set cannot go into region OA'CB' of individually rational outcomes 
because of domination via coalition { 1,2}. In fact, any point in the interior of OKCB' directly 
dominates the origin (0,O) via {1,2}. Hence no outcome belonging to this stable set except the 
origin (0,O) is individually rational. There may exist a stable set which contains strategy 
combination (Cooperate, Cooperate); and moreover there exists another stable set containing 
even (Cooperate, Defect), (Defect, Cooperate). 

S2 

Figure 10 A stable set w.r.t. direct domination 
whereonly individual moves are assumed 

Figure 11 A stable set w.r.t. direct 
domination where coalitional 
moves are also considered 
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Appendix 
In this appendix, we will present stable sets and the largest consistent set in the 

general prisoner's dilemma. Recall the payoff matrix of the general prisoner's dilemma given 
in Section 3 : 

Cooperate Defect 
1 

Cooperate a ,  a 0 ,  b 
Defect b,  0 C, C 

Since b > a > c > 0, player 1 can increase his/her payoff by increasing the probability 
of using "defect", or decreasing the probability of using "cooperation", for each mixed 
strategy of player 2. Similarly for player 2. 

Though in the particular example studied in the text, straight lines give players7 
isoprofit curves, it is not generally true. Consider a space of mixed strategy pairs of two 
players as given in the text. Recall the horizontal axis (resp, the vertical axis) is player l's 
(resp, 2's) probability of taking "cooperation." Let S, (resp. S,) be the probability that player 
1 (resp. player 2) takes "cooperate." 

Take the player 1 'S isoprofit line that gives him/her a fixed payoff level U .  Then 

9u 9u 
Since Ã‘L=-c+(a-b+c)s2  Ã‘L=b-c+(a-b+c)s  and = a - b + c ,  

9s, 9s. as1 5s;, i3@sl 
we obtain 

A2 Since b > a > c > 0 and 0 2 s1,s2 5 1 ,  we obtain that - > 0 ,  i.e., S, is increasing in S,, and 
that ds, 
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(PS @S, d2s 
a -b+c>Oi f f  + < 0 ,  a -b+c<Oi f f  > 0  (thus a -b+c=Oi f f  Ã ‘ f - = 0  

&l A2 &l 

where iff implies "if and only if." 
The isoprofit line passing through the origin (sl, s2)  = (0,O) is given by 

CS, 
s2 = 

(a- b +c)sl + b  - c  

since ul(O,O)=c. Thuswhen S =l ,wehave S, = c l a  andthus 0 < s 2  < l  since a > c > O .  
Hence the isoprofit line passing through the origin intersects sl = 1 at s2 with 0 c 52 < 1. 

Player 2's isoprofit curves have similar properties since players 1 and 2 are 
symmetric in the sense that ul (S,, % ) = u2 (S,, 4 ) for all (S,, s2 ) . 

Next, we examine slopes of two players' isoprofit curves. As shown above, the slope 
of player 1 'S isoprofit curve is given by 

In a similar manner, we obtain the slope of player 2's isoprofit curve, 
ds2 b - c + (a - b + c)s2 -- - - 
dsi -c+(a-b+c)sl  

Henceif a - b  +c= 0,  then 

since a > c .  Thus (slope of player 1 'S isoprofit curve) 2 (slope of player 2's isoprofit curve). 
If a - b + c  0, then (slope of player 1 'S isoprofit curve) < (slope of player 2's isoprofit 
curve) if and only if 

2c - b 
S, > -S, + 

a - b + c  
(1) a - b + c = O :  In this case, we have ul(s^,s^)=c-csl+(b-c)s2 . Therefore 

player l's isoprofit curve passing through the origin is a line: the line OA' in Figure 12 is a 
typical one. Similarly player 2's isoprofit curve passing through the origin is like OB'. Thus 
the case is just the one we studied in the text. Note that (slope of player l's isoprofit curve)< 
(slope of player 2's isoprofit curve). Stable sets are similar to those given in Figures 2 and 7. 

See Figure 12. When only individual moves are 
assumed, any monotone curve connecting the origin 
and a point on the edge B'C or A'C is a stable set. 
When coalitional moves are assumed in addition, three 
types of stable sets exist. The one is a singleton set 
consisting of a point on the edge B'C (excluding B') 
or the edge A'C (excluding A'). The others are two 
point sets {B', 0 )  and v ' ,  0 ) .  The largest consistent 
set is the quadrangle OA'CB'. 

(2) a - b + c  > 0 : In this case the isoprofit 
bsl curve is concave since d2s2/ds12 < 0 . Player 1 'S 

isoprofit curve passing through the origin intersects 
Figure l2 Stable sets in ( l )  the 45O line only once at sl = 0 when b 2 2c and 

twice at S, = 0 and sl = (2c - b)/(a - b +c) when 
b < 2c . See Figures 13 and 14. In the former case, (2c - b)/(a - b + c) < 0 , and thus 
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s2 2 -S, + (2c - b)/(a - b +c) holds. Hence (slope of player 1 'S isoprofit curve) 5 (slope of 
player 2's isoprofit curve), and outcomes are similar to the case of a - b + c  = 0. Stable sets 
are similar to those given in Figure 12. See Figure 13. The largest consistent set is OA'CB ' . 

In the latter case, S, i -S, + (2c - b)/(a - b +c) holds and thus (slope of player 1 'S 

isoprofit curve) 5 (slope of player 2's isoprofit curve) when sl 2 (2c -@/(a - b + c) . Stable 
sets are similar to those given in Figure 14. Differences are: (1) Monotone curves start from 
the point 0' instead of the origin 0. ;  (2) Stable sets containing B' or A' with coalitional moves 
are not two point but three point sets; the point 0' newly joined. The largest consistent set is 
0' A'CB' U {O} . Strategy pairs outside this region are all indirectly dominated by the point O', 
i.e., 

(S,, s2) = ((2c - b)/(a - b + c), (2c - b)/(a - b + c)) or by the origin 0. 

Figure 13 Stable sets in (2): the first case Figure 14 Stable sets in (2): the second case 

(3) a - b + c 0 : In this case the isoprofit curve is convex since d2s2 /& > 0 .  We 
divide this case into two subclasses depending on whether the line 
s2 = -S, + (2c - b)/(a -h +c) intersects the square OACB. If the line does not intersect the 

square, thus (2c - @/(a - b + c) > 2, or b > 2a, 
S2 
A then s2 >-S, +(2c-b)/(a-b+c) holds in 

every point in the square. Hence (slope of 
player 1 'S isoprofit curve)< (slope of player 2's 
- .  

isoprofit curve) in the square, and outcomes 
are similar to those in the case of a - b + c  = 0. 
Stable sets are similar to those given in Figure 
12. See Figure 15. The largest consistent set is 
OA'CB'" 

If b 2 2a , then (slope of player 1 'S 

isoprofit curve) 5 (slope of player 2 'S isoprofit 
curve) below the line 

Figure 15 Stable sets in (3): the first case s2 = -S, + (2c - b)/(a - b + c) , and (slope of 
player 1 'S isoprofit curve)> (slope of player 2's 

isoprofit curve) above the line s2 = -S, + (2c - b)/(a - b +c) . Thus any point on the line 
indirectly dominates all points above the line. Below the line s2 = -S, + (2c - b)/(a - b + c), 
outcomes are similar to the cases above. Stable sets are given in Figures 16 and 17. Figure 16 
(resp. Figure 17) depicts the case where the line S, = -S, + (2c - b)/(a - b +c) does not 
intersect (resp. intersects) the isoprofit curves through the origin. In both figures, stable sets 
are similar to those in previous figures. Differences are the following. (1) Monotone curves 
ends with the line s2 = -S, + (2c - b)/(a - b +c) . (2) Singleton stable sets are on the line 
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S, = -S, + (2c - b)/(a - b + c) . (3) In Figure 17, two point stable sets consist of the origin 0 
and A'" or B '", intersections of the line S, = -S, + (2c - b)/(a - b + c) and isoprofit curves 
through the origin. The largest consistent set is OA'CB'. 

Figure 16 Stable sets in (3): 
the second case 

Figure 17 Stable sets & (3): 
the third case 
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