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Abstract The secretary problem with uncertain selection, considered by Smith, is generalized to allow 
for the rejection probability to  be rank-dependent. That is, if an offer of employment is given to the j-th 
best applicant, she rejects it with probability q j ,  1 < j <, n (n  is the number of applicants to appear). 
The optimality equations can be derived with the objective of maximizing the probability of selecting the 
best applicant. Since giving general guidelines of the optimal policy is difficult, we focus our attention 
on the simplified problem, called the m-problem, where the probability sequence {g,; 1 <, j n} satisfies 
9m+l = qm+z = - . -  = qn,  0 < m < n - 1. The value m plays a role that regulates the difficulty of the 
problem (the 0-problem is the Smith problem). We solve the 1- and 2-problems explicitly in both the finite 
and the asymptotic cases. The optimal policy of the 1-problem is shown to be a threshold rule, i.e., it passes 
over some portion of the applicants and then makes an offer to relatively best applicants successively. As for 
the 2-problem, it can be shown that the optimal policy becomes a threshold rule if 92 > 03, while as n gets 
large there appears a time interval such that the optimal policy makes an offer alternately t o  relatively best 
applicants that appear on that interval if 92 < 93. We also present some numerical results for the 3-problem 
which demonstrate the complexity of the optimal policy. Our results give some affirmative evidences to the 
conjecture that the optimal policy remains a threshold rule so far as the sequence {g,; 1 5 j < n} satisfies 
the monotone condition g1 > g2 > > qn,  which reflects the real world in the sense that the better the 
applicant is, the most likely it seems that she refuses an offer with the larger probability. 

1. Introduction 
Before discussing our problems, we review briefly the Smith[6] problem. A set of n rankable 
applicants (1 being the best and n the worst) appears before us one at a time in random 
order with all n! permutations equally likely. Each time an applicant appears, we only 
observe the rank of the applicant relative to those preceding her and decide, based on the 
observed rank, whether to make an offer of selection to the current applicant or to pass over 
her and observe the next (if any). When an offer is given, the applicant accepts(rejects) it 
with a known fixed probability p(q = 1 -p), independent of the rank of the applicant and all 
else. If the applicant rejects an offer, we further observe the next. No recall of the previous 
applicants is allowed and the process continues until an offer is accepted(i.e., an applicant 
is selected) or the final stage is reached with no offer accepted. The objective is to find a 
policy that will maximize the probability of selecting the best overall. We shall abbreviate 
the event "selecting the best overall" to the single word success. 

In this paper, we generalize the Smith problem to allow the probability of acceptance 
(rejection) to be rank-dependent. That is, for instance, if an offer is given to the j-th best 
applicant, she accepts(rejects) it with probability pj(qi = 1 - p;), 1 < j < n, independent 
of all else. We assume 0 < qj < 1, unless otherwise specified and sometimes refer to the 
Smith problem as rank-independent problem for the sake of contrast. 
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In Section 2, we attempt to derive the optimality equations of our problems. When an 
applicant appears, the decision of either making an offer or not must be based not only 
on the relative rank of the current applicant but also on the sequence of the relative ranks 
of the applicants that refused an offer previously (if any), because in the rank-dependent 
case our knowledge about the true rank of the current applicant undergoes the Bayesian 
updating through these information. For any given sequence {qi ; 1 5 j < n}, the optimality 
equations are given by Eq.(2.7). These equations can be solved in principle recursively to 

optimal policy and the success probability, because by(i i ,  a , G )  is calculable from 
t us call an applicant a candidate for simplicity if she is best among those observed 

atively best applicant. Then Eq.(2.7) tells us that the optimal policy only 
to candidate(s) (this is intuitive but not a priori clear). 

mith[6] showed that, in the rank-independent case, the optimal policy falls under the 
category of the threshold rule, when we call a policy threshold rule or more specifically 
r-threshold rule if the policy passes over the first r - 1 applicants and then makes an offer 
successively to candidates that appear. However, giving general guidelines of the optimal 
policy seems difficult in the rank-dependent case. To have some meaningful results, we 
must restrict ourselves to some class of the sequences. Let us now define the problem as the 
m-problem if the sequence -jqj; 1 < j < n}  satisfies qm+i = qm+2 = = qn, 0 <, m < n - 1. 
We can regard the value m as a parameter that regulates the difficulty of the problem (as 
m gets larger, the problem becomes harder). As shown in Section 3, this restriction brings 
considerable simplification to the corresponding optimality equations. The 0-problem is, 
of course, the rank-independent problem tre ed by Smith[6]. The 1-problem is shown to 
be essentially equivalent to the 0-problem. r main concerns in this paper are to solve 
the 2-~roblem. In this problem, the form of the optimal policy differs depending on which 
of the two values qs and q3 (= q4 = a a = ) is larger. It can be shown that the optimal 
policy becomes a threshold rule if qs > 03 hile, when n is sufficiently large, there exists 

e optimal policy makes an offer alt ately to candidates that 
< g3 (see Theorem 3 .5 ) .  In Section , we solve the %problem 

numerically and observe that the optimal policy becomes very complicated for some set of 
values of q-^, q3 and q4 (= 5 = m - = qn). The m-problems for m > 4 are left for a future 
study. 

From the practical point of view, it is very important to consider the monotone sequence, 

i.e., qi > g'2 > - a > qn7 because, in the real world, the better the applicant is, the most 
likely it seems that she refuses an offer with the larger probability. In the light of the 
computational results from the 3-~roblem, in addition to the analytical results from the 0-, 1- 
and 2-problems, we'd like to make the following conjecture : If the sequence {gj; 1 <, j < n} 
satisfies the condition q1 > q2 2 2 qrn then the optimal policy becomes a threshold rule. 
The authours believe that this conjecture is a challenging problem. 

For related works with uncertain selection, see ~etruccelli[4] ,Tamaki[7], [g] and McNa- 
mara and Collins[2] (treated in the game theoretic approach). For a history and review of 
the secretary problem, the reader is referred to Ferguson[l] and Samuels[5]. 

2. Optimality Equations 
Unless otherwise specified, lower case letters will denote integers. Let No = (f> and Ny = 
{l, - - - , r}, l < r < n. Each time an applicant appears, we must decide either to make 
an offer (action a i )  or make no offer (action a2), based on the number of the applicants 
observed so far and the ranks of both the current applicant and the previous applicants 
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that rejected an offer (if any), relative to these observations. After the ( r  - l)-st decision, 
suppose that the ranks of the applicants that rejected an offer (if any) relative to the first 
r - 1 constitute the set (il, , ik) C Nr-1. This set (il ,  , ik) is referred to as rejection 
history and assumed to be arranged in ascending order, i.e., il < < ik. If r - 1 = n, 
the trial terminates with no applicant selected and leads to a failure; otherwise the relative 
rank Xr ? Nr of the r-th applicant is observed. The probability law of Xr depends on 
the rejection history and hence we denote by pr(i; il, , ik) the conditional probability of 
Xr = i given the rejection history (ll,  , ik) at time r - 1. (Observe that, for example, 
pr (i; h - , ik) = l/^ for the rank-independent case). Assume now that the rejection history 
is (ll, . , ik) and Xr = i has just been observed. If the r-th decision is 01, then the process 
terminates if the offer is accepted; otherwise the process continues updating (il , , ik) to 
i 1 ,  , ik)*i, where 

If the r-th decision is a2, then the process continues updating (?l, , G) to (?l, , Qi, 
where 

Unless the process terminates thereby, the subsequent applicant with relative rank Xr+1 is 
observed. Xr+1 will take value j with p r ~ b a b i l i t y p ~ + ~ ( j ;  (ll, - , ik)*i) or ~ ~ + ~ ( j ;  (L - , 
depending on whether the decision taken at time r is al or a2. If no rejection has occurred 
so far, rejection history (il , , i f:) is to be interpreted as an empty set 4. 

Formally then, we have a finite horizon Markov decision process with Sr = {(z; i\ , . , ik) : 

i E Nr, (?l, - - , i-k} C as the collection of states at time r ; K = {al, a2} as the action 
space ; and transition probabilities pr(< h, , ik), 1 < r < n as described above. Denote by 
11 the set of (deterministic, Markov) policies T T ( T T ~ ,  , 7rn), where TTr : Sr -+ K, 1 <: r <: n. 
The value of the process is U* = supTgn ETIIs], where Is is the indicator function of the 
success event S, and ET is the expectation operator under policy TT. TT G II is optimal if 
U* = ETIIs]. IIo will denote the set of optimal policies. 

Let sr  (i; ?l, , ik)(cr(i; h, , h)) be the probability of success when we take action a1 
(a2) in state (i; ?l ,  , G) G Sr and proceed optimally thereafter. Then max {sr (i; i l ,  - - , ik), 
cr (i; il ,  - , ik)} represents the maximum probability of success given that the process is in 
state (i; il ,  , ik) G Sr. Write, for 0 < r - 1 < n, 

with un(il, , ik) 0. Then v* = uo(+) = ET*[Is] for the policy TT* E II such that 

for (i; ? l , .  , ik)  ? Sr, 1 < r < n; thus TT* G no. 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



222 M. Tamaki & K. Ohno 

To make Eq.(2.3) work as a recursive formula, we must describe sr(i; i l ,  ,G) and 
cT(i; G, * . a , ik) in terms of vr(.) and derive the calculable form for pr(i; il ,  . , ik). To do so, 
we introduce some quantities. Let ar(il,  - , ik) for , ik) C Nr7 1 5 r 5 n be defined as 
the probability that all offers will be rejected, provided that k offers were made respectively 
to il-th best, a -, and to h-th best among the first r applicants. More specifically, if we 
denote by C(r,  i-, n), 1 < i 5 r, l < r 5 n the i-th best among the first r applicants when 
the total number of applicants is n and denote by A(r, i; n) the absolute rank of C(r, i; n), 
i.e., A(r, i; n) = j if C(r7 I; n) is C(n,  j\ n), then we can write 

where E represents the expectation with respect to random variables {A(r, i~ n),  1 < t < k}. 
For an empty set we assume a, (4) = 1. Whereas ar (il, - m a , ik)  is defined for the entire pop- 
ulation of size n having sequence l < j < n}, similar quantity br(il, - - - ,  ik) can be 
defined for the subpopulation of size n - 1, which is constructed by taking out the best 
applicant from the entire population. Thus, for (il,  - + , ik)  C 1 < r < n - 1 

Note that, for this subpopulation, the j-th best rejects an offer with probability qj+l, l < 
j < n - 1 .  

We now have the following lemmas. 

Lemma 2.1 For (i; i l ,  - - .  , ik)  E Sr, l 5 r 5 n, 

Proof. See Appendix A.1. 

Lemma 2.2 For ( z ; & , - o - , i k )  E Sr, 1 5 r < n, 

s r ( i ; i l , - -  , i k )  

Proof. See Appendix A.2. 

Now define 
. , i t )  = <lr(i1, " .  , i k )v r (~ lq  " '  ,Ãˆk)/p1 

Then applying Lemmas 2.1 and 2.2 to Eq.(2.3), we have the following form of the optimality 
equation 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



Secretary Problem with Uncertain Selection 223 

with Va(il , ik) 0. Eq4(2.6) immediately shows that the optimal policy is independent 
of p1 and so is V* = G(+), which is interpreted as the probabiEty of making an offer to 
the best applicant. As a performance measure we use V* instead of v*(= plV*) to save 
parameter. Eq.(2.6) can be further simpliged to 

because the optimal policy is shown to make an offer only to candidates (this property of 
the optimal policy is intuitive but not a priori clear). To prove this, it suEces to show that 
K(il, m , ik) does not increase with additional rejection. Before showing this, we examine 
some properties of ar(il, - , ik) and bp(il + , ik). 

Lemma 2.3 ar(il, , ik) and br(il, . ? ik) have the following properties (properties (ii) 
and (iii) are only described in terms of ar(il,  , ik), because br(il, , ik) has apparently 
the same nature as ap(il, g , ik) from its construction). 

(i) ar(il> - - ik)and bp(il, . , ik) satisfy the following recursive relations respectively 

k with the boundary condition an (il , , ik) = &.-l qit. 

k with the boundary condition (il - , ik) = ntZl qit+l. 

(ii) ar(il, + , ik) does not increase with an additional rejection. That is, for (i17 , ik) C 
Nr-x and i E Nr, 

ar((i1, - . ik)"i) 2 ar.((il * , ik)*i)' 

(iii) Assume that {qji l 5 j 5 n]  be a non-increasing(n0n-decreasing) sequence of j .  Then 

(a) ur(il, * ,  ik) is non-incrmsing(non-decreasing) in &(l 5 t 5 k). 
(b) ar(i1 - ? ik) is non-decreasing(n0n-increasing) in F .  

Praaf. See Appendix A.3. 

Remarks (2.1) 
l. ap(i1? - ik) c m  be given in a closed form for a particular sequence {qj;  l 5 j 5 n]* 

For example, if qj E q, j 2 2, then 
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2 If {qj ; l 5 j 5 n)  is a non-increasing(n0n-decreasing ) sequence of j ,  then pr (i; il , - , ik) 
is non-decreasing(non-increasing) in i, which agrees with our intuition. 

3. To solve Eq. (2*7) recursively, br (il , a a a ik) must be at hand, (2.9) gives an efficient 
way for calculating bp (il , . - , ik). 

Eq.(2=7) is now an imedia te  consequence of the fogowing lemma which states that the 
optimal value function K(i17 - ik) inherits some properties of ar(ily Q ik) (or bv(il . ik)). 

Lemma 2*4 
(i) 'b$(il, a ik) does not increase with an additional rejection* That is, for (il, , ik) C 

and i E Nr7 
K ( ( i l , - . -  ,ik)'i) 2 &((i17.-- , ik)*i) .  (2.10) 

(ii) Assume that {gi; 2 5 j 5 n ]  be a 110n-increasing(n0n-decreming) sequence of j .  Then 
K ( i l  - ik) is no~l-increasing(non-decreasi~g) in i f (  1 5 t 5 k). 

Proof. See Appendix A.4. 

We conclude this section with a simple example. 

EXAMPLE (n=4) 
A bit of calculation from Eq.(2.7) shows that, when n=4, the optimal policy becomes a 
threshold rule (more specifically l- or 2-threshold rule) for any sequence {qj ;  1 5 j 5 4) .  

et q4 be fixed aad denote by Qi(q4) the set of values (q3? q2) for which the optimal policy 
remains ;-threshold rule$ = 2. Then, the entire set {(q3? q2) : 0 < G < 17j  = 2,3] 
is partitioned into Qx(q4) and Q2(q4) and the indiEerence curve qs = j(q3 1 q4)(bounday 
between Ql(q4) and Q2(g4)) is given by 

Moreover we have 

3. Optimal Policy of the m-problem 
In this section, we restrict ourselves to the m-problem,0 5 m 5 n - 1. To make explicit 
the dependence on the same probability q(= q m + ~  = q m + ~  = a g = qfi)7 the m-problem is 
sometimes written as the (m7 q)-problem* Let us start with the following lemmas? which 
is intuitively dear from the definitions of ar(ilT - m ik)  and br(ilt - + , ik) (The proof can be 
made rigorous by inductio~ on T- from Lemma 2.3(i)). 

Lemma 3.1 For the (m, g)-problem(m 2 l ) ,  we have the foHowings. 
(i) If ik 2 m -I- 1 (k 2 2)> then 
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( i )  If ik > m (k > 2), then 

Lemma 2.2 shows that, in state (1; h,. , h) E SF, the current candidate is judged to 
be the overall best with probability 

For the m-problem, this probability is reduced, from Lemma 3.1, to 

which implies that, concerning this probability, rejection history (ii, , ik) ,  ik > m, is 
identified with (4) or (il, , it) depending on whether > m, k > 1 or il < m 5 ik, k > 2, 
where l = max{t : < m - l ,  l < t < k}. This fact suggests that, concerning the optimal 
decision to be made, rejection history (h, , ik), ik > ml is also identified with (4) or 
(il , , h )  depending on whether i\ > m, k > 1 or i\ < m < k > 2. The following lemma 
justifies this suggestion and brings consequent simplification of the optimality equation. 

Lemma 3.2 For the (m, q)-problem (m > l), we have for it > m(k > 2), 

where I = max{t : if <  ̂ m - 1,l < t 5 k}. When k = l ,  Vr(G) = qT$((f)),il > m. 

Proof. See Appendix B.I. 

From Lemma 3.2, the element in the rejection history becomes immaterial if it turns out 
to be none of m bests. Thus, to describe the evolution of the process, it suffices to consider 
only 2 m 1  basic rejection histories (4), (il) with 1 < il 5 m - 1,and (il, .  , ? l )  with G < 
m - 1.1 > 2(note that, when m = 1, Lemma 3.2 states that K(il ,  , ik) = Q^K(4), k 2 1 
and the only basic rejection history is (4)). Table 1 gives a list of the basic rejection histories 
for m=l,2,3 and 4. Figure 1 illustrates the transition of the basic rejection history for m=2 

Table 1 
List of the basic rejection histories for m=l, 2, 3 and 4. 

m basic re.jection histories 
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(a) 2-pro blem (b) 3-problem 

Figure 1 
Transition diagram of the basic rejection histories for the 2-problem and the 3-problem : 

real (dotted) line corresponds to making an offer (no offer) 

and 3 respectively. Though, for m 2 2, the optimality equations corresponding to the basic 
rejection histories (4, (ll),  with 1 <, Il  < m - 1 and (il, , I;) with i\ < m - 1, l > 2, are 
covered by Eq.(2.7), those corresponding to (m - 1) and (Il ,  - , i;) with il = m - 1,1 > 2 
are given, from Lemma 3.2, as follows : 

When m = 1, the unique optimality equation corresponding to (4) is given by 

which is immediate from Eq.(2.7) combined with K(1) = (:[K(+) given in Lemma 3.2. 
The following lemma gives the differential form of Eq.(2.7), which can be used to derive 

the asymptotic solution of the problem. 

Lemma 3.3 Let n  and r tend to infinity with r / n  = X ,  then, if K ( & - - .  , I k )  converges to 
V(x; il , , i t )  , then V(x; il , . - m , h) satisfies the following differential equation(differentia1 
forms corresponding to Eqs. (3.1) - (3.3) can be obtained similarly) ,where a* = max{a, 0). 
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where 

Proof. We give here an intuitive derivation (see Mucci[3] for more detail). (3.5) is imrne- 
diate from (A.3), combined with (A. l), because, for fixed k and I, 

Dividing both 
in such a way 

the left and the right sides of this equation by 1/n and then letting TO,  r Ã‘ oo 
that r / n  --+ X, we obtain (3.4) if we put 

3.1. 1-problem 
The only basic rejection history is (4) and the corresponding optimality equation is given by 
Eq.(3.3), which is essentially the same as is derived by Srnith[6] (compare this with Eq.(9) 
in page 622) and can be solved to yield 

Lemma 3.4 The optimal policy of the (1, (^-problem is ro-threshold rule, where 

The optimal value is given by 

The asymptotic results are as follows. 

ro l E lim - = p;, lim V* = p i .  
n+oo n, n+oo 

3.2. 2-problem 
The basic rejection histories of the 2-problem are (4) and ( l ) ,  and the corresponding opti- 
mality equations are given by 
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These equations can be solved and then summarized as follows. 

Theorem 3.5 The (2, ̂ -problem is distinguished into two cases depending on whether 
<h 2 q or 92 q. 

Case 1 : q2 > q 

(i) Form of the optimal policy. The optimal policy is ro-threshold rule. 

(ii) Formula for critical number. ro is the smallest integer r such that 

where, for r < k, 

(iii) Probability of making an offer to the best. V* is given by 

(iv) Asymptotic formula for critical number. Let 6 = limn_).oo ro/n7 then F. is the unique 
root X of the equation 

(v) Asymptotic value of V*. Let V = limn+oo V*. then 

Case 2: q 2  < q. 

(i) Form of the optimal policy. The optimal policy can be described in terms of the two 
integers 7-1 and rg (l 5 rl < r2 < n) as follows: The optimal policy passes over the first rl - 1 
applicants. On time interval [ r l ,  r2 - l], the optimal policy makes an offer to candidates 
alternately, that is, it makes an offer to the first candidate; it then makes no offer to the 
second candidate; it then makes an offer to the third candidate, and so forth (when rl = r2,  
interval [ r 1  ri - l] shrinks). If no offer has been accepted by r2 - 1, the optimal policy then 
makes an offer successively to each candidate that appears. 

(ii) Formulae for critical numbers. r2 is the smallest integer r such that 
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Define, for given 7-2, 

where 

Then if 

rl is the smallest integer r (<  r2 - 1) such that 

Otherwise = r2. 

(iii) Probability of making an offer to the best. 

(iv) Asymptotic formulae for critical numbers. Let F; = limn+oo rJn, i = 1,2. Then f2 is 
the unique root X of the equation 

and fl is given by 

where 

(v) Asymptotic value of V*. Let V = limn+oo V*, then 

Proof. see Appendix B.2. 

To have an intuitive feeling to the form of the optimal policies described in Theorem 
3.5, it might be helpful to consider two extreme cases, i.e., q2 = 1 and q = 0 as Case 1, and 
q 2  = 0 and q = 1 as Case 2. Imagine a situation where a candidate(referred to as A) rejected 
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an offer and the next candidate(referred to as B) has just arrived. In the former case, B  
turns out to be the very best at this instant and consequently the optimal policy makes an 
offer to B, which implies that the optimal policy is a threshold rule. In the latter case, A 
turns out to be neither the best nor the second best at this instant and hence, if time is 
not matured, i.e., if the arrival time of B  is not too late, B  is judged to be non-best with 
large probability and possibly passed by. This is why the optimal policy is not necessarily 
a threshold rule in the latter case. 

Tables 2 and 3 respectively give the numerical values of ro and V* (in Case 1 )  and r l ,  7-2 

and V* (in Case 2) for some values of n and (qa Q.) .  Table 4 contains the numerical values 

Table 2 
ro and V* for some values of n and (q2, q)  in Case 1 

( upper is ro and lower is V* ) 

Table 3 
r l ,  r2 and V* for some values of n and (q2,  q) in Case 2 

( upper is r l ,  middle is 7-2 and lower is V* ) 

Table 4 
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FO, Fly G and v for some pairs of (02, q) 
Case 1 ($2 >. q) : upper is F. and lower is V .  

Case 2 (q2 < q )  : upper is Fl,rniddle is F2 and lower is V^. 

of 6 and V (in Case 1) and Fl, 6 and V (in Case 2) simultaneously, letting q2 and q run 
from 0.1 to 0.9 by 0.2. Some properties suggested from this table are in order. 

(i) TO and Fl are decreasing both in q2 and q. 

(ii) F2 is decreasing in q2, but not necessarily decreasing in q. 

(iii) V is increasing both in q2 and q. 

( v )  Whereas TQ and Fi are both no greater than e l ,  f-2 can be greater than e l .  

3.3. %problem 
Here we give some computational results for the 3-problem because solving this problem 
analytically seems difficult. The optimality equations of the (3, g)-problem are given as 
follows, each corresponding to the basic rejection histories (+), (l), (2) and (1, 2). 
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Then, from (3.18)-(3.21), G(<^), G(1), G(2) and G(l,2) represent the optimal stopping re- 
gions, each corresponding to the basic rejection histories (<^) ,(l) ,(2) and (1,2). 

We examined g3=729 cases letting qz, q3 and q respectively run from 0.1 to 0.9 by 0.1 
with n=100 fixed, and S2=25 cases letting q2 and q respectively run from 0.1 to 0.9 by 
0.2 with n=1000 and q=0.3 fixed(see Table 5 for the latter). Computational experiences 
show that, in each case, the optimal policy is time isotone, that is, there exist four integers 
s ( 4 )  , s (l), S (2) and s(192) such that 

G(<^)={r : r ;>s (<W,  G ( l ) = { r : r ; > s ( l ) }  
G ( 2 ) = { r : r > s ( 2 ) } ,  G(192)={r : r>s (1 ,2 )} .  

Table 5 
The type of the optimal policy and the critical numbers for the 3-problem 

with re=10000 and q=0.3 fixed. For each type, only the effective numbers are given 

Table 5 presents t 
s(<^)=275 s(<^)=264 s(<^)=253 s(<^)=243 s(<^)=235 

e numerical values of S(<^), s(1) and s(1,2) and the types of the opti- 
mal policy for 5^25 cases when n=1000 and q=0.3 are fixed. The optimal policies are 
distinguished into four types Th T2, T3 and T4(T4 is further distinguished into T 4 ~  , T 4 ~  , T4c 
and T 4 ~ )  as indicated below, depending on the magnitude of the values S(<^), s(l), s(2), and 
5(17 2) 

Ti : S(<^) < s(2) < s(1) < s(1,2) 

T2 : S(<^) < s(1) < s(2) < s( l ,2)  

73 : 4 2 )  5 ~ ( 4 )  < 4 2 )  5 41) 

T 4 ~  : ~ ( 1 , 2 )  < ~ ( 2 )  < ~ ( 1 )  < S(<^) 

T 4 ~  : 5(1,2) < s(1) < ~ ( 2 )  < S(<^) 

T4c : s(1) < s ( l , 2 )  < S(<^) < s(2) 
T 4 ~  : ~ ( 1 )  = ~ ( 1 ~ 2 )  = ~ ( 2 ) .  

It is easy to see that, from Figure 1 (b), if S(<^) ;> max{s(l), s(l, 2)}, then the optimal policy 
becomes S(<^)-threshod rule. Thus T4 represents a threshold rule. However it is not easy to 
state Tl verbally. For example, consider the behavior of Ti on time interval [S(+), s(2) - l]. 
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Let t l  , t2 , be the arrival times of the candidates on that interval. At time t17 Tl makes an 

offer to the first candidate because the basic rejection history is now (4) and tl >, S(+). If 
this offer is rejected, then the basic rejection history changes from (4) to (1) (see Figure l(&)) 
and Tl makes no offer to the second candidate due to t2 < s(1). The basic rejection history 
then changes from (1) to (2) and Tl makes no offer to the third candidate due to t3 < s(2), 
and the basic rejection history again moves back to (4) from (2). Thus Tl restarts over again 
with basic rejection history (4) from time t3 onward, and so Tl makes an offer to the fourth 
candidate and make no offer to the fifth and sixth candidates, and so forth. To describe the 
cyclic property of the optimal policy on each interval, it is convenient to introduce a cyclic 
rule Rn,,n7 m, n 2 0, which makes an offer to the first m candidates successively and then 
makes no offer to the next n candidates, and then restarts over again so far as a candidate 
appears. Then, from the above, Tl behaves like a RlY2 on [S((?'>), s(2) - l].  The behavior of 
Tl on other intervals can be also examined and summarized as follows : 

RH and R^ in (3.22) represent a modified and respectively, i.e., R',, makes 

no offer to the first candidate and then follows and R& makes an offer to the first 
candidate and makes no offer to the second candidate and then follows R21. Then it is easy 
to observe that if the process reaches [s(2), s(1) - l] with basic rejection history (4) or (2) 
(basic rejection history (l)), then Tl behaves like a Rl1 (R' on this interval. Similarly Tl 
behaves like a R2,1 or R; according to whether the process reaches [s(l),  s(1, 2) - l] with 
basic rejection history (4) or (2), or basic rejection history (1). T2 and T3 are also described 
in terms of cyclic rules. 

Table 5 shows that the optimal policy is a threshold rule as long as 92 2 93 > q. From 
these numerical results and the analytical results of the 0-,l- and 2- problems, we conclude 

this paper with a conjecture " If the sequence {qj; 1 < j 5 n} satisfies ql > q2 2 a > qn7 
then the optimal policy remains a threshold rule7'. 

APPENDIX A 
A.1 Proof of Lemma 2. 1 
Let p(j17 J2, , jk; n I i l ,  i2, , ik; r) be the joint probability that il-th best, i2-th best,. -, 
and ik-th best among the first r applicants are respectively jl-th best, j2-th best,. -, and 
jk-th best among all n applicants, where (i17 i2 , , ik} C Nr and (jl, j2, , jk) C Nn. That 
IS, 

p(j17j27-",3k;n 1 i i 7 i 2 , - - -  ,it;?-) = P{A(r7il;n) = j l ,A(r7&;n) = j , , . - -  ,A(r , ik;n)  = j k } .  

Then, from the simple combinatorial argument 
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for ( j17  j 2 )  - ) j k )  â W r ( i l , & , * -  , i k ) ,  where Wr(i l ,&,- . -  , i k )  stands for the set of possible 

values ( j l 7 j 2 , .  - -  ,jk), i.e., W r ( & , i t , -  , i t )  = { ( j 1 1 j 2 ,  ,}kf : jl < h < < h , i S  5 js 5 
n - r  + i s ,  l < S <: k } .  We sometimes write Wr ( i l ,  i 2 ,  - - , i t ;  n )  to clarify the dependence on 
n. Notice that, since n! arrival orders are equally likely, arrival times of these k  applicants 
are irrelevant. 

From ( A . I ) ,  (2 .4)  and (2.5) can be respectively written as 

where summations with respect to ( j l ,  j 2 ,  . - , i k )  are taken over Wr (i l ,  i 2 ,  . , i k ;  n )  for ar ( i l ,  
Ã ˆ 2 , - -  , i k )  but over Wr(i1 , i2 , - - -  , i k ; n  - 1 )  for b r ( i l , i 2 , * . .  ,G). 

The following lemma presents some properties of p ( j l ,  j2 ,  
m , j k ;  n \ , i k ;  r )  that 

will be used later. 

Lemma A.1 

(ii) 

[ O t  - it).- ( 5 - 1  - it-l) 1 

=p(j l , j i ,"- ,A-l; .h - 11  i 1 7 i 2 , - - , i t - 1 ; i t  - l ) p ( j t , j t + l , - - - , j t ; n  I ' i , i t + l . . - , i k ; r )  

( 2  < t 5 k )  
(iii) p ( j 1 , j 2 ,  - , j k ;  n 1 ( i 1 9 i 2 ,  - , ik )Ol;  r )  

Proof. Straightforward from (A .1 ) .  
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Proof of Lemma 2.1 
Let p(jl, j2, ,jk; n 1 i l ,  i2, , it; r - 1) be the joint probability that il-th best, i2-th 
best,. -, and ik-th best among the first r - 1 applicants are respectively jl-th best, j2-th 
best, -, and jk-th best among all n applicants, provided that all offers given to these k 
applicants have been rejected. Then, by the Bayes formula, 

We easily see that the probability distribution of Xr,  given that ii-th best, h-th best,.. -, 
and ifc-th best among the first r - 1 applicants are respectively jl-th best, j2-th best ,- -, 
and jk-th best among all n, is given by 

Thus the result follows from (A.4), (A.5) and Lemma A.l(i), since pr(c G, &, , ik) is 
calculated through 

pr(i; ii,i2, - -  , i t )  = xx - -  -E P(Xr  = i 1 j1,j2, ,h)$( j l ,  j2, ,Jk;  n 1 i1,i2, , i t ;  r-l), 
31 32 3 k  

where summations with respect to (jii j2, i jk )  are taken over WrF1 (i\i & , ik). 

A.2 Proof of Lemma 2. 2 
The following lemma is concerned with another property of ar(il, , ik) and the proof is 
straightforward from Lemma A. l (ii). We write ar (il, , ik; n) to make explicit the depen- 
dence on n. 

Lemma A. 2 
For any s(2 < s < k), 

where summations with respect to (js, , jk) are taken over Wr(is, ,q. 
Proof of Lemma 2.2. 
We'll only derive sr  ( l ;  , ik)  for action al, since others can be obtained in a similar 
way. Suppose that we are in state ( l ;  il, , ik) E Sr. Then the probability that the 
true ranks of the applicants constituting the rejection history are ji , . , jk is given by 
fi(jl, - - ,Ik; n I (il,  , it)"!; r) (defined in (A.4)). On the other hand, if the true ranks of 
these k applicants are jl, ,h, action a1 and the subsequent optimal continuation leads 
to a success with probability 
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The first term corresponds to acceptance of the offer and the second term corresponds to 
rejection. Thus we have 

where summations with respect to (jl, , jk) are taken over Wr((i17 . , ik)O1). 
From Lemma A.1 (iii) and (A.3), the first term in the RHS of (A.6) can be reduced to 

The second term can be written, from Lemma A.2, as 

Substituting (A.7) and (A.8) into (A.6) yields the desired result. cr (i; i l ,  , ik) is self evi- 
dent. 

A. 3 Proof of Lemma 2. 3 
(i) is immediate from Lemma 2.1, since pr(i; i\i m m , ik) must be unity. 
(ii) is immediate from the definition of ar(i17 - - - , ik). 

(iii) We first consider the case where qj is non-increasing in j and show (a) by induction 
k on r .  For r = n, (a) is evident from an(il, - - ,G) = flt=l qif Assume that (a) holds for 

r. Then the result is immediate from (2.8) since each term of the right hand side, i.e., 
((il ,  - , ik)Oi), is non-increasing in ^(l < t < k) from the induction hypothesis. Because 

(a) implies that a,. (( i l ,  - , ik)Oi) < ar ((il, . , ik)Or) for 1 <:l < r ,  it follows that 

which proves (b). When qj is non-decreasing in j ,  all the inequalities involved in the above 
can be reversed. 

A. 4 Proof of Lemma2. 4 
(1) We show (2.10) by induction on r .  For r=n - 1, (2.10) is evident from the nature 
of bn-l(.)(Lemma 2.3(ii)) through Vn-l(&, - , ik) = bn-l(zl, a - - , &)In. Assume now that 
(2.10) holds for some r .  Then (2. 7) in fact holds from (2.6). Thus 
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l r  +- E [ K ( ( ( i l ,  - , ik)Oi)Oj) - K ( ( ( i l ,  , ik)*i)Oj)] 
J=2 

, ik)Oi) - br - l ( ( i l ,  cdots, i k ) * i ) }  
r  

- K ( ( ( i 1 ,  , ik)Ol)*(i + l ) ) } ]  

where the last equality follows from the easily verifiable fact that the rejection history 
( ( Ã ˆ i  - , ik)"i)Oj can be written as ( ( i l ,  , ik)Oj)"(i + 1 )  or ( ( ; l ,  , ik)O(j - 1))"' depend- 
ing on whether j <, i  or j  > i  ( " denotes either * or ') and the last inequality follows from 
the induction hypothesis and Lemma 2.3(ii). 

(ii) The proof is by induction on r ,  in the same manner as in Lemma 2.3(iii)(a). 

APPENDIX B 
B. 1 Proof of Lemma 3. 2 
We show by induction on r .  For r  = n - 1 ,  the assertion is immediate from Lemma 3.1(ii) 
through Vn- l ( i l ,  , i k )  = bn- l ( i l ,  - , i k ) / n .  We show the case i l  < m - 1 and il = m - 1, 
because other cases can be shown similarly. Assume now that the assertion holds for r .  
Then we have from (2 .7) ,  Lemma 3.1(ii) and the induction hypothesis 

where the last equality again follows from (2.7) and the induction hypothesis. 

B. 2 Proof of Theorem 3.5 
Let ICr K(+) - K ( 1 )  and define 
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Then, from (3.6) and (3.7), G($) and G(l)  represent the optimal stopping(offering) regions, 
each corresponding to the basic rejection histories (4) and (1). Thus if r 6 G(<^)(r 6 G(l)) ,  
the optimal policy makes an offer in state (1;#)((1;1)) at time r. 

We begin with the following lemma. 

Lemma B.1 
G(<^) and G(1) have the following properties. 
Case 1 : q2 >. q 

(i) r E G(<^) =+- r E G(1). 

(iii) Let 

Then, for r > s(l), 
@ G(<^) =  ̂ - 1 i G(^). 

Case 2 : q2 < q 

(i) r 6 G(1) =+ r E G(<^). 

(ii) r G(+) =+ r - 1 ft G(+). 

(iii) Let 

Then, for r > s((f)), 

r @ G(1) + r - l @ G(1). 

Proof. 
Case 1. 
(i) is immediate from (B.I), (B.2) and the fact that b T F l ( l )  2 q. 

(ii) Assume that r @ G(l ) ,  then r @ G(<^) from (i). Thus, from (3.6) and (3.7), 

Therefore, from (B.3) and (B.4), 

where the last inequality follows from the fact that Vr ( l )  2 q K  which comes from Lemma 
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2.4(ii) and Lemma 3.2. Considering that, from Lemma 2.3(iii) (b), Ml) is non-decreasing 
in r, we have from (B.5) and the assumption that r g G(1) that 

which proves r - 1 @ G(1). 
(iii) Assume that r G(+) for some r >: s(1). Then, from (3.6), 

r 
K-1 (4) = K(+), K, > -. (5.6) n 

On the other hand, from the definition of s(l) ,  we have r E G(1) which implies from (3.7) 
1 

K-l(1) = -br-l(l) + (l - E )  &(l) .  (5.7) 
n r 

Thus, from (B.6) and (B.7), 
1 P r - 1  

= K-l($) - Vr-l(1) = I<r - -by-l(l)  + -K(l)  > - (since br- l ( l )  < 1) 
n r n 

which implies r - 1 @ G(+). 

Case 2. 
(i) is immediate from (B.l), (B.2) and the fact that br-l ( l )  < q. 

(ii) Assume that r G(+), then r @ G(1) from (i). Thus, from (3.6) and (3.7), 

Therefore, from (B.8) and (B.9), 

which proves r - 1 G(+). 
(iii) Assume that r G(1) for some r 2 S(+). Then, from (3.7), 

(B. 10) 

On the other hand, from the definition of S(+), we have r E G(+) which implies from (3.6) 

r - 1  
- - + K(l)] + ~ l 4 . 0 .  K-l(+) = l [ r  r n  r 

Thus, from (B.12) and (B.10), 

1 r - 2  
> - n 1 + Ã‘Ã‘Ã‘br-l( (from (B.11)) 

q 

(from (2.9)) 
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which implies r - l @ G(l )  completing the proof. 

Lemma B.1 can be summarized as follows : There exist two integers S(+) and s(1) such 
that 

G($) = { r : s ( 4 ) 5 r 5 n }  
G(1) = {r : s(1) 5 r 5 n}, 

where s (4)  and s(1) are respectively defined as 

s (4)  = min 
n 

and satisfy 

S(+) 2 s(1) (Case l ) ,  S(+) 5 s(1) (Case 2). 

Differential forms corresponding to  (3.6) and (3.7) are given, from Lemma 3.3, by 

d l l 
--V(x; 4 )  = -V(x; 4 )  - - max{x + V(x; l ) ,  V(x; $11 dx X X 

d l l 
z v ( ~ ;  1 )  = -v (x ;  X l) - - X max{xb(x; l )  + ~ V ( X ;  l), ~ V ( X ;  + ) l 7  (B.17) 

where 
b(x; l )  = q2x + q(1 - X ) .  

We are now ready t o  prove Theorem 3. 5. 

Proof of Theorem 3.5 
Case I *  
(i) Let r~ = s(4).  Then7 from (B.15) and Figure l (a) ,  the optimal policy is ro-threshold 
rule. 

(ii) For r 2 r o ,  we have from (3.6) and (3.7) that 

Since 

r 
br(l) = - q2+ I - -  

n - 1  ( n r i ) q 7  

starting with the boundary condition Vn(l) = O,K(l) can be solved from (B.20) recursively 
t o  yield 

1 n-l k 

k=r 
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Substituting (B.21) into (B.19) and then solving (B.19), we have 

Thus (3.8) follows by substituting (B.21) and (B.22) into (B.13). 

(iii) (3.9) is obtained from (B.22) through V* = %(c)) = = Ko-1(4). 

(iv) For X 2 Fo, we have from (B. 16) and (B. 17) that 

These equations combined with (B.18) and V(1; 4) = V(1; l) = 0 are solved as follows after 
a bit of calculation. 

Thus (3.10) follows from (B.25) and (B.26) because F. can be defined from (B.13) as a 
unique root X of the equation V(x; 4) - V(x; l) = X. 

(v) (3. l l )  is immediate from (B .26) through v = V(O+; 4) = V(Fo; 4). 

Case 2. 
(i) Let r l  = S($) and 7-2 = s(1). Let r (>  rl) be the time when the first offer is made but 
rejected. Then at this moment the basic rejection history changes from (4) to (l)(see Figure 
l(a)) .  Thus if the next candidate appears prior to r2, the optimal policy makes no offer due 
to (B -15) and accordingly the basic rejection history changes from ( l )  to ($), i.e., we restart 
over again with the basic rejection history (4). Such change of the basic rejection history 
repeats itself as long as a candidate appears prior to r2. From time 7-2 onward, the optimal 
policy obviously makes an offer to each candidate successively. Thus the policy described 
in Theorem 3.5(i) turns out to be optimal. 

(ii) For r 2 r2, (B.19) and (B.20) also hold and hence K(1) and K(4)  are given by (B.21) 
and (B.22) respectively. Thus (3.12) follows by substituting (B.21) and (B.22) into (B.14). 
For r l  5 r < r2, (3.6) and (3.7) yield 

l l r - l  
K-l(4) = - + -K( l )  + 

n r r 

P T - l  = AQr + pr 
r - l  

Qr-l = 
q 

-pr + Qr r - l  
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through the transformation 

K(+) = n 
r 

%(l )  = -[Qr ?-l - 11. (B-30) 

From (B.27) and (B.281, Qr satisfies the 2nd order difference equation 

Substituting the assumed form Qr = Q?=r (l + a / j )  into (B.31) yields a = &d. This 
implies that the general solution to (B.31) can be expressed as 

where Al and A2 are constants that must be determined. 
Applying (B.32) to (B.28) yields 

Thus (3.13) is immediate from (B.32), (B.331, (B.29) and (B.30) since rl is defined as the 
smallest integer r such that Pr 5 Qr through (B.13). Al and A2 are determined by equating 
(B.29) and (B.30) with (B.22) and (B.21) respectively at r = 7-2 - l .  

(iii) (3.14) is obtained from (B -29) and (B.33) through V* = Vo(q5) = - = Kl - l(+). 

(iv) For X 2 F2, (B.23) and (B.24) also hold and hence V(x; l )  and V(x; 4) are given by 
(B.25) and (B.26) respectively. Thus (3.15) follows from (B.25), (B.26) and (B.18) because 
F2 can be defined from (B.14) as a unique root X of the equation 

X 
V(x; q5) - V(x; l )  = -b(x; l ) .  

q 

For Fl 5 X < F2, we have from (B.16) and (B.17) 
d l l 

-V(x; 4) - -V(x; q5) + [l + -V(x; l)] = 0 dx X X 

which can be transformed into 

through 

V(x; q5) = xP(x) 

V($; l )  = x[Q(x) - l]. 

From (B.34) and (B.351, Q($) satisfies 
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which is an Euler-type differential equation and is solved to yield 

where Cl and C2 are constants to be determined. 
Applying (B.38) to (B.35) yields 

Thus (3.16) is immediate from (B.381, (B.39), (B.36) and (B.37) since fl is defined as a 
unique root X of the equation 

through (B. 13). 
Cl and C2 are determined by equating (B.36) and (B.37) with (B.26) and (B.25) respec- 

tively at X = 75. 
(v) (3.17) is immediate from (B.36) and (B.40) through V = V(f1; 4) = F1 P(fi) = fiQ(F1)- 
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