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Abstract In this paper, we investigate a two-person zero-sum game with fractional loss function, which 
we call the two-person zero-sum fractional game. We are interested in a game value and a saddle point of 
the two-person zero-sum game and observe that they exist under various conditions. But, in many cases, 
it seems to be difficult to  search directly for a game value and a saddle point of the fractional game. Thus, 
we study the existence and the properties of a game value and a saddle point for the game with the loss 
function including a parameter, which we call the two-person zero-sum parametric game. We show that, 
under various conditions, a game value and a saddle point of the parametric game with a special parameter 
are those of the fractional game. 

1. Introduction 
Recently, many concepts and terms about game theory have been introduced and have 
been investigated by many authors. Both individual stability and collective stability have 
been studied in practical game problems. In view of individual stability in two-person 
game, concepts of a game value and a saddle point in the two-person zero-sum game were 
introduced. Then, we are interested in a saddle point of the two-person zero-sum game, and 
the existence of a saddle point has been actively investigated under various conditions. We 
often observe two-person zero-sum games with fractional loss function in many economic 
problems. However, as far as we know, we think that there are few papers which treat such 
games. 

In this paper, we study the existence and some properties of a saddle point for the two- 
person zero-sum game with fractional loss function, which we call the two-person zero-sum 
fractional game. However, in many cases, it seems to be difficult to search directly for a 
saddle point of the fractional game. Because, even if two functions are convex or concave, 
the loss function constructing by fractional expression of them is not necessarily convex 
or concave. Thus, we consider a two-person zero-sum game with loss function including a 
parameter, which we call the two-person zero-sum parametric game. We study the existence 
and properties of a saddle point for the parametric game. For the analysis of the parametric 
game, the mini-max theorem in convex analysis plays an important role. Then, we show that 
under various conditions, a saddle point of the parametric game with a special parameter 
is that of the fractional game. Moreover, using a game value of the game with a special 
parameter with respect to E > 0, we show that there exists an &-saddle point of the fractional 
game. 

This paper is organized in the following way. In Section 2, we formulate a two-person 
zero-sum parametric game and characterize a game value and a saddle point of the paramet- 
ric game. Section 3 is the main part of this paper. Associated with the results of Section 2, 
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we discuss relations between the two-person zero-sum parametric game and the two-person 
zero-sum fractional game. Moreover, we show that there exists an &-saddle point of the 
fractional game. 

2. A Two-Person Zero-Sum Parametric Game 
We begin by describing a two-person zero-sum parametric game (GPe) by the following 
strategic (or normal) form: 

(X, y, /,g, 09 Fe), 
where 

1. X is a subset of a Banach space E, which is called the strategy set of player 1, 
2. Y is a subset of a Banach space E, which is called the strategy set of player 2, 
3. / : X  X Y --+ R and g :  X X Y -+ R+, where R+ = (O,oo)? 
4. 0 is a real number, which is called a parameter of the game, 
5. Fe = /-Og : X X Y -+ R, that is, for all (X, Y)  6 X X Y, Fe(x, y) = / (X ,  y) -Og(x, y), 

is a loss function of player 1 and -Fg ( X ,  y) is a loss function of player 2. 

In general, Fe = infxgx supygy Fg(x, y) is called the minimal worst loss of player 1 and 
F_Q = supygy infxgx ̂ (X,  y) is called the maximal worst gain of player 2. Further, we call 
the duality gap the interval [E@, Fe]. 
Definition 2.1 The two-person zero-sum game (GPe) has a game value ( in  short, a 
value), if 

Fe =L = F, 

and this common value F; is called the game value ( in  short, the value) of the game (GPo). 

Definition 2.2 A strategy y* E Y is said to be a max-inf of the game (GPe) if 

inf Fe (X,  y*) = inf sup Fe(x9 y) 
xâ‚ xEX y â ‚  

and a strategy X* E X is said to be a mini-sup of the game (GPe) if 

sup Fe(x*, y) = sup inf Fe(x, Y ) .  
Yâ‚ y â‚ ~ â ‚  

Definition 2.3 A pair of strategies, (X*, y*) E X X Y, is said to be a saddle point of the 
game (GPe) if 

inf Fs(x, y*) = Fe(x*, y*) = sup Fe(x*? y ) .  
xex YEY 

Then, the following fundamental result is known from J.-P. Aubin [l], Chapter 6. 

Proposition 2.1 A pair of strategies, (X*, y*), is a saddle point of the game (GPe) if and 
only if X* and y* are a mini-sup and a max-inf of the game (GPe), respectively. 

Lemma 2.1 Let X and Y be subsets of a Banach space E and let X be a compact convex 
set. Suppose that a function y : X X Y -+ R satisfies the following conditions: 

(1) y ( x ,  y) is lower semi-continuous and convex with respect to X for all y 6 Y ; 
(2) y(x, y) is concave with respect t o  y for all X E X .  
Then, there exists X* E X ,  which satisfies 

sup min p(x, y) = SUP ~ ( x * ,  y) = m i n s u ~  Y(X,  Y) ,  
?,â‚ x g x  Y ( E Y  xEX ygY 
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that is, X* is a mini-sup of the game. 

The proof of this lemma is shown by Ky Fan's system theorem. See J.-P. Aubin [l, 21, 
and K. Fan [5] in detail. 

Lemma 2.2 Let X and Y be subsets of a Banach space E and let Y be a compact convex 
set. Suppose that a function p : X X Y -+ R satisfies the following conditions: 

(1) p(x, y) is upper semi-continuous and concave with respect to y for all X G X ; 
(2) p(x, y) is convex with respect to X for all y G Y .  
Then, there exists y* G Y ,  which satisfies 

max inf p(x, y) = inf p(x, y*) = inf maxp(x, Y) ,  
yâ‚ xex xâ‚ xâ‚ Yâ‚ 

that is, y* is a max-inf of the game. 

Corollary 2.1 Let X and Y be compact convex subsets in a Banach space E .  Suppose 
that a function p : X X Y -+ R satisfies the following conditions: 

(1) y(x, y) is lower semi-continuous and convex with respect to X for all y G Y ;  
(2) y(x, y) is upper semi-continuous and concave with respect to y for all X G X .  
Then, there exists a saddle point (X*, y*) G X X Y of the game. 

Since there exist a mini-sup and a max-inf of the game under the conditions, the proof 
is given by Proposition 2.1. 

We have the following minimax theorems and its corollaries for the game (GPe). 

Theorem 2.1 Suppose that Y is a compact convex set and that functions f and g satisfy 
the following conditions: 

(1) f ( X ,  y) is convex with respect to X for all y G Y ; 
(2) f ( X ,  y) is upper semi-continuous and concave with respect to y for all X G X ; 
(3) g(x, y) is concave with respect to X for all y G Y ; 
(4) g(x,y) is lower semi-continuous and convex with respect to y for all X C X .  
Then, for all 0 > 0, there exists y* G Y such that 

- 
Fe = & = inf Fe(x,y*), 

X â‚ 

that is, y* is a max-inf of the game (GPe). 

Proof. Since 6 is non-negative, from (2) and (4) in the theorem, it follows that the function 
Fe($, y) is upper semi-continuous and concave with respect to y for all X G X. Similarly, 
from (1) and (3) in the theorem, we get that the function Fg(x, y) is convex with respect to 
X for all y G Y. Thus, Lemma 2.2 shows that Fe = & and that there exists y* G Y which 
is a max-inf of the game (GPe). 

Corollary 2.2 Suppose that X and Y are compact convex sets and that functions f and 
g satisfy the following conditions: 

(1) f (X,  y) is lower semi-continuous and convex with respect to X for all y E Y ; 
(2) f (X, y )  is upper semi-continuous and concave with respect to y for all X G X ; 
(3) g(x, y) is upper semi-continuous and concave with respect to X for all y G Y ; 
(4) g(x, y) is lower semi-continuous and convex with respect to y for all X ? X .  
Then, for all 0 >.0, there exists a saddle point (X*, y*) G X X Y of the game (GPO), 

From Theorem 2.1, there exist a mini-sup X* and a max-inf y* of the game (GPO). Thus, 
the proof of the corollary is easily given. 
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3. A Two-Person Zero-Sum Fractional Game 
We define a two-person zero-sum game with fractional loss function (GP)  as follows: 

where X and Y are subsets of a Banach space E, which are called the strategy sets of player 

1 and player 2, respectively. Then, using functions f : X X Y -+ R and g : X X Y -+ R+, 
a loss function G of player 1 is given by G = f /g ,  that is, for all (X, y) E X X Y 

and -G(x7 y) is a loss function of player 2. Further, two parameters 0 and Q_ are given by 

- 
0 := inf sup G(x, y) and Q_ := sup inf G(x, y) 

x^X y^Y y ̂ Y xex 

In general, it holds that 
~ < e  - 

and the interval [@, ,6\ is called "duality gap" of the game (GP). 

Definition 3.1 The game (GP)  has a value i f  

Further, y* G Y is said to be a max-inf of the game (GP) if 

inf G(x, y*) = inf sup G(x , y) = G. 
xâ‚ xex y â ‚  

Similarly, X* G X is said to be a mini-sup of the game (GP) if 

sup G(x*, y) = sup inf G(x, y) = @. 
Y^Y ycY ^X 

From now, we will study some relations between the game (GPe) and the game (GP).  
Using the parameter G given by (3.3), we consider the game (GP,) with the loss function 
such as 

F , = f - g g :  X x Y - + R ,  (3-6) 

that is, for each (x,y) G X X Y, F7(x,y) = f (x ,y)  - Sg(x,y). 
Then, in order to show the main theorems, we observe properties of Fe and .& given - 

by Fe = infzpx s u p c y  Fe(x7 y) and /^ = supypy infxgx Fe(x, y). We shall mention the 
following lemmas. 

Lemma 3.1 E has the following properties. 

(a) Fe is non-increasing with respect to 0. 
(b) I ~ F ,  < 0, it holds that 0 2 9. 
(C) If Fe > 0,  it holds that 0 <Ã§ 
(d) If 0 > 9, it holds that F, < 0 .  
(e) If 0 < 9, it holds that Fe 2 0. 

Furthermore, under the conditions that Y is compact and that f (X ,  y) and g(x, y) are 
continuous with respect to y for all X E X ,  it holds that 
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(f) Fe < 0 holds if and only if 0 > 9 holds, 
(g) F, > 0 holds. 

Proof. (a) If < 02, then we get O1g < Q2g on X X Y, because g is positive on X X Y. 
Thus, it follows that f (X, y) - 0^g(x, y) > f (X, y) - O^g(x, y) for all (X, Y)  G X X y, that is, 

Therefore, we get that 
- 
F = inf sup Fe, (X, y ) > inf sup Fe2 ( X ,  y ) = Fe,. 

x^X yEY xEX E Y  

Hence, this shows that Fg is non-increasing with respect to 0. 
(b) Since Fe < 0, from the definition of Fe, there exists ?i? 6 X such that 

that is, for all y 6 Y, 
F@, Y) = f (F, Y) - 0g(x, Y) < 0- 

This shows that for all y G Y, G(x, y) = -=-- f(T'y) < 0, that is 
g(x, Y) 

sup G@, y) 5 0. 
Y â‚ 

From the definition of 9 and (3.9), it follows that 9 $ 8. 
(c) Since Fe > 0, that is, for all X G X ,  supyEy Fs(x,y) > 0, there exists yx E Y, which 
depends on X, such that 

From (3.10), it follows that G(x,yx) = X, Yx f (  ) > 0, that is, for all X E X ,  
g(x7 YX) 

which shows that Q > 6. 
(d) Since 0 > 0, from the definition of 0, there exists T G X such that 

that is, for all y G Y, 0 > G(z,y). This shows that for all y G Y, Fe(?i?,y) < 0. Hence, we 
get that 

0 2 sup Fe (~ ,  y ) 2 inf sup Fe (X, y) = F,. 
Y â‚ xe.x y â ‚  

(e) Since 9 > 0, from the definition of 9, it follows that for all X G X, 

sup G(x, y) > 0. 
YEY 
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Thus, there exists y3. E Y, which depends on X, such that G(x, yz) > 0, that is, Fe(x, yx) > 0. 
Then, we get that for all X E X ,  

Hence, we get that - 
Fe = inf sup Fe(x, y) > 0. 

x^X y â ‚  

( f)  Since F e  < 0, there exists T E X such that supygy Fe( l ,  y) < 0, that is, for all 
G(1, y) < 0. Noting that Y is compact and G@, y) is continuous on Y, we get that 

0 > sup G(Z, y) >. inf sup Gfx, y) = 0. 
Yâ‚ xEX y â‚ 

Thus, it holds that 0 > 0. 
Conversely, since 6 > 0, from the proof of (b), it follows that there exists T E X such 

that for all y E Y, Fe(x, Y)  < 0. Noting that Y is compact and Fe(x, Y) is continuous on Y, 
we get that 

Thus, the proof of (f) is completed. 
(g) Suppose that f i  < 0 holds, there exists 3 E X such that supyEy FT(% y) < 0. Noting 
that Y is compact and Fg{x, y) is continuous on Y, we get that for all y E Y, FT@, y) < 0, 
that is, for all y E Y, 9 > G(z, v). This shows that 

- 
0 > sup G(z, y) 2 inf sup G(x, y) = 9. 

Y â‚ xex â ‚  

We arrive a t  a contradiction. Hence, it is proved that % > 0 holds. 

Lemma 3.2 F_g has the following properties. 

(a) is non-increasing with respect to 6 .  
(b) If & < 0 ,  it holds that 0 > 6. 
(C) I f l e  > 0, it holds that 0 < 0. 
(d) If 0 > @, it holds that Eg <0. 
(e) If 0 < 0, it holds that Le 0. 
Furthermore, under the conditions that X is compact and that f ( X ,  y )  and g(x, y) are 

continuous with respect to X for all y E Y ,  it holds that 

(f) & > 0 holds if and only if 0 < 6. holds, 
( g )  &- 5 0 holds. 

Proof. Using & and Q_ instead of Fe and 0 respectively, we can prove this lemma by similar 
arguments to the previous one. 

We have the following relations between the game (GPe) and (GP). 

Theorem 3.1 Suppose that y* 6 Y is a max-inf of the game (GP) .  Then, it holds that 

(i) the game (GP)  has a value Q*, 
(ii) If Fg* 5 0, y* is a max-inf of the game (GPe*). 

Proof. (i) From the definition of 9 and S., in general it holds that 8 >. ff_. 
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On the other hand, since y* G Y is a max-infof the game (GP),  it follows that 
- 
0 = inf G(x, y*) 5 sup inf G(x, Y)  = 0. 

xex yeY ^X 

Thus, 0 = 9. holds, that is, the game (GP) has a value 0'. 
(ii) Since y* is a max-inf of the game (GP), it holds that for all X G X ,  

0* = inf G(x7 y*) < G(x, y*), 
xcx 

that is, for all X G X ,  

Thus, we arrive at the 

0 

following inequality, 

<; in! F O * ( x , ~ * )  < inf sup Fs*(x,y) = Fe* 5 0. 
xcx xex ycy 

This shows that 
inf Fe* (X, y*) = inf sup Fe* (X, y). 
xcx x e x  yâ‚ 

That is, y* is a max-inf of the game (GPg*'. 

Corollary 3.1 Suppose that (X*, y*) 6 X X Y is a saddle point of the game (GP).  Then, 
it holds that 

(i) Fe*(x*,y*) = 0, 
(ii) (X*? y*) is a saddle point of the game (GP0*). 

Theorem 3.2 Suppose that the game (GP) has a value 0' and that Fe* >. 0 holds. Then, 
if y* G Y is a max-inf of the game (GP0*), y* is a max-inf of the game (GP).  
Proof. Since Fe* > 0 and y* is a max-inf of the game (GP0*), it follows that 

0 5 Fe* = inf sup Fe* (X, y) = inf FP (X, y*) < Fo*{x, y*), for all X G X, 
xex â ‚  xex 

which implies that for all X G X 

Therefore, we get that 

0* 5 inf G(x, g*)  5 inf sup G(x, y) = Q*. 
xex x^X yeY 

This shows that y* is max-inf of the game (GP). 

Corollary 3.2 Suppose that the game (GP) has a value 0' and that a saddle point (X*, y*) 
of the game (GP0*) satisfies FO*(x*,y*) = 0.  Then, (X*, y*) is a saddle point of the game 

(GP).  
Theorem 3.3 Suppose that Y is a compact convex set and that functions f and g satisfy 
the following conditions: 

1. f (X, y) is convex with respect to X for all y G Y ; 
2. f (X, Y) is continuous and concave with respect to y for all X G X ; 
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3. g(x, y) is concave with respect to X for all y G Y ; 
4. g(x, y) is continuous and convex with respect to y for all X G X .  

Then, if B > 0, it holds that 

(i) the game (GP) has a value Q*, 
i i )  There exists y* Y such that y* is a max-inf of the game (GP). 

Proof, (i) Since B > 0, it follows from Lemma 3.1 (g) and Theorem 2.1 that 

and that there exists y* 6 Y, which is a max-inf of the game (GPF), that is, 

5- = sup inf F,{x, y) = inf FF(x, y*). 
y â‚ x^X x6X 

From (3.12) and (3.13), it follows that 

0 < sup inf Fg(x, y) = inf Fa(x, y*) < Fa(x, y*), for all X E X. 
yâ‚ xcx x e x  

From (3.14), it holds that for all X E X, f <: G(x, y*). Consequently, we get 
- 
Q inf G(x) Y*) < sup inf G(x, y) = Q_. 

x e x  yâ‚ x^X 

This shows that 6 = 0 holds. 
(ii) Since Fe* >, 0 and y* E Y is a max-inf of the game (GPe*), from Theorem 3.2, it 

follows that y* is a max-inf of the game (GP). Thus, the proof of the theorem is completed. 

Theorem 3.4 Suppose that Y is a compact convex set and that functions f and g satisfy 
the following conditions: 

1. f ( X ,  y) is convex with respect to X for all y E Y ; 
2. f ( X ,  y) is continuous and concave with respect to y for all X E X ; 
3. g(x, y) is concave with respect to X for all y E Y ; 
4. g(x, y) is continuous and convex with respect to y for all X E X .  

Then, i f  6 > 00, for any E > 0, there exists a point (X*, Y*) E X X Y such that 

Q* <: G(x*, y*) < Q* + E ,  

where Q* is the value of the game (GP).  

Proof. From Theorem 3.3, we have 9 = S. = Q*. Since Q* >. 0, it follows from Lemma 3.1 (g) 
and Theorem 2.1, that there exists y* G Y such that 

Fe* = K* = inf Fe* ( X ,  y*) >. 0. - 
XGX (3.15) 

Then, from (3.15), we get that for all X E X ,  Fe* (X, Y*) > 0, that is, for all X 6 X 

Q* < G(x, y*). (3.16) 

On the other hand, since 9 < Q* + E, it follows from Lemma 3.1 (f) that 
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which shows that there exists X* G X such that s u p g y  Fs*+c(x*, y) < 0. Hence, we get that 
for all y G Y, F6*+e (~* ,y )  < 0, that is, for all y E Y, 

Thus, for the particular y* G Y satisfying (3.16), it holds that 

Combining (3.16) with (3.17), we show that 

O* <, G(x*, y*) < W .  

Thus, the proof of the theorem is completed. 

Theorem 3.5 Suppose that X and Y are compact convex sets, and that functions f and 
g satisfy the following conditions: 

1. f ( X ,  y) is continuous and convex with respect to X for all y G Y ; 
2. f ( X ,  y) is continuous and concave with respect to y for all X G X ; 
3. g(x, y) is continuous and concave with respect to X for all y G Y ; 
4. g(x, y) is continuous and convex with respect to y for all X E X. 

Then, if 0 >. 0, there exists a saddle-point (X*, y*) G X X Y such that for all X and y, 

G($*, Y) 5 Q* *X, y*). 

Using Theorem 3.3 and Corollary 2.1, we can easily prove the theorem. 
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