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Abstract The generalized stable set problem is an extension of the maximum weight stable set problem 
for undirected graphs to bidirected graphs. This paper shows that the problem on triangulated bidirected 
graphs is solvable in linear time. We also propose an exact branch and bound algorithm for the general 
problem by applying the linear time algorithm. 

1. Introduction 
In this paper we examine 0-1 integer programming problems with two variables per in- 
equality. Each non-redundant inequality of the integer program can be represented by one 
of the following forms: 

Hence, the problem can be formulated as follows: for a given finite set V, sets P, N,  I 2 V X V 
and a weight vector W E RV (we denote the zth element of W by W;), 

[GSSP] maximize wixi subject to  xi + xj <  ̂ 1 for (2, j) G P, 
&V 

-xi-x.< -1 for (z , j )  G N,  3 - 

xi - xj 0 for (2, j )  I, 

xi G {O, l} for i G V. 

Here we call this problem the generalized stable set problem (GSSP) because this is the 
maximum weight stable set problem (MWSSP) if N = I = 0. The generalized set packing 
problem equivalent to the GSSP has also been studied in [2, 3, 71. 

To deal with the GSSP, a 'bidirected' graph is useful. A bidirected graph G = (V, E) has 
a set of vertices V and a set of edges E, in which each edge e E E has two vertices i ,  j G V 
as its endpoints and two associated signs (plus or minus) at  z and j .  The edges are classified 
into three types: the (+, +)-edges with two plus signs at  their endpoints, the (-, -)-edges 
with two minus signs, and the (+, -)-edges (and the (-, +)-edges) with one plus and one 
minus sign. Undirected graphs may be interpreted as bidirected graphs wit h only (+, +)- 
edges. Given an instance of the GSSP, we obtain a bidirected graph by making (+, +)-edges, 
( -  -)-edges and (+, -)-edges for vertex-pairs of P, N and I respectively. Conversely, for 
a given bidirected graph with a weight vector on the vertices, by associating a variable 
xi with each vertex z ,  we obtain the GSSP. We call a 0-1-vector satisfying the inequality 
system arising from a bidirected graph G, a solution of G, and also call a subset of vertices 
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a solution of G,  if its incidence vector is a solution of G.  The GSSP is an optimization 
problem over the solutions of a bidirected graph. 

It is well known that  the MWSSP is NP-hard for general undirected graphs, and hence, 
the GSSP is also NP-hard. However, for several classes of undirected graphs, e.g., for perfect 
graphs [6] and claw-free graphs [10], the MWSSP is polynomially solvable. Particularly it can 
be solved in linear-time for triangulated graphs [4, 51 by applying the lexicographic breadth- 
first search [12]. On the other hand, there are several polynomial-time transformations from 
the GSSP to  the MWSSP (see [13, 141). Since these transformations preserve perfectness, 
the GSSP on perfect bidirected graphs can be solved in polynomial time [14]. Unfortunately, 
these transformations preserve neither claw-freeness nor triangulated-ness. The authors [ll], 
however, proved that the GSSP on claw-free bidirected graphs is polynomially solvable. 

In this paper, we propose a linear time algorithm for solving the GSSP on triangulated 
bidirected graphs. Moreover, by combining the linear time algorithm and the idea of Balas- 
Yu's algorithm [l] for the maximum weight clique problem, we will give an exact branch 
and bound algorithm for the GSSP. 

2. Preliminaries 
Since several distinct bidirected graphs may have the same set of solutions, it is convenient 
to  deal with some kind of 'standard' bidirected graph. A bidirected graph is said to  be 
transitive, if whenever there are edges el = ( 2 , j )  and 6 2  = ( j ,  A;) with opposite signs a t  
j, then there is also an edge e3 = (i, k )  whose signs at  i and A; agree with those of el 
and 62. Obviously, any bidirected graph and its transitive closure have the same solutions. 
A bidirected graph is said to  be simple if it has no loops and if it has a t  most one edge 
for each pair of distinct vertices. Johnson and Padberg [g] showed that any transitive 
bidirected graph can be determined to  have no solution or reduced t o  a simple one without 
essentially changing the set of solutions. They proved that a transitive bidirected graph has 
no solution if and only if i t  has a vertex with both a (+, +)-loop and a (-, -)-loop. For any 
bidirected graph, the associated simple and transitive bidirected graph can be constructed 
in time polynomial in the number of vertices. Although this construction cannot be done in 
linear time, we assume that a bidirected graph of any instance of the GSSP is simple and 
transitive because, in the application of Section 6, our linear time algorithm is applied to  
several triangulated subgraphs of a given instance of the GSSP, time after time. 

Let G = (V, E) be a simple and transitive bidirected graph and W be a weight vector 
on V. For a given subset U V, we define the reflection of G at  U by the transformation 
which reverses the signs of the U side of all edges incident to each U E U and we denote 
it by G:U. (For example, for G2 in Figure 3 and U = {v2, vs}, G2:U is equal to  G' in 
Figure 2 .) Obviously, reflection preserves simplicity and transitivity. Let W: U denote the 
vector defined by (w:U), = -W, if i E U; otherwise (w:U), = W,. For two subsets X and Y 
of V, let X A Y  denote the symmetric difference of X and Y. 

Lemma 2.1. Let X be any solution of G. Then, X/ \U is a solution of G:U. The GSSP 
for (G, W) is equivalent to the GSSP for (G:U, w:U). 

Proof. The first assertion is trivial from the definition of G:U. The second assertion 
follows from EiexAu(w:U). = Siexv/  wi + '&u\x(-w,) = xiEX W. - Zieu wÃ (the last 
term is a constant). I 

We next define bicliques and biclique covers. A pair of disjoint sets of vertices [C^, C-] 
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is called a biclzque of G if 

(Bl)  there is an edge between any two vertices in C^ U C ,  and 

(B2) for any edge e of the vertex-induced subgraph G[C+ U C-] of G by C+ U C-, if 
an endpoint 2 of e is in C^ then e has a plus sign at  z ;  otherwise e has a minus 
sign at  i .  

We call C+ and C the positive part and negative part of [C"', C ] ,  respectively. Any solution 
of G satisfies the following inequality which is called the biclzque inequality: 

associated with a biclique [C+, C ] .  On the other hand, any edge of G corresponds to a 
biclique and any vertex i implies two bicliques [{i}, 01 and [0, { z } ]  which are associated with 
inequalities xi < 1 and X, > 0, respectively. Hence, the GSSP can be formulated as 

maximize 5" W ~ X ,  subject to xi + (l - xi) < 1 for [C', C-] E B, 
i<-V iâ‚¬ %C- 

xi â 10, l} for z C V, 

where B is the set of all bicliques of G. For perfect bidirected graphs which we will define 
later, Sewell [l31 proved that the LP-relaxation of the above formulation has an integral 
optimal solution for any weight vector (Guenin [7], and Ikebe and Tamura [B ]  also proved 
equivalent statements, independently). The dual problem of the LP-relaxation of the above 
formulation is 

Since triangulated bidirected graphs are perfect as we will define later, the GSSP and the 
dual problem have the same optimal value. We call a feasible solution of the dual problem a 
fractional biclique cover, or shortly, a biclzque cover. Our algorithm for the triangulated case 
finds a maximum weight solution and a minimum weight biclique cover having the same 
weight. 

Here we represent a biclique cover by a set C including the bicliques of positive weights 
and a weight function y : C -+ X. Let (C, y) be a biclique cover for an instance (G, W). 
For any fixed subset U V, let Cu = [C+^\Uc, C-/\Uc] and yu(Cu) = y(C) for each 
C = [C^, C-] E C, and Cu = {Cu : C E C} where Uc = U n (C+ U C-).  

Lemma 2.2. (Cu, yu) is  a biclique cover for (G:U, w:U). The  difference of weights between 
(Cu, yu) and (C, y) is  - zcu W^ a constant.  

Proof. Obviously, each Cu is a biclique for G:U. The assertions follow from 

and 
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This lemma says that a minimum weight biclique cover for (G:U, w:U) can be obtained from 
a minimum weight biclique cover for (G, W), and vice versa. 

Given a bidirected graph G, its underlying graph, denoted by G,, is defined as the undi- 
rected graph obtained from G by changing all the edges to (+, +)-edges. A bidirected graph 
is said to  have a property P if it is simple and transitive and if its underlying graph has 
the property P. For example, a perfect (or claw-free or triangulated) bidirected graph is a 
simple and transitive bidirected graph whose underlying graph is perfect (or claw-free or 
triangulated). An undirected graph is called triangulated (or chordal) if it has no chordless 
cycle of length at  least four, that  is, every simple cycle of length at  least four has an edge 
joining non-consecutive vertices in the cycle. Since triangulated undirected graphs are per- 
fect, triangulated bidirected graphs are also perfect. It is known that an undirected graph 
G = (V, E) is triangulated if and only if there is a vertex-ordering TT : V -+ {l, - , n} where 
n = \V\ such that  for each 2 E {l, , n}, the set consisting of U = r l ( i )  and the vertices 
adjacent to  U in { r l ( i  + l ) ,  , TT1(n)} forms a clique, that  is, any two vertices of the set 
are adjacent (see, for instance, [12]). Such an ordering is called a perfect vertex el iminat ion 
s cheme  (PVES) and can be found in a linear time for any triangulated undirected graph 

[121. 
We say that  a vertex is positive (or negative) if all edges incident to it have plus (or minus) 

signs a t  it, and that a vertex is mixed if it is neither positive nor negative. If a bidirected 
graph has no (-, -)-edge, it is said to  be pure. We note that  the negative part of any biclique 
of a pure bidirected graph has at  most one vertex. We call a bidirected graph canonical if it 
is simple, transitive and pure, and if it has no negative vertices. For any instance (G, W) of 
the GSSP, we can transform it to an equivalent one whose bidirected graph is canonical as 
follows. Johnson and Padberg [g] proved that if G is simple and transitive, G has at  least 
one solution U C V and that a solution can be found in O(lVl+ 1 E 1 )  time. From Lemma 2.1, 
G:U has the solution U N  = 0, that is, G:U must be pure. Let W be the set of negative 
vertices of G:U. Then G:U:W has no negative vertex, and furthermore, it is pure because 
any edge (U, W )  of G:U with W G W must be a (+, -)-edge. Since this transformation can 
be done in linear time, we assume that a given bidirected graph of the GSSP is canonical 
in the sequel. 

3. Transformations from GSSP to MWSSP 
In this section, we briefly introduce transformations from the GSSP to  the MWSSP. 

Given a simple and transitive bidirected graph G = (V, E )  and a weight vector W G RV, - - 
let us define the undirected graph 6 = (V, E) and the weight vector G G R^ by 
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(We draw (+, +)-edges and (+, - edges, 

respectively. The head of an arrow means a minus sign and the tail means a plus sign.) 

Figure 1: G is triangulated but 6 is not. 

E = {(ia, ) ((a, p)-edge incident to 2 and j in G} U {(z', i-) 1 i G V}, 

Gi+ = max{wi, O} (i G V) and G,- = max{-W,, O} (i G V). 

It is known that if a maximum weight stable set S+ U S (S+ C V+, S C V )  is maximal 
with respect to  set-inclusion among all the stable sets of G then S^ is a maximum weight 
solution of G (see, [7, 151). That is, the GSSP for (G, W )  can be transformed to  the MWSSP 
for (G, G). Other transformations proposed in [13, 141 are essentially equivalent to the above 
one since undirected graphs constructed by these are obtained from G'.U by deleting all 
zero-weight vertices for some U V. Since these transformations preserve perfectness [13, 
14, 151, we can solve the GSSP in polynomial time on perfect bidirected graphs, rightfully on 
triangulated bidirected graphs, by applying the celebrated algorithm in [6]. Unfortunately, 
we cannot apply the linear time algorithm for the MWSSP on triangulated graphs in the 
above approach because all known transformations may not preserve triangulated-ness. For 
example, in Figure 1 the right-hand graph 6 is not triangulated even though the left-hand 
graph G is triangulated. If W > 0, then transformations in [13, 141 construct a chordless 
cycle of length 4. Hence, it seems difficult to  develop a linear time algorithm for the GSSP 
on triangulated bidirected graphs by adopting the above approach. 

4. A Linear Time Algorithm on Triangulated Bidirected Graphs 
Let G = (V, E) be a canonical triangulated bidirected graph and W be a weight vector on 
V. A vertex-ordering TT : V -+ {l,.  . . , n} is said to be topological if ~ ( u )  < ~ ( v )  for each 
(-, +)-edge (U, v)- 

If TT is a PVES, in addition, then we call TT a topological PVES (T-PVES). Here we 
suppose that  we have already found a T-PVES TT for G. In this section, we consider how to 
find a minimum weight biclique cover and a maximum weight solution of G by using TT.  We 
will describe how to find a T-PVES in the next section. 

We denote u e v  if there is a (+, +)-edge (U, v), and U ~ V  or v& if there is a (+, -)- 
edge (U, v). For a T-PVES TT and a vertex U ,  we define 

N,(v) gf {U 6 V 1 TT(V) < TT(U), U is adjacent to U}, 

N A v )  %if {U G N,(v) 1 v z u }  and 

N-(v) ef {ue N,(v) G}. 
Note that any two distinct vertices in N ( v )  are adjacent to each other since TT is a PVES, 
and N,(v) = Nf (v) U N; (v) because TT is topological and G has no (-, -)-edges. We define 

Cz(v)  gf {v} U {U E N f  (v) I there is no vertex t G Nf(v)  with ukt} and 
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C;(v) gf { v }  U {U G N^{v) I there is no vertex t G N A v )  with uL-t}. 

From the definitions, both [C^(v) ,  01 and [C;(v) \ {v} ,  { v } ]  are bicliques. 

Lemma 4.1. For any vertex U G N f ( v )  \ C m ,  there uniquely exists t 6 C}[v) \ { v }  such 
that uct. For any vertex U N; ( v )  \ C; ( v ) ,  there uniquely exists t G C; (v) \ { v }  such 
that uk t .  

Proof. For U G Nf ( v )  \ C f  ( v ) ,  let t G N:(v) be the smallest vertex in the order 
TT such that ubt. Suppose to the contrary that t G N f ( v )  \ C$(v).  There is a vertex 
s  G N f f v )  such that  t k - s  by the definition of C$(v) .  Since v is topological and G is 
transitive, v ( s )  < v ( t )  and uL-S, a contradiction. Therefore t G C f  ( v )  \ {v}. For any 
vertex r  in C a v )  \ {v ,  t } ,  r v t  holds, and hence, r*u by the transitivity. Thus such a 
vertex is unique. Similarly we can prove the statement for U G N ( v )  \ C ( v ) .  W 

We will assign values to bicliques [ C a v ) ,  01 and [C;(v) \ { v } ,  {v}]  by Procedure I below 
so that they form a biclique cover for (G, W ) .  After Procedure I ,  Procedure I1 constructs 
a solution of (G, W ) .  These are extensions of the algorithm for finding a minimum clique 
cover and a maximum stable set for triangulated undirected graphs [4, 51. 

[Procedure I] 
&=W; C : = @ ;  X : = @ ;  
for i := 1 to n do begin 

V := TT-l ( i);  
if i& > 0 then begin 

- 
~ ( [ C f ( v ) ,  01) :=wv; 
C:=C U {[C+(v) ,0]};  
for 'du G C f ( v )  \ { v }  do Wu .- W .- WU - W",; 

X : = X u { v } ;  
end else begin 

y([C;(v) \ { v } ,  { v } ] )  := - wv; 
C :=C U {[C.(v) \ {v } ,  { v } ] } ;  
for 'du G C;(v) \ { v }  do Wu :=Wu + I&,; 

end if 
end for 

[Procedure 111 
for i := n downto 1 do begin 

v  := v-1 (4;  
if W v  > 0 then begin 

for 'du E C D )  \ { v }  do Wu := Wy + W v ;  
if X n ( C m  \ { v } )  # 0 then X  :=X \ {v } ;  

end else begin 
for Vu G C;(v) \ { v }  do Wu - -  wu - - wV; 
if X n (C;(v) \ { v } )  # 0 then X  :=X U { v } ;  

end if 
end for 
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After executing Procedure I, (C, y )  is a biclique cover. Its weight &z\c+,c-lec(l- \ C  1)-y(C) 
is the sum of all values y ( [C f (v ) ,  g ] ) ,  because [C;(v) \ { v } ,  {v}]  has exactly one vertex in its 
negative part and none of the values y([C;(v) \ { v } ,  { v } ] )  are concerned. Hence the weight 
of ( C ,  y )  is equal to zcx 6.7,. On the other hand, X may not be a solution of G. Procedure 
II modifies X so that it forms a solution. 

emma 4.2. T h e  following claims hold at the end of each iteration i n  Procedure II. 
T h e  value Wi  is  preserved, i.e. i t  is equal to  the weight of ( C ,  y). 

X n V,  i s  a solution o n  the subgraph G[V,] induced by V,,  where V , g { u  \ 7 r 1 ( u )  2 i } .  

induction on i. The claims hold for i = n. Suppose that the claims hold 
1 with i <  ̂ n - 1. Let v  = T T ' ( z ) .  We consider the case that G,, > 0. If 

,., \X n (C'+ ( v )  \ { v } )  1 = 0 ,  then Eiex Wi  is preserved. If IX n (C: ( v )  \ { v } )  1 = 1, then xiex W ,  

reserved since v  is deleted from X  but Wy is added to Gu, where X (Cf  ( v )  \ { v } )  = 
therwise let t and U be distinct vertices in X n ( c ( v )  \ { v } ) .  Then t v u  and 
n V;+i. This contradicts the second claim for i + 1. The case wv <: 0 can be proved 

similarly. Thus the first claim holds for z .  The second claim does not hold for i only in the 
following four possible cases: 
(Case 1) G,, > 0 ,  X n (C+(v) \ { v } )  # 0 and X n N;(v) # 0. 
(Case 2) 6& > 0, X f l  ( Q ( v )  \ { v } )  = 0 and X f~ N$(v) # 9. 
(Case 3) W y  5 0 ,  X (C;(v) \ { v } )  # 0 and X n N${v) # 0. 
(Case 4 )  G, 5 0, X n (C; ( v )  \ { v } )  = 0 and X n N; ( v )  # 0. 
In Case 1, let X be any element in X n N;(v). Then by the transitivity of G, x e y  for all 
y E Cfiv)\  { v } .  This means that X ft (C'+(v)\{v}) = 0, thus Case 1 does not occur. In Case 
2, let U be any element in ( X  ft N: ( v ) )  \ C'+ (v ) .  Then there exists a vertex t E C: ( v )  \ { v }  
such that ukt  by Lemma 4.1. This means that t  E X, and thus Case 2 does not occur. 
Similarly neither Case 3 nor Case 4 occurs. Hence the second claim holds for i. I 

emma 4.3. Given a l'-PVES for (G,  W ) ,  a m i n i m u m  weight biclique cover and a maxi-  
mum weight solution can be found i n  linear time. 

Proof. At the end of Procedure 11, X is a solution and G& is equal t o  the weight of 
the biclique cover (C, y) by Lemma 4.2. Moreover, a t  this point, W = G. Hence ( C ,  y )  is a 
minimum weight biclique cover and X is a maximum weight solution for (G, W ) .  

We now consider the time complexity. We assume that  N*) and N;(v) are sorted in 
the order TT for each vertex v. This can be done in linear time by re-constructing adjacency 
lists. Let us show that (?'+(v) and C;(v) can be found for a given v  in time proportional to 

1 N ( v )  1 ,  and this completes the proof. 
From Lemma 4.1, we can easily show that N f  ( v )  \ Cf ( v )  = Uuec+!v) N; ( U )  and that 

N  ( t )  fl N  ( U )  = 0 for any distinct vertices t ,  U E C: (v ) .  Thus the following procedure 
finds C$(v) in time proportional to 1 N:(v) 1.  

C  := { v }  U N$(v);  

comment N:(v) = { ~ i ,  - - 1 u l N f ( v ) l } ,  ~ ( u i )  < + a < ~ ( u l N ~ ( v ) l ) ;  
for i : = l  to lN'+(v)l do if U ,  E C  then C : = C  \ N;(ui); 
comment C  = C m ;  

Analogously, C  ( v )  can be found in O(1 N; ( v )  1 )  time. I 
Example 4.4. Let us consider a triangulated bidirected graph G1 in Figure 2. The vertex 
order TT defined by ~ ( v , )  = z ( z  = 1 ; - - ,6 )  is a T-PVES for G'. Let wl = (2,-1,4,3,2,4)  
be a given weight vector on {v i ,  - , ve}. Procedures I and I1 find a biclique cover and a 
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Figure 2: A triangulated bidirected graph G'. 

solution as Table 1. The biclique cover selected by Procedure I and the solution {vf13? u6} 
constructed by Procedure I1 have the same weight 7. 

Table 1: An example 
Procedure I 

[C+7C-l Y(C) X 

5 .  Finding a T-PVES 
For a vertex v in a canonical triangulated bidirected graph G, we call v bad if there exist 
distinct vertices a and b such that akv. b k v ,  and a is not adjacent to b. Clearly, G has 
no T-PVES if G has a bad vertex. 

We first consider the case that G has no bad vertex. At the last of this section we will 
examine the case that G has bad vertices. 

First of all, let us review the lexicographic breadth-first search (LEX-BFS) [l21 to find 
a PVES K for a given triangulated undirected graph. 

Initially all vertices are unnumbered. During an execution of LEX-BFS, for each un- 
numbered vertex X,  the label L(x) of X is the set of numbered vertices which are adjacent 
to X. The lexicographic order of labels is defined by 

At the ?-th step (i = 1 , .  . . , n) ,  LEX-BFS selects an unnumbered vertex v which has the 
largest label in the lexicographic order, and let K(U) = n - i + 1. It can be proved that this 
algorithm finds a PVES K correctly. 

A special data-structure is used to find a PVES in linear time. Unnumbered vertices are 
partitioned into sets C = {So7.  . . S,+}. Here each Sj is the non-empty set of unnumbered 
vertices having the same label, and C is a doubly-linked list sorted in the lexicographic 
order. The set So is the set of unnumbered vertices having the largest label. At the z-th 
step LEX-BFS extracts a vertex v E So, lets ~ ( u )  = n - i + 1, and modifies the structure 
C. The algorithm is described as follows. 
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[Lexicographic breadth-first search (LEX-BFS)] 

^ : = { V ;  (*l) 

for z := n downto 1 do begin 
comment So means the set a t  the head of 

v := any element of So; (*2) 

~ ( v )  := i ;  So +- So \ {v}; if So = 0 then delete So from C; 
M:=  ̂
for each unnumbered vertex U that is adjacent to  v (*3) do begin 

comment S[u] means the set in C which contains U; 

if S[u] M then begin 
insert {U} into C just before S[u] ; M := M U {S[u]}; 

end else begin 
comment S[u] means the set in C just before S[u]; 

S[u] := S[u] U {U}; (*4) 
end if 
S[u] := S[u] \ {U}; if S[u] = 0 then delete S[u] from C; 

end for 
end for 

Now we return to our discussion. LEX-BFS finds a PVES in linear time for a triangulated 
bidirected graph, but this may not be a T-PVES. Hence we slightly modify LEX-BFS to  
find a T-PVES in the case that G has no bad vertex. 

Before an execution of LEX-BFS, find a topological order r : V Ã‘> { l , .  . . , n} so that 
r ( u )  < r (v)  for any &. Since G is simple and transitive, there is no directed cycle 
consisting of (+, -)-edges. Hence such a topological order always exists. Next sort adjacency 
lists in the order r for each vertex. This can be done in linear time by re-constructing 
adjacency lists. 

At (*l) ,  represent V by a doubly-linked linear list sorted in the order r .  At (*2), select 
the vertex v from So that  is the largest in the order r, i.e., select the tail vertex v from 
the doubly-linked linear list representing So. At (*3), select unnumbered vertices that are 
adjacent to v in the order r, i.e., in the order of the adjacency list of v.  At (*4), insert u att 
the tail of the doubly-linked linear list representing S[u].  Note that  U is the largest in S[u] 
in the order r from the modification a t  (*3). During an execution of LEX-BFS, each set S 
in C is sorted in the order r .  
Lemma 5.1. The  modified version of LEX-BFS finds a T - P V E S  in linear t ime if there is 
n o  bad vertex. 

Proof. Let us consider the time when v  is selected at  (*2) in the modified version. 
Suppose to  the contrary that there is an unnumbered vertex U such that u%v. Because r 
is topological, r (u )  > r(v) .  This means that  U So, since v is the largest vertex in So in 
the order r. Hence u has a smaller label than that of v l  because So is the set of unnumbered 
vertices having the largest label. 

Let X be a vertex that is adjacent to v  but X # U. If vL+x, then u e x  from the 
transitivity. Similarly if v ^ x ,  then ukx. Otherwise, v e x ,  then U is adjacent to  x 
because v is not bad. Hence the set of numbered vertices which are adjacent to  U includes 
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the set of numbered vertices which are adjacent to  v, i.e., the label of u is not smaller than 
the label of v, a contradiction. I 

We finally deal with the case that  G has bad vertices. We will show that bad vertices 
can be converted into non-bad vertices by reflection. 

Lemma 5.2. Let B be the set of all the bad vertices of a canonical triangulated bidirected 
graph G. Then G : B  is a canonical triangulated bidirected graph having no bad vertex. 

Proof. Let v be a vertex. If v is not bad in G,  then it is not bad in G : B  because G 
has no (-, -)-edge. Then let v be a bad vertex in G,  and a and b be distinct vertices such 
that  a*v, b k v ,  and a is not adjacent to b. Assume that  there are distinct vertices c and d 
such that (c^v or c*v), ( d e v  or d d v ) ,  and c is not adjacent to d. From the transitivity 
of G,  {a, b, c, d} induces a chordless cycle of length 4. This contradicts the fact that G is 
triangulated. Therefore G : B  has no bad vertex. 

If v c u  for some u in G then aku and bku from the transitivity, thus u is also bad. 
Suppose that  v v t  for some t. Then a ^ t  and b% from the transitivity. In this case t is 
not bad, since otherwise there exists a chordless cycle of length 4 by the same discussion 
above. Therefore G:B  has no (-, -)-edge. Hence G : B  is canonical. I 

Next we consider how to find the set of all the bad vertices B in linear time. Let 
TT : V -+ {l,. . . , n}  be a PVES of G. This can be found in linear time by LEX-BFS. For a 

vertex v, let us define N-(V)%~{X \ X+^-v}. If IN-(v)\ < 1, them; is not bad. If IN-(v11 > 2. 
let X be the smallest vertex in N ( v )  in the order TT.  Then v is bad if and only if there exists 
a vertex y E N ( v )  \ {X} such that  X is not adjacent to y, since TT is a PVES. To check 
whether X is adjacent t o  y or not in constant time, we use the following procedure because 
we do not have the adjacency matrix. 

[Bad-Vertices] 

for Vx e V do S(x) :=0;  

for Vv E V do begin 
if IN-(v}\ > 2 then begin 

X := the smallest vertex of N ( v )  in the order TT; 

for Vy G N-(v) \ {X} do S(x)  := S(x)  U {(y, v)}; 

comment If X is not adjacent to  y, then v is bad; 

end if 
end for 
B :=0; for Vv E V do a[v] :=0;  

for Vx E V do begin 
for each y that is adjacent to X do a[y] := 1; 
for each (y, v) 6 S(x) do if a[y] = 0 then B : = B  U {v}; 

for each y that is adjacent to  X do a[y] :=0; 
end for 

Theorem 5.3. For a given canonical triangulated bidirected graph G and any weight vector 
W on the vertices, a minimum weight biclique cover and a maximum weight solution can be 
found in linear time. 

Proof. First find the set of all the bad vertices B by the procedure above. Next find a 
T-PVES of G :B, see Lemmas 5.1 and 5.2. Then find a minimum weight biclique cover and 
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Figure 3: A triangulated bidirected graph G2 

a maximum weight solution for (G :B,  W :B),  see Lemma 4.3. Finally convert them into a 
minimum weight biclique cover and a maximum weight solution for (G, W), see Lemmas 2.1 
and 2.2. All the procedures can be done in linear time. I 
Example 5.4. Let us consider a triangulated bidirected graph G2 in Figure 3. The vertex 
order TT defined by TT(^) = i (i = 1, + - . ,  6) is a PVES for G2,  but not a T-PVES. The 
procedure Bad-Vertices verifies that  B = {vh vs} is the set of bad vertices of G2. Then, the 
bidirected graph G2:I3 has a T-PVES, e.g., TT. We note that G2:B is equivalent to G' in 
Example 4.4. Let w2 = (2,1, -4,3,2,4)  be a given weight vector on the vertices {vl, m , u6} 
of G2. As in Example 4.4, we obtain an optimal biclique cover and an optimal solution: 

for (G1, W') = (G2:Bl w2:B). From Lemmas 2.1 and 2.2, we can easily construct an optimal 
biclique cover and an optimal solution for (G2, w2) as follows: 

These have the same weight 4. 

6. An Application: An Exact Algorithm for the GSSP 
In this section, we extend the branch and bound algorithm of Balas and Yu [l] for the 
maximum clique problem to the GSSP. 

1. Given an instance (G = (V, E), W) of the GSSP, find a maximal triangulated induced 
subgraph G[T] of G by using the linear time algorithm proposed in [l] which uses a 
lexicographic breadth-first search described in [12]. 

2. By using our algorithm, find a maximum weight solution X and a minimum weight 
biclique cover (C, y) in G [T] . 

3. Let Y = {v E V \ X \ there is X E X with XL-!)}. Then X U Y is a solution of G 
because of the transitivity. If there is a vertex i Y such that W, > 0 and X U Y U {g 
is a solution of G,  add i to V ;  and repeat this while such a vertex exists. 

4. Partition Y into two parts Y> = {z E Y \ W, > O} and Y< = {i E Y \ wi < O}. For 
each i E Y>, add [{i}, 01 to C and y ([{i}, 01) = wj. Then (C, y) is a biclique cover of 
G[T U Y>]. - Since X U Y> - and (C, y) have the same weight, they are a maximum weight 
solution and a minimum weight biclique cover of G[T U V>], respectively. 
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Figure 4: A bidirected graph G3. 

5. For each biclique [C+, C-] G C, if there is a vertex i such that [C^ U {i}, C ]  is a biclique 
of G then replace [C+, C-] by [C+ U {i}, C-] and y ([C+ U {i}, C-]) = y([C+, C-]) ; 
and repeat this extension while such a vertex exists. Let U = {i E V \ (T U V>) 1 
d(i) = Y,c+^y{C) - Ec-^(C) - wi>, O}. For each i E U, add [@,{a to C and 
g([@, {t}]) = d(i). Then (C, y) is a biclique cover of G[T U Y> - U U]. Furthermore, 
X U Y> is a maximum weight solution of G[T U Y> - U U], because they have the same 
weight. 

6. For disjoint subsets I = {?l, - , G} and 0 = {oi, , om} of V, let (G, W; I, 0 )  denote 
the problem of finding a maximum weight solution subject to  I X and X n 0 = 0. 
Obviously, we can find a maximum weight solution of (G, W) by solving (t+rn+l) sub- 
problems: (G, w; 0, {&}), (G, w; {il}, {22}), - * ., (G, w; {?l, - . - , ̂ -l}, {$), (G, W;  I U 

{oi}, @), (G, W; J U  {Q}, {oi}), . ., (G, W;  J u  {om}, {oi,. om-l}) and (G, W;  J ,O) .  If 
I = Y< \ U  and 0 = V \  ( T  U Y U U), X U Y is an optimal solution for (G, W; I, 0). Hence 
we can find an optimal solution for (G, W) by solving another (!+m) subproblems by 
recursively using the above steps. 

The merit of the branch and bound algorithm is that Steps from 1 through 5 can be executed 
very fast. In order to  decrease the number of subproblems in Step 6, Steps 3, 4 and 5 extend 
a current solution and biclique cover. We remark that several subproblems in Step 6 may 
have no solution. For solving each (G, W ,  I, O ) ,  we should reduce the problem by deleting 
vertices i whose xi is fixed to  0 or 1. 
Example 6.1. Let us consider a bidirected graph G3 in Figure 4. Suppose that w3 = 
2 , 1 ,  -4,3,2,4,  -5,3,2,1) describes weights on the vertices {vl, , vlo} of G3. 

1. Since G3 is not triangulated, we must find a maximal triangulated subgraph of G3. 
Here we assume that  G3 [T] with = {vl, ~ 2 , 7 1 3 ,  ~ 4 , 7 1 5 ,  vQ} is found. 

2. Since (G3 [T] , W;) is equivalent to the instance (G2, w2) in Example 5.4, we obtain the 
following biclique cover C and solution X: 

3. Vertex v7 is induced by VQ. In addition, vg of weight 2 can be added to  the current 
solution. Then Y = {v7, v9}. 
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4. Add [{vg}, 01 to C and y([{vg}, 01) = 2. 
5. We can extend two bicliques [{v6}, 01 and [{vg}, 01 to  [{VG, vs}, 01 and [{US, v9} , 01. Then 

v s }  can be covered by such bicliques, and hence V = {vs}. 

6. X U Y = {v6, v7, vg} is an optimal solution of weight 1 for (G3, w3; I={v7}, 0={vM}). 
It is enough to  solve two subproblems (G3, w3; 0, {v7}) and (G3, w3; {v7, v& 0). In 
the first case, we can reduce G3 to G3 [{v2, v3, U^,  u5 ,  V S ) V ~ ,  uIo}] because xv,, xv6 must 
be 0. Since the bidirected graph is triangulated, in the same way as above, we obtain 
an optimal solution {v4, v g 7  vlO} of weight 7. In the second case, we can reduce G3 
to G3 [{v2 vs, v4, v6}], and obtain an optimal solution {v6, v7, vlo} of weight 0. Hence 
{v4, V8, vlO) is an optimal solution for (R w3). 
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