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Abstract We consider a network simplex method using the primal-dual symmetric pivoting rule proposed 
by Chen, Pardalos, and Saunders. For minimum-cost network-flow problems, we prove global convergence 
of the algorithm and propose a new scheme in which the algorithm can start from an arbitrary pair of 
primal and dual feasible spanning trees. For shortest-path problems, we prove the strongly polynomial time 
complexity of the algorithm. 

1. Introduction 
Let G = (TV, A) be a directed graph with n nodes and m arcs where N is the set of nodes and 
A is the set of arcs. We consider the uncapacitated minimum-cost network-flow problem on 
G: 

minimize C V X G  

~,,)â‚¬ 
subject to  V xn - V ~ 1 ,  = bi, i E N 

1:(2,1)â‚¬ l:(l,i)eA 

X,, ^ 0 (i,j) E A. 
It is well known that  a capacitated minimum-cost network-flow problem can easily be trans- 
formed into an uncapacitated one (for example, see page 40 of the textbook [l] by Ahuja, 
Magnanti, and Orlin). Therefore, we do not lose generality by using this form. The dual of 
(1.1) is the following: 

[ maximize biyi 
iEN { subject t o  ZG = c,, - y, + %, (i,.;') E A 

In this paper, we apply the primal-dual symmetric pivoting rule proposed by Chen, Pardalos, 
and Saunders [5] to  (P) and (D) ,  developing a new network simplex method. We show 
the convergence of the algorithm, relax the assumption for initial solutions, and prove the 
strongly polynomial-time convergence of the algorithm when it is applied to the shortest- 
path problems. 

Since (P) and (D) can be viewed as linear programming problems, we can apply the 
well-known simplex method for linear programming to them. Using the nice relationship 
between spanning tree and basic solution which will be described later, we can reduce the 
calculation cost of pivoting drastically for minimum-cost network-flow problems. This idea 
has its origin in Dantzig [7] and Johnson [ll]. An implementation of the simplex method 
using this technique is called network simplex method. 
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150 M. Muramatsu 

There is another famous alternative solution for linear programming: interior-point 
method. Recent research reveals that the primal-dual interior-point methods which deal 
with the primal problem and its dual simultaneously are the most powerful and efficient 
among other interior-point methods. The primal-dual interior-point methods have the nice 
primal-dual symmetric property which means that ,  even if we view the dual as a primal 
problem to apply the algorithm, the generated sequence is identical to  the original one. 
See the textbook by Wright [14] for details of the primal-dual interior-point methods. Few 
simplex methods have the primal-dual symmetric property. Neither the primal simplex 
method nor the dual has this property. Even the so-called primal-dual simplex method does 
not. The simplex method recently proposed by Chen, Pardalos, and Saunders [5], is one 
of the methods having the primal-dual symmetric property. We call their pivoting rule the 
primal-dual symmetric pivoting rule in this paper. 

We will show global convergence of the algorithm applied to minimum-cost network-flow 
problems without nondegeneracy assumption. Specifically, the number of pivots performed 
by the network simplex method using the primal-dual symmetric pivoting rule is bounded 
by a pseudopolynomial of the data size. For general linear programming, global convergence 
of this algorithm is proved under nondegeneracy assumption in the original paper [5]. A 
program instance for which their algorithm takes exponential time of iterations is also found 
in Dosios and Paparrizos [g]. Our result for minimum-cost network-flow problem is better 
than these results observed in general linear programming case, but worse than the best 
bound of the network simplex methods for minimum-cost network-flow problems which is 
strongly polynomial of the data size. For polynomial network simplex methods, see Orlin, 
Plotkin and Tardos [12], Armstrong and Jin [3],  and Orlin [13]. However, we point out that 
even for the Dantzig's pivoting rule which is widely used in implementation, only global 
convergence has been proved. 

Another topic of this paper is initialization. The original algorithm proposed in [5] 
needs a pair of basic solutions having certain special property. The method proposed in 
[5] to  derive such a pair for general linear programming problems introduces large artificial 
numbers to the coefficient matrix. If the same method is applied to the network problems, 
then the network structure of the problem will be destroyed. Therefore, we cannot use 
it in the framework of the network simplex method. In this paper, we give a solution to 
this problem. Using the basic primal-dual symmetric pivoting rule, we construct a new 
algorithm which can start from arbitrary spanning trees one of which is feasible for ( P )  and 
the other for (D). 

We also apply our algorithm to the shortest-path problems. Our algorithm requires only 
n (n  - 1)/2 primal pivots (Theorem 11). This bound is much better than 0 (n2  log(nC)) 
the bound for the number of pivots performed by Dantzig's rule where C is the maximum 
absolute value of the cost (See page 429 of [l]), and comparable to (n- l) (n-2)/2 the current 
best bound of network simplex method for the shortest-path problem due to  Goldfarb, Hao, 
and Kai [10]. We have more on the comparison of their algorithm and ours in Section 5. 

The paper is organized as follows. In the rest of this section, we define some fundamen- 
tal concepts for the network simplex method. In Section 2, we describe the primal-dual 
symmetric pivoting rule in the context of network simplex method. In Section 3, we prove 
global convergence of the algorithm. This algorithm is just a network simplex version of 
what is proposed by Chen, Pardalos, and Saunders [5] and needs a pair of spanning trees 
one of which is feasible for ( P )  and the other for (D) and which share all arcs but one. In 
Section 4, we discuss initialization issue and propose a new algorithm that can start from 
arbitrary pair of primal feasible and dual feasible spanning trees. In Section 5, we apply 
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the algorithm to  the shortest-path problem which is a special case of the minimum-cost 
network-flow problem and prove the strongly polynomial time complexity of the algorithm. 

Throughout the paper, we assume: 
G is connected. 
all data are integral. 
XiGTV bi = 0. 
(P) and (D) are feasible. 

Given 7, a spanning tree of G, we define the primal basic solution: 
Definition 1 Primal Basic Solution x(T) :  Set x~ = 0 if (z,j) 6 T ,  and otherwise so 
that xij satisfies the equality conditions of (l. l ) .  
The primal basic solution is well-defined. In fact, to decide X^ on the tree T,  we choose 
a leaf (i, j )  where the node z or J does not share any arc of T other than (i, j). In case 
where j does not share, we put xij = by removing (2,  j) from T and changing bi to  b; - 6,. 
This procedure determines xy and decreases 171 by 1. It  is easy to  see that  performing this 
procedure recursively, we have xij : (G) E A satisfying the equality condition of (P). See 
[l] for more detail. 

Similarly, we define the dual basic solution as follows. 
Definition 2 Dual Basic Solution (y(T),  z(T)):  Set z~ = 0 if (2, j) E T and otherwise 
so that the equality conditions of (1.2) hold. 
We sometimes call y (T)  a node potential vector and z (T)  a dual slack corresponding to  
T ,  respectively. To be precise, the node potential vector will not be determined uniquely 
by this definition; we can add a constant to all yi without changing ~ i j ,  thus satisfying the 
definition. Without loss of generality, we can assume that  there is a node for which the node 
potential is always zero. Once we fix such a node, we can calculate yi : i E N by visiting 
each node through T from that node using the relation c^' - yi + yj = 0 for (i, j) G T. Then 
the values of 2~ for (Q) g! T are automatically determined by cij - yi + yj. 

We call that  a spanning tree 7 of G is primal (or dual) feasible for ( P )  (or (D) ) ,  if 
the corresponding primal (or dual) basic solution is feasible for (P) (or (D)), respectively. 
By the duality theorem, if T is primal and dual feasible, then x ( T )  and ( y ( 7 ) ,  z (T) )  are 
optimal solutions for (P) and (D), respectively, in which case we say that  T is an optimal 
spanning tree. 

2. The Primal-Dual Symmetric Pivoting Rule 
Let Tp and TD be primal and dual feasible spanning trees, respectively, and xp and (yD, zÂ¡ 
be the corresponding primal and dual basic solutions. Assume also that  Tp is different from 

by only one arc, that  is, 

where (U,  U )  and (r, S )  are the difference arcs. By definition, we have 

P xÃ = 0 if ( i ,MTp, 
P 

X 2 0 if (i, j )  E Tp, 

and 

D z 2 Oif (i , j)  ~ T D ,  

z = 0 if ( i , j)  E G, 
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thus 

This relation means that  if X:,, = 0 or z g  = 0, then xP and zD are optimal for ( P )  and 
(D), respectively. 

Let 

U = 
there exists an undirected path 

between i and U on Tp - { ( U ,  v)}. 

and Tp/U = {(i , j )  E Tpi (i, j) E U X U}. Since there is no cycle on Tp/U and %/U 
connects all the nodes in U to U,  Tp/U is a spanning tree of U. Similarly, we can see that 
Tp/V is a spanning tree of V. We also have the following lemma. 
Lemma 1 1. TD/U = Tp/U and TD/V = Tp/V.  

2. Either (r, S) E U X V or (r, S) E V X U. 
Proof : Since 7p/U does not contain (U,  v),  Tp/U is included by TD, from which it follows 
that  TD/U = Tp/U. The relation TD/V = Tp/V can be shown similarly. Now (r, S) must 
connect U and V since if it does not, then there is no path from U to  V on To, which 
contradicts that  TD is a spanning tree. 

If (r, S) E U X V, we call that (r, S) has the same direction as (%v)  with respect to the 
partition (U, V) and opposite in the other case. 

If (r, S) has the same direction as (U,  v), then we let W be the cycle which consists of 
(r, S) and Tp. We define the orientation of W so that W contains (r ,  S )  as a forward-arc. 
Let 

Sp = min{ X' \ (2, j) 6 W is a backward-arc of W } 2 0, (2.5) 

and send 6p on W in its orientation. Since (U,  v) is a backward-arc of W ,  the constraint 
set of (2.5) is nonempty. As a result, a t  least one backward-arc, say (p, q), of W will have 
a flow 0, and xW will be reduced by Sp. The resulting X is still feasible for ( P ) ,  where the . . 
corresponding spanning tree is 7p - {(r, S)} + {(P, q)}. This procedure is called a primal 
pivot, and ( r ,  S) and (p, q) are called entering and leaving arcs, respectively. 

If (r ,  S) has the opposite direction as (U,  v)  with respect to (U, V) ,  then adding 

to  yi for i E U, we get a new dual feasible solution. In fact, after SD is added to  yi for i C U, 
Q V(i, j )  E { ( i f ,  1') E A \{if, l'} E U X U or (if ,  j') E V X V}, z$s not changed. 
Q b'(i,j) 6 { (if ,  j') C A 1 (2, j') E U X V }, z[ decreases by SD and for a t  least one arc 

(p, q) E U X V, z>ill become 0. 
Q V(i, j) C { (it, j') E A 1 (if ,  j') E V X U }, z i  increases by JD, thus remains nonnegative. 

This procedure is called a dual pivot, and (r, S) and (p, q) are called leaving arc and entering 
arc, respectively. Note that since (U,  v )  C U X V, h is decreased by b. 
Lemma 2 1. In  case of primal pivot, the resulting tree is different from TD by at 

most one arc. If (U,  v) leaves out, then T$ = TD, in which case Tp' is an optimal 
spanning tree. If (U,  v) does not leave out, then the partition (U, V) will be changed to 
(U^, V+) and the new ( r+ ,  S + )  E TD\Tg has the opposite direction as (U, v ) .  
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2. In case of dual pivot, the resulting tree T; is different from Tp b y  at most one arc. 
If ( U ,  v )  enters in, then Tp = T^, in which case 72 is an optimal spanning tree. If 
( U ,  v )  does not enter in, the partition (U, V )  does not change due to that dual pivot, 
and the new (r+, S+)  E 72\Tp has the same direction as ( U ,  v ) .  

Proof : Let (p ,  q) be the leaving arc from 7 P  in a primal pivot. The new spanning tree is 

thus the difference is at  most one, and if (p ,  q) = ( U ,  v ) ,  then 7; = TD.  If (p ,  q) # (u ,v) ,  
then the new (r+, S+)  is (p ,  q) .  Since (p,  q) and ( U ,  v )  are backward-arcs of W ,  there is an 
undirected path from q to U in 7;. This implies that S+ E U+ and by Lemma 1, (r+, S + )  

has the opposite direction as ( U ,  v )  with respect to (U+, V + ) .  This proves the first assertion. 
The first and second parts of the second assertion follow by a similar argument as above. 

We omit the detail. The last part is obvious since the definition of U depends only on ( U ,  v )  
and 7 p .  

This is the application of the primal-dual symmetric pivoting rule proposed in [5] to the 
minimum-cost network-flow problem. The whole algorithm is described in the following. 

procedure primal-dual-pivot((xp, c), ( y D ,  z D ,  To)) 
begin 

Set ( U ,  v) and ( r ,  S )  such that (2.1) holds. 
Calculate U and V. 
while x;z1Â¥', > 0 do 
begin 

i f r  G U and s G V then 
primal-pivot(xp, c, ( r ,  S ) ) ;  

else 
d u a l ~ p i ~ o t ( ~ ~ ,  z", 7 ~ ,  (r ,  S ) ) ;  

endif 
Update U and V .  

end 
end 

procedure primal-pivot(xP, 5, (r ,  S ) )  

begin 
Let W be the cycle which consists of ( r ,  S )  and 7 p ;  

hp := min{x^y \ (U) is a backward-arc of W } 
Let (p, q) be a minimum achieving arc; 
for (U) G W do 

if (2, j )  is a forwarding-arc of W then 
P P X := X,, + S p ;  

else 
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procedure d ~ a l - ~ i v o t ( ~ " ,  z D ,  To, ( r ,  S ) )  

begin 
Let (U, V) be the partition of N defined by ( r ,  S )  and TD. 
C : =  { ( i , j )  â A i â  U , j  â V ) ;  
do := min{ 4 1 ( 2 ,  j )  â C } and (p, q) be a minimum achieving arc; 
tor ie U do y f  := y f  + 6"; 
tor ( i , j )  E A do zg := c^ - y,D + 
TD - { ( r ,  S ) }  + { ( P ,  q ) } ;  

end 

By Lemma 2 ,  we immediately obtain the following properties on the procedure primal-dual- 
pivot. 
Corollary 3 1. T h e  primal and dual pivots are executed alternately.  

2. T h e  difference arc ( U ,  v )  does no t  change through the iterations. 

3. Convergence Analysis 
In this section, we prove global convergence of the procedure primal-dual-pivot described 
in Section 2 .  Note that  a pivot does not necessarily decrease the objective function value. 
Such a pivot is called a degenerate pivot. If we encounter a degenerate pivot, then we have 
a possibility that the algorithm fails to find an optimal solution. To avoid this situation, 
we use a notion of strongly feasible spanning tree developed by Cunningham [6] and Barr, 
Glover, and Klingman [4]. 
Definition 3 Strongly Feasible Spanning Tree A primal  feasible spanning tree i s  called 
strongly feasible if there i s  a node t such tha t  a n y  arc o,f the spanning tree whose flow i s  zero 
has  the direction towards t .  
We call t the root of the primal strongly feasible spanning tree. 

Suppose that we are making a primal pivot. If there is only one edge achieving the 
minimum of (2 .5 ) ,  then that edge is the leaving arc. In this case, the resulting spanning 
tree is also strongly feasible with root t .  

In the case where we have several candidates for leaving arc, we need more involved 
argument to  maintain strong feasibility of the spanning tree. We call such candidate arcs 
blocking arcs. The apex of the cycle W is the vertex W satisfying that:  

W = argmin{length of the undirected path along T p  connecting W' and t.}. 
w l â ‚  

We will use the following rule to choose the leaving arc: 
Leaving Arc Selection Rule: The leaving arc is the last blocking arc en- 
countered in traversing the cycle W along its orientation starting from W. 

The following lemma is well-known, and we show it without proof. See, for example, page 
421 of [l] for a proof. 
Lemma 4 If we  use  t he  Leaving Arc  Selection Rule described above, t h e n  t he  spanning tree 
af ter  the  primal  pivot i s  strongly feasible wi th  root t .  

We assume that  the initial spanning tree is strongly feasible for root t in this section. 
Lemma 4 implies that 7 p  is always strongly feasible through iterations. 

Now we check the number of primal pivots. We remark that the same number of dual 
pivots are needed in primal-dual-pivot.  
Lemma 5 There  are n o  2 n  consecutive degenerate primal  pivots. 
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Proof : Since we consider only primal pivots, we assume that (r, S) C U X V in this proof. 
We also assume that  the leaving arc is not (U, v). 

First, we consider the case where a degenerate pivot occurs when t E U. Since the 
distance from t to  U is no less than that to the apex W ,  W is contained in U. We claim that  
W is different from r. In fact, if W = r ,  we can send a positive amount of flow from node S 

to  W along Tp, thus on W as well. This means that the pivot is not degenerate, which is a 
contradiction. 

Since we can send a positive amount of flow from s to  W ,  the leaving arc must be 
contained between W and r .  This implies that t remains in U after the pivoting and that \U\ 
is decreased at least by 1. Therefore, it is impossible to  have n - 1 consecutive degenerate 
primal pivots in this case. 

Next we consider the case where t V. In this case, W is contained in V. Since we can 
send a positive amount of flow from S to t through W ,  no arc between S and W will leave 
and the leaving arc must be between v and W ,  or r and U. (Recall that  we ignore the case 
(U, v) is leaving, in which case we obtain an optimal spanning tree.) 

If the leaving arc is between v and W ,  then t will be contained in U after the pivot, and 
it is impossible to have n - 1 more consecutive degenerate primal pivots due t o  the previous 
argument. 

If the leaving arc is between r and U,  then the same argument as above shows that  
t remains in V and U \  is decreased at  least by 1. Therefore, within n - 1 consecutive 
degenerate primal pivots, U have no arcs in it ,  and in the next degenerate primal pivot an 
arc between v and t leaves. After this pivot, t is contained in U, and there are no n - 1 
consecutive degenerate primal pivots. This is the longest case where the total number of 
consecutive degenerate pivots is still less than In. 13 

Now we prove the convergence of our algorithm. 
Theorem 6 The algorithm terminates in at most 2n2 maxiE^y bi primal pivots. 
Proof : Due to Lemma 5, a nondegenerate primal pivot occurs within 2n primal pivots, 
reducing X:,, a t  least by 1. Therefore, the number of primal pivot is bounded by 2nifu 
where ip is the initial flow. The initial flow is bounded by 

4. Initialization Issue 
It is not easy in general to  find a pair of primal strongly feasible and dual feasible spanning 
trees which share all arcs but one. The initialization scheme shown in [5] introduces a large 
artificial number into the coefficient matrix, and cannot be used in the framework of network 
simplex method. We resolve this issue in this section. Specifically, we assume that  we have 
a primal strongly feasible spanning tree 7 p  and a dual feasible spanning tree TD, and that  
Tp is different from TD by more than one arc. This assumption is relatively mild since one 
can easily obtain a strongly feasible spanning tree and a dual feasible spanning tree (See 
[l]). Under this condition, we show how to obtain an optimal solution of (P) and (D) by 
using the procedure primal-dual-pivot. 

Let 
R= {(i,.)') 6 Tp (G]} ^To}. 
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By assumption, we have R := \R\ > 1. For k E {O, . . . , R}, we define an edge set Rk as 
follows: 

@ 'Ro = R. 
'Rk+l is obtained by removing an (arbitrary) edge from 'F&. 

It  is obvious that  [Rk+l l = lRk 1 - 1 and that  'RR = 4. 
For k E {O, . . . , R}, we consider the following primal-dual pair of the problems: 

where cij for ( z 9 J ' )  6 R will be defined later. We denote the optimal spanning tree of (Pi.) 
and ( D k )  by Tk.  Since (PR)  is ( P )  and (D^ is ( D ) ,  TR  is optimal for ( P )  and ( D ) .  

Before going into the details of the algorithm, we give an overview. We will define 
for (i,j} E R so that  cij 5 cij holds and that G is an optimal spanning tree of (Po) and 
(Do) .  Observe that ,  for k E {O, . . . , R}, the feasible region of (Pk)  is identical to  that of ( P ) .  
Therefore, Tk ,  the optimal spanning tree of (Pk ) ,  is feasible for ( P ~ + ~ ) .  Then we will show 
that  a dual feasible spanning tree 7:" for (Dk+i} can be obtained by pivoting one arc from 
Tk .  We can start  the procedure primal-dual-pivot using Tk and 7;" to obtain an optimal 
spanning tree Tk+' of Starting with the pair (Po)  and (D0) ,  and their obvious 
optimal spanning tree, we obtain an optimal spanning tree of (h) = ( P )  and ( D f i )  = ( D )  
after at  most R executions of primal-dual-pivot. This is the whole sketch of the algorithm. 

To define cij for (i, j )  G 72, we let (g, 2) be the dual basic solution for ( D )  corresponding 
to  the initial dual feasible spanning tree G We define 

for (z,j) ~ 7 2 .  
Lemma 7 We have 

1 ~ cij 2 Eij. 

2. G is optimal for (Po)  and ( D o ) .  
Proof : The first assertion follows from 

for (q) G R. 
Since 'R does not contain any edge in %, jj is still a node potential vector of (Do)  

corresponding to G. This and the relation 

- yi + yj = 0 for (1 ,~ ' )  E 72 

imply that jj is a node potential vector of ( D o )  corresponding to G. 
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Now we claim that is dual feasible for (Do}, which proves the second assertion. In 
fact, for ( i ,  j) f Tp, since ( i ,  j) f R for such ( i ,  l}, the dual slack is 

This completes the proof. 

Next we show how to obtain a dual feasible spanning tree 7;'l from 7^. To show this, we 
consider a general minimum-cost network-flow problem ( P )  and ( D ) ,  and consider another 
problem (P' )  which is the same as ( P )  except a unit cost on an arc. The next lemma shows 
how to obtain a dual feasible spanning tree for the dual of (P ' )  from an optimal spanning 
tree of ( P )  and ( D ) .  
Lemma 8 Let be an optimal spanning tree of ( P )  and ( D ) ,  and (g, 2) be the corresponding 
optimal solution of ( D ) .  We define another minimum-cost network-flow problem (P') which 
has the same feasible region as ( P )  and the cost function 

where 

C" C i j  i f  (6 # (U, v) { a number greater than cij if ( i ,  j) = (U, v). 

Namely, we assume that the cost function of (P')  is different from that of ( P )  only on an 
arc (U,  v). Let (D1)  be the dual of (P ' ) .  

1. If (U,  v) f f ,  then T is dual feasible for (D') ,  thus optimal for (P ' )  and (D') .  
2. If (U,  v) E T, let U and V be as in (2.3) and (2.4), 

S : =  min{ZU + a j  - cij \ (i , j)  E U X V } ,  

and (r ,  S )  be a minimum achieving arc. The spanning tree 

T' := T - {(U, v)} + { ( r ,  S ) }  

is dual feasible for (D') .  
Proof: Note that (D') is written as 

[ maximize E bi yi 
i f -N  

'  { subject to zii = - yi + y.,, ( 2 , ) ' )  6 4 

The assumption (U, v) f T implies that ij is a node potential vector of (D1)  corresponding 
to T .  Therefore, the dual slack is nonnegative since 

holds for ( i ,  j) E A. This proves the first assertion. 
In case where (U, U )  E 7, we put 
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and show that  g' is 
for (2 ,  j )  E A. Obv 

i, j) E 7, then 

a node potential vector of (D') corresponding to 7"'. Let I '  := Cy -fj;+$ 
? 

iously, for (2, j) 6 U X U or V X V, I\, = I^ holds, thus if, furthermore, 
= Zij = 0. Since (r, S) achieves the minimum of (4.3), we have 

Therefore, ij' is a node potential vector of (D') corresponding to T'. 
Finally, we show that  2' is nonnegative. For (G) E U X U, V X V, and V X U, it is 

obvious that  I,', 2 Iij > 0. For (2 ,  j) E U X V we have 

by definition of 6. This completes the proof. D 

The whole algorithm is as follows. 

procedure solve-network{(x, Tp), (y , z, TD)) 
begin 

Set R =  TP\TD and R/,; for /c = 1, .  . . , [ R [  as in the above. 
Set c" 2.7 = yi - yj if (2, j) E R and Cy = cij otherwise. 
for k = 0 , .  . . , 1x1 - 1 do 
begin 

Set (U,  v) E Rk+1 - & 
Set U and V as in (2.3) and (2.4) ; 
Set <5 = min{ zij + - cij 1 ( 2 ,  j) E U X V } and (r, S )  be a minimum achieving arc; 
if (U,  U) # (r ,  S) then 

primal-dual-pivot((x, Tp), (y,  z, '75)); 
end 

end 
end 

Now we establish the following complexity result. 
Theorem 9 The algorithm solve-network terminates within 2n3 maxipN 6; primal pivots. 
Proof: Each call for primal-dual-pivot may have 2n2 maxipN bi primal pivots due to Theorem 
9. The number of call is bounded by [R[,  thus n ,  from which the theorem follows. D 
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5 .  Application to the Shortest-Path Problems 
In this section, we apply the simplex method using the primal-dual symmetric pivoting rule 
to the shortest-path problem to find shortest paths from a source node a to the other nodes: 

where cij 2 0 for ( z l  j) E A stands for the distance between nodes z and j. The dual of (5.1) 
is the following: 

( maximize (n - l) ya - yi 
Z#U { subject to zij = cij - yi + yj (i , j)  E A 

It is well-known that any feasible spanning tree of ( S P )  is nondegenerate. Therefore, we 
have the following theorem. 
Theorem l0 If we have a pazr of przmal feaszble and dual feaszble spannzng trees sharzng 
all arcs but one, then przmal-dual-pzvot solves ( S P )  and {DSP)  wzthzn n - l przmal pivots. 
Proof : An initial flow on the difference arc is bounded by n - l, and since the spanning 
tree is nondegenerate, each primal pivot decrease the flow at least by l. Thus the theorem 
readily follows. 

Next we assume that arbitrary initial primal and dual feasible spanning trees are given. 
Notice that in the algorithm described in the previous section, we have a freedom to select 
Rk. To obtain a better complexity result for the shortest-path problems, we specify how 
to select Rk. Namely, we determine Rk+l from Rk dynamically at  the end of each przma- 
dual-pzvot. Let X be the primal basic solution corresponding to the optimal spanning tree 
for (Pk), 

(U, v )  = argmin { xij 1 (2,  j) E R k  } , 
and Rk+l = Rk - {(U, v)}. Using this selection, we have the following complexity result. 
Theorem 11 If we have a pazr of arbztrury przmal feasible and dual feaszble spannzng trees, 
then the algorzthm solve-network where Rk is selected as above solves ( S P )  and ( D S P )  
wzthzn n(n - 1)/2 przrnal pzvots. 

Lemma 12 Let Â be a set of d edges contazned in a primal feaszble spannzng tree of ( S P )  
whose buszc solutzon zs X. There exzsts an  edge (z,j) zn E such that xij 5 n - d. 

Proof : We first show the case where E is a tree containing the source a. Note that a flow 
of an edge is the number of nodes which is under that edge. (We assume that the source 
a is put at  the top of the tree; an edge of a primal feasible spanning tree of shortest-path 
problem always points out from the source.) The number of nodes which is not contained 
in the tree is n - d - l, thus there exists an edge in the tree whose flow is less than or equals 
to n - d. 

If E is not a tree containing al  we can make a tree S containing a by adding some edges 
of the primal feasible spanning tree to Â such that any leaf edge is contained in E. The 
lemma is now obvious since n - IS1 5 n - d. 
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Proof of Theorem 11 : Since any feasible spanning tree is nondegenerate, one primal pivot of 
the przmal-dual-pzvot decreases the flow xuv at least by 1. Suppose that we have finished the 
k-th execution of przmal-dual-pzvot. If Rk g TP, then we have an edge (U, U) c Rk such that 
xuv = Q, which means that Tp is optimal for {pk+l) and {Dk+l) with Zk+l = Ek - {(U, v)). If 

k Tp, then by Lemma 12,  there exists an edge ( U ,  U) in Rk Tp such that xuv 5 n- IRk 1 .  
Therefore, the total number of primal pivots is bounded by 

This completes the proof. 17 

Since the algorithm described above requires initial feasible solutions, one might think that 
the result is less important. One advantage of this algorithm however, appears in the case 
where the cost vector is dynamically changing. Suppose that we once solve a shortest-path 
problem to get an optimal spanning tree and then cost of an edge is changed. Using the 
same procedure in Section 4 we can obtain a spanning tree feasible for dual of the changed 
shortest-path problem, having one different arc from the optimal spanning tree which is 
primal feasible for the modified problem. Now we can apply the algorithm przmal-dual- 
pzvot to obtain an optimal spanning tree of the new shortest-path problem within n - l 
iterations (See Theorem IQ). 

The best bound for the network simplex method for the shortest-path problem is (n - 
l) (n- 2112 due to Goldfarb, Hao, and Kai [ l O ] .  Our result is almost the same as their bound; 
the coefficient of n2 is the same. In the Goldfarb, Hao7 and Kai's method, the initial primal 
feasible spanning tree must have the star shape, namely, the source node is connected to 
the other nodes directly. Compared to their method, our method is more flexible since an 
arbitrary spanning tree can be used for initial spanning tree. On the other hand, we have 
a disadvantage that the same number of dual pivots should be performed as that of the 
primal pivots. Therefore, one iteration of our method will cost more. 

6. Concluding Remarks 
We have analyzed convergence property of the network simplex version of the Chen, Parda- 
los, and Saunders's simplex method. We obtained the following results: 

The procedure przmal-dual-pzvot solves minimim-cost network-flow problems within 
pseudopolynomial time if a pair of primal strongly feasible and dual feasible spanning 
tree which share all arcs but one is given. 
For the case where we have a pair of primal strongly feasible and dual feasible spanning 
trees which are different from each other by more than one arcs, the procedure solve- 
network solves the problem within pseudopolynomial time. 
The procedure solve-network also solves the shortest-path problems within n(n - 1)/2  
primal pivots if initial primal feasible and dual feasible trees are given. 

One can apply the same strategy as described in Section 5 to choose Rk for reducing 
the coefficient of the bound for the number of primal pivots for minimum-cost network- 
flow probIems, although we did not describe it in this paper. The reason is because we 
want to keep the description of the algorithm as simple as possible, and, since the bound is 
pseudopolynomial, the coefficient is not so important. Polynomial or strongly polynomial 
time complexity of przmal-duai-pivot and solve-network is the subject for further research. 
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An efficient implementation of one iteration of primal-dual-pivot is another interesting 
subject. Note that we do not need to  hold two spanning trees; we only need one spanning 
tree and a difference arc. 

Finally, numerical experience  rill show whether this algorithm is really efficient or not 
in practice. 
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