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Abstract Concerning with the topics of a fuzzy rnax order, a brief survey on ordering of fuzzy numbers is 
presented in this article, and we will consider an extension to that of fuzzy sets. An extension of the fuzzy 
rnax order as a pseudo order is investigated and defined on a class of fuzzy sets on K" (n  > 1). This order is 
developed by using a non-empty closed convex cone and characterized by the projection into its dual cone. 
Especially a structure of the lattice can be illustrated with the class of rectangle-type fuzzy sets. 

1. Introduction 
Fuzzy set theory has made applications in many fields of management science, operations 
research and statistics (cf.[20, 25, 31]), in which ordering or ranking fuzzy sets is a funda- 
mental problem in fuzzy optimization or fuzzy decision making. Many methods of ordering 
fuzzy numbers have been proposed in the literature. See, for example, the survey paper, 
Bortolan and Deganif21. Also, in multiple criteria decision making several procedures for 
ranking fuzzy multicriteria alternatives are investigated (for example, [5, 291). Each method 
has its own advantages and disadvantages, so that the ordering method should be chosen to 
be suitable for the particular problem. Among various ordering methods, a partial order on 
the set of fuzzy numbers, called the fuzzy rnax order, introduced by Ramik and ~ i m ~ n e k [ 2 7 ]  
is very interesting in the concerns of pure mathematics because it is a natural extension of 
the order over real numbers and includes many theoretical and applicable potentials. 

In this paper, concentrating on the fuzzy rnax order, we present a brief survey on ordering 
fuzzy sets in a real line R ,  which motivates our new attempt of ordering high-dimensional 
fuzzy sets. The fuzzy rnax order of fuzzy numbers is extended to a pseudo order on a class 
of fuzzy sets defined on an n-dimensional Euclidean space Rn. 

The pseudo order for fuzzy sets is defined by a non-empty closed convex cone K in Rn 
and characterized by the projection into its dual cone K^. Also, the structure of a lattice 
is discussed for the class of rectangle-type fuzzy sets. So, we can imagine the much wider 
application to  the fuzzy optimization problem. Our idea of the motivation originates from 
a set-relation in W1 given by Kuroiwa[22], Kuroiwa, Tanaka and Ha[23], in which various 
types of set-relations in Rn are used in set-valued optimizations. 

The outline for this paper is as follows: The next section contains some notations and 
basic concepts of fuzzy set theory referring to  the text books (cf. [10, 261); several methods 
of ordering fuzzy sets of a real line are surveyed concentrating on the fuzzy rnax order and 
its related topics in the third section; a pseudo order on the class of fuzzy sets on R" is 
originally introduced as an extension of the fuzzy rnax order. Its characterization and the 
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structure of a lattice are considered in the fourth section. 

2 .  Notations and Basic Concepts 
In this section we describe the notation and basic concepts of fuzzy set theory (cf. 110, 20, 
26, 30, 351). 

Let R be the set of all real numbers and W1 an n-dimensional Euclidean space. We write. 
a fuzzy set on Rn by its membership function 5 : Rn -+ [O, l] (cf. [26, 351). The a-cut 
(a E [O, l]) of the fuzzy set 5 on Rn is defined as 

- 
sa := {X C Rn 1 5(x) 2 a }  (a > 0) and So := cl{x G Mn 1 F(x) > O}, 

where cl denotes the closure of the set. A fuzzy set Y is called convex if 

where a A b := min{a, b}. Note that 5 is convex if and only if the a-cut ?a is a convex set 
for all a C [O, l]. Let .^(Rn) be the set of all convex fuzzy sets whose membership functions - m 

S : R --+ [O, l] are upper-semicontinuous and normal (siipXpRn s(x) = 1) and have a compact 
support. When the one-dimensional case n = 1, the fuzzy sets are called fuzzy numbers and 
F ( R )  denotes the set of all fuzzy numbers. 

Let C(W1) be the set of all compact convex subsets of M", and Cr(Rn) be the set of all 
rectangles in R". For 5 E F@P), we have Sa C(Rn) (a G [O, l]). We write a rectangle in 
CT (Rn) by 

[X, Y] = [xi yi] X [X^ 2/21 X . . X [xn, ~ n ]  

for X = (xi, x2, - , xn),  y = (yl, y2, - , yn) E Rn with X, 5 yi (Z = 1,2 ,  - , n). For the 
case of n = 1, C(R) = CT(R) and it denotes the set of all bounded closed intervals. When 

W 

s G F (Rn)  satisfies F<, 6 C, (Rn) for all a G [O, l], s is called rectangle-type. We denote by 
^.(Kn) the set of all rectangle-type fuzzy sets on Rn. Obviously &(R) = .^(R). 

Here we give the extension principle introduced by Zadeh which provides a general 
method for fuzzification of non-fuzzy mathematical concepts. 
The extension principle (cf. [10]): 
Let f be a map from Rn to  R such that y = f (xi, + + .  , xn). It allows us to  induce a map 
through f from fuzzy sets qi = 1 ,2 , .  . . , n) on R to  a fuzzy set F on R such that 

m 

where s(y) := 0 i f  fvl(y) = 4. 
Applying the extension principle, the addition and the scalar multiplication on R are 

extended to those on .^(R) as follows: 
For 5 , F E  .^(R) and A > 0, 

where I { . ) ( - )  is an indicator. By using set operations A + B := {X + y \ X E A, y C B} and 
AA := {\X 1 X E A} for any non-empty sets A, B C M, the following holds immediately: 

(F+?)n =?^+FÃ and (Aqn = AFa (a E [O,l]). (2.3) 
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Also, for F E =x{F, F) and min{F, r'} are defined by 

and 

=x{F,r}(y):= sup { F ( x i ) ~ F ( x 2 ) }  
x i  , x 2  â‚ 

y=max(xi  , x 2 )  

min{? ,qy) :==  sup {F(xi)Aifc)}.  
x i  , x 2  â‚ 

The images of =X{?, r'} and min{F, r} are illustrated as follows: 

11 

0' Figurel: Z' and F 

0 Figure 2: =x{F, r} and ={g, r'} 

We need a representative theorem (cf. [10, 261) which is a basic tool for the fuzzy interval 
analysis. 
The representative theorem: - (i) For any F E F(Mn), s(x) = sup {a A I ~ x ) } ,  X E R. 

a<-r0,11 

i )  Conversely, for a family of subsets {Da E C(Rn) 1 0 S a S l} with Da: C Da. 
for a ' <  a andndCaDd = Da, weset Z(x) := sup { a A I D ( x ) } ,  X G R. 

a â ‚ ¬ [ O ,  

Then Z belongs to F(W1) and satisfies Sa = Da,  a E [O, l]. 

3. A Brief Survey on Ordering of Fuzzy Numbers 
In this section, we give a brief survey on method for ordering fuzzy numbers which is mainly 
concerning to  the fuzzy max order. 
3.1 Fuzzy max order 
The following binary relation =$ has been formulated first by Ramik and ~im&nek[27]. Let F 
and F be two fuzzy numbers. Then =$ F if and only if sup Fa < sup Ta and inf So, < inf Fa for 
each a E [O, l], where Fa and Fa are a-cuts of F and F respectively and Sa := [inf Fa, sup Sal 
and Fa := [inf Fa, sup Fa:]. Obviously the binary relation 4 satisfies the axioms of a partial 
order relation on F(M) and is called the fuzzy max order. 

Some properties of the relation =$ are investigated in Ramik and ~im&nek[27].  
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Proposition 1. Let F, F be fuzzy numbers. 

(i) The inequality =$ F i f  and only i f  there are m, n,  t* E R with m <  ̂ t* < n, :(m) = 
W 

r (n)  = 1 and F(t) > F(t) for any t < t* and F(t) < F(t) for any t > t*. 

f i )  The  following three conditions (a) to  (c) are equivalent: 

(a) 3' < F) (b) iEGx{F, r} = F, (c) min{S, r} = Z', 
where m x  and max are defined in (2.4) and (2.5). 

For the fuzzy max order on fuzzy numbers, Congxin and Cong[6] proved that the bounded 
set of fuzzy numbers must have supremum and infimum. The basic proof is as follows. For - 
any sequence of fuzzy numbers let ; D  := lim sup inf Sna' and Do: := lim sup sup Sna', 

a'?" n>l ,,'fa n> 1 

where Sna is the a-cut of Fn. Then, the family of closed subsets {DÃ := [D,, D,,] 1 a E [O, l]} 
satisfies condition (ii) of the representation theorem, so that S defined by 

s (X) := sup {a A lDa (X)} (X E R) 
o:â‚¬[O,  

belongs to ^(M) and F= sup&. 
n> l  

Similarly, the infimum of {Sn}r=l is constructed. These results derived the interesting 
mathematical fact that the continuous fuzzy-valued function on a closed interval has a 
maximum and minimum. Also, the structure of lattice for fuzzy numbers is discussed in 
Zhang and Hirota[37]. 

To be suitable for computations and treatments, a class of fuzzy numbers, called an 
L-R-fuzzy number, is introduced in many text books. 

Let L, R : [O, oo) -+ [O, l] be two non-increasing and not constant functions with L(0) = 
R(0) = 1 and L(xo) = R(xo) = 0 for some XQ > 0. A fuzzy number S is called an L-R-fuzzy 
number if there exist real numbers m, n(m < n),  a, P(a, f3 > 0) such that 

L ( y )  for X <  ̂ m, 
for m < x < n ,  

R ( 7 )  for n <  ̂ X. 

Given functions L, R with the properties in the above definition, the L-R-fuzzy number 
specified by m, n ,  a, (3 is denoted by an ordered tetradic (m, n, a, which includes the 
triangular and trapezoidal fuzzy numbers. Then, the fuzzy max order on the set of L-R- 
fuzzy numbers is characterized by inequalities of the elements. (cf. 1271). 

In particular, the symmetric fuzzy number F = (m, m,  a, is called an L-fuzzy num- 
ber and denoted by (m, a\L. Furukawa[14] extended the L-fuzzy number (m, a)^ with a > 0 
to the case of a G M and proved that for a,B 2 0 the fuzzy max order (m, a)L 4 (n,/^)^ 
if and only if xy\a - ,B1 <: n - m where xo is the zero point of L. Moreover Furukawa[14] 
introduced the linear operations on the set of extended L-fuzzy numbers by 

A(m, a}^ = (Am, A a ) ^  for any scalar A ? R. 

The fuzzy max order is proved to be adapted to the above operations. Also Furukawa 
1151 introduced a parametric order relation on L-fuzzy numbers which is an extension of the 
fuzzy max order and its total order relation. The fuzzy optimization problems related to 
the fuzzy max order are dealed with many authors; e.g., Furukawa[15], Kurano et al.[21], 
Yoshida[34] and others. 
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3.2 Other ordering methods 
Besides the fuzzy max order, a large collection of methods for ordering fuzzy sets of linear 
line has been developed in the literature. A simple method for ordering fuzzy numbers 
consists of the definition of ordering or ranking function. Let f : F ( R )  -+ R, where a 
natural ranking relation < on R is defined. Then, using this ranking function, we can define 
the order relation =$ on F ( R )  as follows: 

If, for all F, F E ^(R), f (F+ F) = f (3 + f (P) and f(As) = A f (Z) for A 2 0 are satisfied, it 
is called a linear ranking function. As a simple ranking function, we can construct a family 
of ranking procedures as follows: 

Several variants of this family are discussed by the authors; see, e.g., Adamo[l], Campos, 
Gonzalez and Vila[4], Fortemps and Roubens [l 21 and Yager[33]. Gonzalez and Vila[17] 
defined the dominance relations by means of a ranking function evaluated into R". For a 
R"-valued ranking function f : F ( R )  -+ R", the order relation =$ on F ( R )  is defined using 
an order relation on Rn(defined in the next section) as follows: 

- s 4 F' implies f (3 =& f (F) 

From flexibility of order relations on R", this seems to be useful in the suitable optimization 
problem of fuzzy decision making. 

Another approach to  ordering fuzzy numbers is discussed by using the fuzzy ordering (cf. 
[36]).  From the point of view of possibility theory, Dubois and Prade[8] defined four fuzzy 
relations on ^(R) : Pos (F 4 F), Pos (g -< F), Nes (F =$ r )  and Nes(F -< F). 

4. On an Extension to a Pseudo Order on F ( R n )  
In this section, we extend the fuzzy max order on F ( R )  to a pseudo order on ^(W).  
4.1 A pseudo order on ^(RP) 
We will review a vector ordering on R" by a non-empty convex cone K C W. Using this 
K ,  we can define a pseudo order relation =$K on R by X + y if and only if y - X E K. 
Let R p e  the subset of entrywise non-negative elements in Rn. When K = K& the order 

will be denoted by =$n and X =$n y means that xi < yi for all z = 1 ,2 ,  . , n, where 
X =  ( x i , x 2 , . . .  )X") a n d y =  (y i ,y2 , .* .  i ~ n )  E R n -  

First we introduce a binary relation on C(Rn), by which a pseudo order on F ( R n )  is 
given. Henceforth we assume that the convex cone K C R" is given. We define a binary 
relation =$K on C (Rn) by abuse of notation. For A, B E C(Rn), A B means the following 
(C.a) and (C.b) (cf. [22, 231): 

(C.a) For any re E A, there exists y E B such that X y. 

(C.b) For any y E B, there exists X E A such that  X +K y. 

Lemma 4.1. The binary relation =$K is a pseudo order on C(Rn). 
Proof. It  is trivial that  A + A for A E C(Rn). Let A, B, C E C(Kn) such that  A + B 
and B + C. We will check A + C by two cases (C.a) and (C.b). Case(C.a): Since 
A ^.K B and B =$K C, for any X G A there exists y E B such that X =$K y and there exists 
z E C such that  y =$K z. Since + is a pseudo order on R", we have X =$K z. Therefore it 
holds that for any re G A there exists 2; E C* such that X + 2;. Case(C.b): Since A =$K B 
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and B C, for any z ? C there exists y E B such that y <K z and there exists X A 
such that X =$K y. Since <K is a pseudo order on R", we have X + z. Therefore it holds 
that for any z E C there exists X E A such that X =$K z. From the above (C.a) and (C.b), 
we obtain A <K C. Thus the lemma holds. U 

When K = R" the binary relation on C(Rn) will be written simply by =$n and for 
[X, g], [X', yl] C r ( W ,  [X, Y] <n [X', Y'] means X 4 n  X' and Y <n  yl- 

Next, we introduce a binary relation + on ^(Rn): Let 5, F E .F(Rn). The relation - 
s =$K F means the following (F.a) and (F.b): 

(F.a) For any X E R", there exists y E Rn such that X + y and 5(x) < F(?/). 

(F.b) For any y ? R", there exists X E Rn such that X y and 5(x) 2 ?'(g). 

Note that the notation 6 denotes the binary relation on Rn, C (Rn), .F(Rn) with some 
abuse of notation. 
Lemma 4.2. The binary relation + is a pseudo order on (̂W1). 
Proof. It is trivial that 5 5 for ? E ^(Rn). Let 's, F, p E ^(Rn) such that 5 F and - 
r p. We will check 5 + p by following two cases (F.a) and (F.b). Case(F.a): Since - 
S =$K T and F for any X E Rn there exists y Rn such that X + y and ^(X) < r{y), 
and there exists z E Rn such that y $K z and r[y) < p(z). Since .̂K is a pseudo-order on 
R", we have X z and 'sfx) < p(z). Therefore it holds that for any X E W1 there exists 
z E Rn such that X + 2 and 5(x) < Case(F.b): Since 's + F and F +K p, for any 
z E Rn there exists y E ]Rn such that y + 2: and ?(y) <, f i),  and there exists X E Rn such 
that X =$ y and :(X) < T(y) . Since < K  is a pseudo-order on R", we have X <K z. Therefore 
it holds that for any z E Rn there exists X E Rn such that X + 2; and 5(x) < p(z). From 
the above (F.a) and (F.b), we obtain F <K p. Thus the lemma holds. D 

The following lemma implies the correspondence between the pseudo order on .F(Rn) for 
fuzzy sets and the pseudo order on C(Rn) for the a-cuts. 
Lemma 4.3. Let 5, ? E F@P). 5 + r^ on .F(Rn) if and only if 'so 4 Fa on C (Rn) for all 
a E (0, l ] .  - 
Proof. Let 5, F E .F(Rn) and a E (0, l]. Suppose 's =$K r on .F(Rn). Then, two cases (a) 
and (b) are considered. Case(a): Let X ? Fa. Since 5 F, there exists y E Rn such that 
X y and a < ?(X) <, F(y). Namely y E 6. Case(b): Let y ? Fa. Since 2 4.K ?, there 
exists X G Rn such that X =$K y and 5(x) > F(y) > a .  Namely X E SQ. Therefore we get 
Fa Fa on C(Rn) for all a E (0, l] from the above (a) and (b). 

On the other hand, suppose Fa =(K on C(Rn) for all a E (0, l]. Then, two cases (a') 
and (b') are considered. Case(a'): Let X E R". Put a = Fix). If a = 0, then X =$K X and - 
s(x) = 0 <  ̂ q x ) .  While, if a > 0, then X E go. Since fa ,  there exists y E Fa such 
that X =$K y. And we have s{x) = a < r{y). Case(b'): Let y E R". Put a = F(?/). If a = 0, 
then X X and s{x) 2 0 = r{y). While, if a > 0, then y G G. Since Fa there 
exists X E & such that X =$K y. And we have ?(X) 2 a = F(y). 

Therefore we get F =$K F on .F(Rn) from the above Case (a') and (b'). Thus we obtain 
this lemma. D 

For the case of K = R+, Lemma 4.3 says that the order relation =$-\ on ?=(R) (that is, 
n = 1) is the fuzzy max order mentioned in Section 3. 

Define the dual cone of a cone K by 

K^ := {a E Rn 1 a . x  2 0 for all X 6 K}, 

where X y denotes the inner product on Rn for X,  y E R". For a subset A C Rn and a E Rn,  
we define 

a -  A := { a - X  1 X E A} (C R). (4.1) 
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The definition (4.1) means that a A is the projection of A on the parallel line with the 
vector a if a - a = 1. It is trivial that a - A E C(R) if A G C(Rn) and a G Rn. 
Lemma 4.4. Let A, B G C(Rn). A + B on C(Rn) if and only i f a e A  < I  a -  B on C(R) 

se A + B on C(Rn). Consider the two cases (a) and (b). Case(a): For any 
X E A, there exists y E B such that X <K y. Then y-X E K .  If a G K + ,  then a - ( y - X )  2 0 
and i.e. a - X  <, a -  y. Case(b): For any y G B ,  there exists X E A such that X <K g. Then 

x ? K. If a 6 K+, then a. (y - X) 2 0 and i.e. a - X <: a .  y. From the above cases (a) 
(b), we have that a a A  <l  a B. 

On the other hand, to prove the inverse statement, we assume that A + B on C(Rn) 
does not hold. Then we have the following two cases (i) and (ii). Case(i): There exists X G A 
such that y - x K for all y G B. Then B n (X + K }  = 0. Since B and X + K are closed 
convex, by the separation theorem there exists a G Rn (a # 0) such that a y < a X +a  z for 
all y G B and all z E K. Now, we suppose that there exists z G K such that a .  z < 0. Then 
\z E K for all A > 0 since K is a cone, and so we have a X + a - Az = a - X + Aa - z -+ -cc 
as A -+ m. This contradicts a - y < a - X + a .  z. Therefore we obtain a .  z > 0 for all z E K ,  
which implies a E K^. Especially taking z = 0 G K, we get a , y < a X for all y G B. 
This contradicts a - A =<;l a B. Casefit): There exists y G B such that y - x 6 K for all 
X G A. Then we derive a contradiction in the similar way to the case (i). Therefore the 
inverse statement holds from the results of the above (i) and (ii). The proof of this lemma 
is completed. D 

For a E W1 and Z G F (Rn) ,  applying the representation theorem we define a fuzzy 
number a - F G F ( R )  by 

a-s{x) := sup { a ~ l ~ . ~ ~ ( x ) } ,  X E R .  
a â ‚ ¬ [ O ,  

The following theorem gives the correspondence between the pseudo order + on F (Rn)  
and the fuzzy max order on ^"(R). - 
Theorem 4.1. For S , F G  F(Rn) ,  s =$K 7 i fand onlyif a . F < l  a e T f o r  all a E K+. 
Proof. By (4.2) and the representative theorem, we have (a - = a Fa for all a E [O, l]. 
On the other hand, from Lemmas 4.3 and 4.4, 4 K if and only if a - So, =<:I a for all 
a G K+. Thus, noting the definition of the max order <l  on F ( R ) ,  Theorem 4.1 follows. 
U 

For &}gl C ^(Rn) and Z' G .F(Rn), lim Fk = F means that sup pn(ska, -+ 0 
k+oo ~ â ‚ ¬ [ O ,  

( k  -+ CO), where FkÃ is the a-cut of Fk and pn is the Hausdorff metric on C(Kn). 
Lemma 4.5. Let {Fk}gl C F ( R )  and F E ^(K) such that Fk =$l ?,+l (k 2 I) and - W 

limfe+oo sk = S. Then we have Fi <l  F. 
Proof. Trivial. D 
Theorem 4.2. Let {&}g1 C T-(Rn) and F c T )  such that < K  Sk+~ (k 2 1) and 

W W W 

l imk+oo~f:  = S. Then we have sl S .  - 
Proof. From Theorem 4.1, for all a ? K^ it holds that a .  Si, a - S k + l  ( k  :> 1). Also, 
since (a - G)a = a -Fko, from (4.2) and p l (a -  Fto, a - F n )  S llaIIpn(Fkn, Fa) for all k 2 1, we get - - 
limk+oo a sk = a - s where lla[l is a norm of a.  By Lemma 4.5, it holds that a Fl =$l a . s 
for all a E K^'. From Theorem 4.1, we have 5 ̂.K F. D 
Remark. Let consider a continuous map g : [O, l] Ã‘ F(Rn) .  A point xo is said to be 
efficient if xo G [O, l] and g(xo) =<K g(x) for some X E [O, l] implies g(x) = g(xo). Then, by 
applying the same idea as in Lemma 3.2 of Furukawa[13], we observe that there exists at 
least one efficient point in [O, l]. In fact, considering, if necessary, a partial order + on the 
class of the quotient sets with respect to the equivalence relation ^K defined by F WK F if 
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and only if 5 + F and F + 5, we can assume that + is a partial order on F(Rn) .  By 
Theorem 4.2 and the continuity of g, {g(x) \ X E [O, l]} can be proved to be an inductively 
ordered set. So, by Zorn's lemma {g(x) \ X E [O, l]} has an efficient element. 
4.2 Further results 
In this section, we shall investigate the above pseudo order on &(Rn) for a polyhedral 
cone K with K+ C Rn. To this end, we need the following lemma. 
Lemma 4.6; Let a, b E R>nd A 6 Cr(Rn). Then for any scalars Al ,  A2 2 0, it holds 

where the arithmetic in (4.3) is defined in (4.1). 
Proof. Let Ala X + A2b - y G Al(a A) + A 2 ( b e  B)  with X,  y E A. It suffices to show that 
AIa . X + \yb y G (Ala + A&) . A. Define z = (zl,z2, - , zn) by 

Then, clearly (\ia+A2b)-z = ha-x+&b-y .  Since A E Cr(Rn), z E A, so that ha-x+A2b-y E 
( h a + & b ) - A .  D 

Henceforth, we assume that K is a polyhedral convex cone with K^ C R> i.e., there 
exist vectors b1 E Rxi = 1,2, - , m) such that 

K =  {X â ‚ ¬  I b Z + x  2 Ofor all i= 1 , 2 , - - -  ,m}. 

Then, it is well-known (cf. [30]) that K +  can be written as 

The above dual cone K +  is denoted simply by 

where cone S denotes the conical hull of set S. The pseudo order on C r ( P )  is charac- 
terized by the pseudo order + on Cr(R). 
Corollary 4.1. Let K +  = cone{bl, b2, . . , bm} with bi E R> Then, for A, B E Cr (Rn), 
A B if and only if b1 . A  b l -  B for all i = 1 , 2 , . . .  ,m. 
Proof. We assume that b1 - A b1 B for all i = 1,2, - - m , m. For any a G K + ,  there exist 
Ai 2 0 with a = Aibl. From Lemma 4.1, we have: 

Thus, by Lemma 4.4, A + B follows. By applying Lemma 4.4 again, the 'only i f  part 
of Corollary holds. D 
Lemma 4.7. Let a ,b  6 R D n d  FE Fr(Rn).  Then, for any AI , \ ,  2 0, 

where the arithmetic in (4.4) is given in (2.1), (2.2) and (4.2). 
Proof. For any a E [O, l], it follows from the definition and Lemma 4.6 that 
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The last equality follows from (2.3). The above shows that (4.4) holds. Cl 
The main result in this section is given in the following. 

Theorem 4.3. Let K+ = cone{bl, b2, , bm} with 6' R". Then, for Z, F E F, (Rn), 
,-., - 
s +K r if and only if b i .Z  61 bi .Ffor  i = 1 9 2 , - a -  > m .  

Proof. I t  suffices to  prove the ' i f  part of Theorem 4.3. For any a E K*, there exist A, > 0 
with a = &bi. Applying Lemma 4.7, we have 

,-., 

From Theorem 4.1, F + r follows. D 

1 

Figure 3: Ex{Z, r} 

Zhang and Hirota[37] described the structure of the fuzzy number lattice (./^(R), 
When K = R", K+ = Rn and K+ = cone{el, e2, - , en}. So that,  by Theorem 4.3, we see 
that for F,? E &(Rn), s s<;n F means ez S <;l ei . r for all i = 1 , 2 , - - -  ,n. Therefore, by 
applying the same method as Zhang and Hirota[37], we can describe the structure of the 
fuzzy set lattice (& (Kn), &). Figure 3 illustrates =X{?, r} for Z, F E & (R2). 
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