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Abstract This paper considers a generalized fuzzy random version of bottleneck spanning tree problem 
in which edge costs are fuzzy random variables. The problem is to find an optimal spanning tree under 
chance constraint with respect to possibility measure of bottleneck (maximum cost) edge of spanning tree. 
The problem is first transformed into a deterministic equivalent problem. Then its subproblem is introduced 
and a close relation between these problems is clarified. Finally, fully utilizing this relation, we propose a 
polynomial order algorithm that finds an optimal spanning tree under two special functions. 

1. Introduction 
There are two different kinds of decision-making method by mathematical programming in 
uncertain environment. One is based on a stochastic programming and the other a fuzzy 
programming. Many researches so far about fuzzy programming have been summarized 
in [4]. These two programmings have been compared in [5, 17, 201. This paper treats a 
decision-making problem under the situation where fuzzy factor and random factor may be 
included at the same time. Kwakernaak [l31 introduced fuzzy random variable to represent 
the element containing both of fuzzy and random factors simultaneously, and its applica- 
tions have been investigated in, for example [3, 231. Luhandjula [l41 developed a linear 
programming model for the situation with both fuzziness and randomness. His model uses 
the concept of fuzzy event, which was introduced by Zadeh [21], to treat the vagueness 
of random events. On the other hand, this paper investigates the ambiguity of random 
variable. In this paper, we introduce a fuzzy random variable into the spanning tree prob- 
lem, which is one of discrete network optimization problems. The spanning tree problem 
together with its variations has a wide range of applications especially to computer network 
comn~unication, and is an important problem to investigate. Ishii et al. [6, 71 have proposed 
stochastic minimum spanning tree problem with random edge costs, while Itoh et al. [g] 
have proposed a fuzzy version. 

This paper proposes a generalized version of spanning tree problem, i.e., fuzzy random 
bottleneck spanning tree problem, which is to find an optimal spanning tree under a chance 
constraint with respect to possibility measure of bottleneck edge of spanning tree. In other 
words, the problem is a fuzzy random version of [g]. 

Section 2 gives definition of fuzzy random variables. Section 3 formulates a fuzzy stochas- 
tic bottleneck spanning tree problem and shows that it is transformed into a deterministic 
equivalent problem P by using results of stochastic programming. Section 4 introduces 
maximum spanning tree problem Ph with parameter h as a subproblem of P. The close 
relation between P and ph is derived and an optimal solution of P can be found from a 
certain subproblem ph. Further utilizing this relation, Section 5 proposes an algorithm 
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that finds an optimal spanning tree under two special functions of g in a polynomial time. 
Finally, Section 6 concludes this paper and discusses further research problems. 

2. Fuzzy Random Variable 
In real system, we often face with the situation where two different types of uncertainty, 

fuzziness and randomness, appear simultaneously. Randomness involves uncertainties in the 
outcome of experiment, on the other hand, fuzziness involves uncertainties in the meaning of 
data. Experiment involving vague data such as linguistic data is regarded as a phenomenon 
containing randomness and fuzziness. A typical example can be seen in knowledge-based 
system, in which the combined knowledge of a group of experts. Randomness occurs when 
each expert is selected at random. The knowledge given by each expert is vague. 

The fuzzy random variables is a concept that can be applied to such a situation and was 
first introduced by Kwakernaak [13]. Kruse and Meyer [l21 slightly modified the definition 
of Kwakernaak. 

Puri and Ralescu [l61 defined a slightly different definition and established the mathe- 
matical basis of fuzzy random variables. The concept introduced by Puri and Ralescu is 
a generalized theory of random set and is more general due to the measurability condi- 
tion which is commonly employed to formalize it. Under the condition that fuzzy random 
variable is unimodal, Kwakernaak - Kruse and Meyer's and Puri and Ralescu's definition 
coincide (see [22]). 

N. Watanabe [l91 gave a simple but universal definition for fuzzy random variables, 
which is useful in applications. In this paper, we choose it as definition of fuzzy random 
variables. 
Definition 1 Let (0, Bn, P) be a probability space and (A, BA) a measurable space, where 
0 i s  a set, A is  a class of fuzzy set, B^ and BA are a-algebras, and P is a probability 
measure. A fuzzy random variable Y is  a measurable mapping of 0 into A. This means that 
{W IY ( W )  E A} E Bn for arbitrary A E BA. 

The following theorem is sufficient conditions for Definition 1. 
Theorem 1 Let y be a measurable mapping of a probability space (0 ,  Bn, P) in to  a mea- 
surable space (l?, Br) and Y a mapping of 0 in to  A. If there exists a bijection h : A Ã‘ l?, 
then there exists a measurable space (A, BA), and a mapping Y of (0, B ,̂P) in to  (A, BA) 
i s  a fuzzy random variable. 

The above theorem implies the next corollary immediately. 
Corollary 1 Let Y be a mapping of 0 into A. Suppose that for 'v'w E 0 ,  the membership 
function / i ~ ( ~ )  of a fuzzy set Y(w) can be represented as ^Â¥(^(U = f (U; y(w)) for some 
function f (U; 0)) where 0 i s  a parameter vector such that 01 # O2 implies f (U; 81) # f (U; B^\. 
T h e n  Y is  a fuzzy random variable. 

If the membership function of a fuzzy set Y is determined by the location parameter y 
and if y is a random variable, then Y is a fuzzy random variable from corollary. In this 
paper, we treat a simple fuzzy random variable, where the mean of fuzzy number is replaced 
by a random variable. It is satisfied with the above corollary. The conditions in corollary is 
fairly restrictive, but useful in application. 

3. Problem Formulation 
Let G = (N, E) denote undirected graph consisting of vertex set N = { v i ,  u2, - , vÃ£ and 
edge set E = {ell e-i, a , em} C N X N. Moreover cost c, is attached to edge ej .  A spanning 
tree T = (N, S )  of G is a partial graph satisfying the following conditions. 
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1. T has the same vertex set as G. 
2. IS1 = n - 1 where IS1 denotes the cardinality of set S. 
3. T is connected. 

T can be denoted with 0 - 1 variables x17 x2,. - . Â¥ xm as follows. 

T : x i = 1 ,  e i e S .  
xi = 0, ei $S. 

Conversely, if {edxi = l} becomes a spanning tree of G with vertex set N ,  then X = 

(xi, X^, - , xm) is also called spanning tree hereafter in this paper. 
The minimal spanning tree problem is to seek a spanning tree X minimizing Cjxj 

and can be solved by using some greedy-type algorithm [11, 15, 18, 21. In this paper, we 
consider a bottleneck spanning tree problem, which has been first introduced by Ishii et 
al.[8]. When each cost of edge is a real value, the problem is formulated as follows. 

PO : minimize max{ci 1 xi = l} 

subject to X G X. 

PO can be also solved by using the algorithm for a minimal spanning tree problem. Ishii et 
al. has investigated the problem where each edge cost is a random variable. 

In actual system, decision-maker often face with a situation where there exist both 
fuzziness and randomness. Let us consider the construction of a communication network 
that connects some cities directly or indirectly. If each communication quantity per unit time 
between one city and another city is constant, the problem of minimizing maximal capacity 
necessary for handling these quantities becomes a bottleneck spanning tree problem. In 
reality, however, there is a situation where these quantities vary randomly with time and 
some expert can estimate these quantities approximately. In such a case, these quantities 
can be considered as fuzzy random variables and we consider a spanning tree problem where 
ci is a fuzzy random variable characterized by the following membership function; 

Each d&) is assumed to be distributed according to the normal distribution N(ph 0-2) with 
mean pi and variance 02, and di (W) and dj (W) (i # j )  are mutually independent, and pi is 
a spread and is a positive real value. L ( - )  is a reference function and is the following linear 
function; 

L(t) = max(07 1 - \tf to\ \  

where to is a positive real value. 
Since each edge cost contains both of fuzziness and randomness, we cannot use the 

optimal criterion and the solution method for a usual minimal spanning tree. As a matter 
of course, the less each edge cost involved in minimal spanning tree is, the better it is. 
Accordingly, we give the fuzzy goal "Each edge cost involved in a minimal spanning tree 
is about less than fl", and represent it with a fuzzy set characterized by the following 
membership function PG; 
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where f l  < fo .  We give the possibility measure with respect to the fuzzy goal as follows. 

Pci(w)(G) represents a degree of possibility that each edge cost involved in a minimal span- 
ning tree is about less than f l  under the possibility distribution of the edge cost is given, and 
varies randomly due to the randomness of Then we propose the following problem 
PI as a decision-making method of PO, which is a chance constrained programming problem 
and is based on the possibilistic programming by Inuiguchi et al. [4]. 

Pi : maximize h+g(a)  

subject to Pr (min{Pci(y)\ei (E S }  > h) > a ,  

where g(a) is a differentiable and nondecreasing function of a. In the previous paper [10], 
we have investigated the problem maximizing only possibility measure, h. Pi is to maximize 
not only possibility measure but probability measure and so is a more generalized problem. 
Next, we transform Pi into the deterministic equivalent problem. 

Pc, ( g )  > h implies 

where p&(-) and L*(-) are the following pseudo inverse functions. 

L* (h)  = to( l  - h) ,  

^W = W 1  - f o )  + fo. 

Therefore Eq(3.1) is transformed as follows. 

Since Pr (di  ( W )  5 L* (h),& + p& (h ) )  = Pr [(di  ( W )  - ̂ )/a, < (L* (h),& + p& (h)  - k ) / a i ]  and 
( d i ( ~ )  - pi)/ai is a mutually independent random variable distributed according to a stan- 
dard normal distribution N(0, l ) ,  
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where F denotes the distribution function of N(0 , l ) .  Thereby PO is equivalent to the 
following problem, which is a deterministic one; 

P; : maximize h + g ( 4  
m 

subject to V log F (L*  (h) Pi + P;,. (h) - >-i 1 
xi > logo;, - < a < 1, 

i=1 0-2 
2 

Putting (3.2) and (3.3) into (3.1), P; is transformed into the following problem; 

P :  maximize h + g ( a )  
m 

subject to Y_ log F' ( h(fi  - f~ - Pito) + Pito + fo - 
1 

Xi>loga ,  - < a < l ,  
i= 1 0-i 2 - 

Hereafter we discuss the solution method of P. 

4. Subproblem P and Its Relation to P 
In order to solve P, we introduce the following subproblem; with parameter h. 

m 

ph : maximize X log F (c, (h))xi 
z=1 

subject to X G X,  

where cAh} = (h(f1 - fo - ,&to) + ,&to + fo  - pi)/% which is a strictly decreasing function 
of h since fo > fl and to, 6, Oi > 0. Ph is an ordinary maximal spanning tree problem 
with edge cost log F (ci (h)) and can be efficiently solved. Let xh denote an optimal solution 
of Ph and Zh the optimal value of P .  

Lemma 1 Zh is  a strictly decreasing function of h. 

Proof. For hi < h-^, from the optimality of Xh2,  

The last inequality holds because F(ci(h)) is a strictly decreasing function of h. 

Let (X*, h*, a*) denote the optimal solution of P .  Then the following theorem holds. 

Theorem 2 

1. Zh >log&* ̂ =^h* > h. 
2. Zh = loga* ̂ ==  ̂ h* = h. 
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3. Zh < loga* ̂  ̂h* < h. 

Proof. Clearly Zh is a continuous function of h. 

(1)- 
If Zh = El log F (ci (h))x" > log a*, then since log F ( S )  is strictly increasing and continu- 
ous, 

m m 

n o g  ~(c . (h) )x^  > >g ~(c i (h1) )x t  2 log a*. 
i= 1 i= 1 

holds for hi which is sufficiently close to but greater than h. The above relation shows 
(Xh, hl, a) is feasible for P, that is, h < hi < h*. 

W+= 
From the monotonicity of F(ci(h)) and feasibility of (X*, h*, a*), for h < h*, 

log a* 5 X log F(ci(h*))x; < y" log F(ci(h))~;  5 zt. 

(3): 
First, note that 

The above relation and monotonicity of F(ci(h)) show h* < h. 

(3)' 
Zh > log a* contradicts the optimality of h* from h > h* since it implies the feasibility of 
(Xh, h, a Â ¥ )  
(2) Proof is automatically done after (1) and (3) are shown. 

D 

By theorem 2, the feasible solutions (Xh, h, a) satisfying ELl log F (ci (h)) X? = log a 
include an optimal solution (X*, h*, a*).  Now, let t = log a, that is, then t = log F (ci (h))xf 
holds. 

Property 1 t is a strictly decreasing and continuous function of h. 
Proof. Note that t is a total edge cost involved in a maximal spanning tree when h is fixed. 
Since ci is strictly decreasing and continuous and F and logarithm function are strictly in- 
creasing and continuous, log F (ci (h)) is a strictly decreasing and continuous function of h. 
When the order of edge cost is given, a set of a maximal spanning tree can be determined 
uniquely. There exists an unique point hi,- where log F (ci (hij)) = log F (c,- (hn)), i.e., a cross- 
ing point where the order of two cost changes. In other words, log F(ci (hij)) > log F(cj (hy)) 
in the interval (-00, hi,-] and log F (ci (hij}) 5 log F(cj (hij)) in the interval [hij, m) .  There- 
fore there is a possibility that the edge set consisting of a spanning tree change at the point 
h. . -  

2-n  

The hG that have a value between (0 , l )  are sorted in the nonincreasing order as follows. 

where s is the number of different value of h^. In the subinterval (hi, /^+l), the order of 
each edge cost is uniquely determined. Therefore the set of a maximal spanning tree is also 
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uniquely determined. Since only one pair of edges are exchanged in the endpoint of each 
interval, t is continuous at the endpoints of the interval. Since t is apparently a strictly 
decreasing function, t is a strictly decreasing and continuous function. 

If neither hi, is included in (0, l), then the order of edge cost does not change in [O, l] 
and hence the set of a maximal spanning tree is uniquely determined. 

Let f be a probability density function of a standard normal distribution N(0, l ) .  Then 
the following property holds. 

Property 2 t is a concave and strictly decreasing function of h in each subinterval. 

Proof. t is clearly differentiable in each subinterval (hj, hl+l), j = 1,2, . . . , S.  The first 
and the second derivative function is calculated as follows. 

since ci(h) > 0 from the following conditions 

Now we substitute a = et into g(o) and let v(t) = g(et). Further, let 

which is a objective function of the original problem P. Thus we seek h* maximizing u(h) 
and then (X*, h*, 6) becomes an optimal solution of P where 6 corresponds to h*, i.e., 
g(&) = u(h*) - h*. By the chain rule, 

Combining the above results, if dv/dt < 0 and d2v/dt2 > 0, then u is a convex function 
of h in each subinterval and then the endpoints of subintervals [hj, j = 0, .  - S 

include the optimal value of h, h*. While if dv/dt > 0 and d2v/dt < 0, then u is a concave 
function in each subinterval and then the endpoints of subintervals or the point h such 
that (dv/dt)(dt/dh) = - 1 include the optimal value of q, h*. In the next section, we shall 
consider two special types of q ( a )  satisfying the concavity of u(h). 

5. Some Typical Cases of g(a) and Solution Procedure 
In this section, we investigate two special cases of g(a), that is, g(@) = A log o and g(a) = 

- A / a 7  where A is a positive constant value. These cases are especially given as examples, 
which can be solved easily. 
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5.1. Two special cases of g(a) 
Case (a) g (a) = A log a 
In this case, u(h) = h + A log a = q + At. For each subinterval [h,+-i, h,+], k = l ,  . . . , s + l, 
u(h) is described as follows. 

By differentiating u(h) with h in each subinterval h,+) 

since d2t/dh2 <: 0 and A > 0. That is, u(h) is a concave function of h in each subinterval. 
Therefore, the possible candidate points maximizing u(q) are h\, . . . , hs or the points such 
that dt/dh = -l/A. 

Case (b) g(a) = - A / a  
In this case, 

For each subinterval h,+], k = l, . . . , s + l, u(h) is described as follows: 

where Sh is the edge set of the maximum spanning tree corresponding to h, that is, 
l/F(cj(h)) is the product of F(cj(h)) for X; = 1, i.e., the j th element of X" = 1. By 

differentiating u(h) with h in each subinterval (hkyl, h,+) , 

since d2t/dh2 < 0 and A > 0. In this case, u(h) is also a concave function of h in each 
subinterval. Therefore, the possible candidate points maximizing u(h) are hi , .  . . , hg or the 
points such that dt/dh = -(l/A)et. 

In the above cases, the following property holds. 
Property 3 In each subinterval (hj, hi+l), there exists at most one point satisfying du/dh = 

0. 
Proof. In each subinterval, du/dh is a strictly decreasing function from d2u/dh2 < 0 and 
is continuous. If d ~ / d h \ ~ ~ _ - , + ~  > 0 and du/dh\h,-O < 0, then there is only one point h 
satisfying du/dh = 0 from the mean value theorem. Otherwise, there is not such a point 
that satisfies the condition du/dh = 0. 13 
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5.2. Solution procedure 
As mentioned earlier t is not be differentiable at hl,  . . . , h s .  Thereby we obtain the following 
solution procedure: 

1. Find all the crossing points hi, . . . , hs .  Then calculate the left and the right derivative 
of du/& at each h,, r = 1 , .  . . , s that is, L ,  = d ~ / d h \ ~ , + ~ ,  Rr = d ~ / d h l ~ - ~ .  

2. Find the subintervals [h,, such that R, > 0 and < 0, and find the points 
h: satisfying d u / d h  = 0 in these subintervals. 

3. Let hi = { h ^ d t / d h  = - I / A } .  Compare u(h:), h: E hi and u(hk),  A; = 1 , .  . . , s and 
choose the maximizer h* of U ( - )  among h E h A  U { h i , .  . . , h,}. Then ( X h * ,  h*, t ( h * ) )  is 
an optimal solution of P. 

Let T&, m) denote the time to compute minimal spanning tree, where n is the number 
m that of edges. Then the following theorem is obtained. 

e above procedure finds a n  optimal solution of P in at most 0(m2TMST(n, m))  
computational t ime i f  ĥ  can be found in at most TMST(n, m) computational t ime.  

The validity is clear from the above discussion. 
lexity) The calculation of hl,  . . . , he takes at most 0(m2 log m) computational time 

because there exist at most 0(m2)  crossing points of c i (h )  = c j ( h ) ,  i < j <. m, and 
kes O ( m 2  log m) and the time complexity of the spanning tree algorithm is 

1 is at most 0(m2) and L,, R, can be calculated in O ( m ) .  The total time 
complexity is max { 0 ( m 2  log m), 0 (m2)  TMST (n, m}} = O(m2TM& m))  since the time 
to compute a minimum spanning tree takes more than O(log m). 

6. Conclusion 
We have considered a bottleneck spanning tree problem with fuzzy random edge cost and 
formulate the problem based on maximizing a possibility measure under a certain chance 
constraint. We do not treat the model based on maximizing a necessity measure, but it can 
be solved by the similar method proposed in this paper. Since we have proposed solution 
procedures for only two special cases. it is necessary to consider more general types of g(a). 
Furthermore we are trying to extend the idea in this paper to some other fuzzy random 
combinatorial optimization problems. 
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