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Abstract This paper investigates a kind of resource allocation problem which maximizes a strictly con- 
cave objective function with double layers of constraints on the total amount of resources. Resources are 
distributed on a two-dimensional space, say, a geographical space with time flow, and are doubly constrained 
in the sense that the total amount is limited on the whole space and the subtotal amount is constrained 
at each time too. We derive necessary and sufficient conditions for an optimal solution and propose two 
methods of solving it. Both methods manipulate Lagrange multipliers and make a sequence of feasible 
solutions that ultimately satisfy necessary and sufficient conditions for optimality. It is shown by numerical 
computation that the proposed methods are faster than other well-known methods. 

1. Introduction 
This paper investigates a kind of two-dimensional resource allocation problem with con- 
straints doubly layered on the total amount of resources and proposes new methods to solve 
the problem. The resource allocation problem originates from the search problem studied 
by Koopman[7] first. He considers the problem of distributing search effort on a continuous 
space so as to maximize the detection probability of a stationary target and formulates it as 
a problem of analytically finding an optimal density function of search effort. His study was 
followed by J. de Guenin[2] who generalized Koopman7s work and derived some optimality 
conditions by a variational method. Generally speaking, it is difficult to analytically obtain 
an optimal function. When we deal with complicated problems, we often divide a search 
space into many small regions and numerically obtain solutions with the help of comput- 
ers. The problem of distributing search effort on the continuous space is converted to a 
discrete-search-space version. The search problem for a stationary target on the discrete 
search space is well-formulated as a problem of optimizing a separable function and is easily 
solved by the Lagrangean multiplier method. 

The resource allocation problem comes from the search problem as stated above and 
hence its main purpose is to optimize the separable function with a constraint on the total 
amount of resources as Ibaraki and Katoh[5] show. On the other hand, in fields of non-linear 
programming and global optimization which Konno[6], Mangasarian[8], Martos[9], Horst et 
al. [3] and Horst and Tuy[4] have contributed to, more generalized problems and methods 
are mainly discussed. In this paper, we investigate a problem that is more generalized than 
most resource allocation problems in the sense that the objective function has a more general 
concave form and the total amount of resources are doubly constrained on a two-dimensional 
space, but which is also more specialized than some general convex programming problems. 
The problem is to maximize a concave objective function under constraints doubly layered 
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110 R. Hohzaki & K. Iida 

on the weighted total amount of resources. This type of problem has abundant practical 
applications. 

formulate the problem in the next section. In Section 3, necessary and sufficient 
conditions for an optimal solution are derived by introducing Lagrange multipliers and the 
relation between constraints of the problem and the multipliers is elucidated. In Section 4, 
two algorithms are proposed for an optimal solution and their validity is proved. In Section 
5, by some examples, we investigate some properties of the optimal solution and examine 
the computational efficiency of the proposed methods. 

2. Description and Formulation of the Problem 
We distribute resources on a two-dimensional discrete space. As a representative 
case, we take the space consisting of a geographical space of K cells and a 
time space of T time points which are denoted by K = {l, - ,K} and T  = 

{ 1 ,  - . , T}, respectively. 
Let y (2, t)  be the amount of resources distributed on (2, t )  G K X T .  It is assumed 
that y(2, t)  is non-negative and limited by an upper bound m^ > 0 which could 
be +oo. The distribution of (p (i, t) brings cost c w ( i ,  t )  where > 0. At each 
time point t G T ,  the upper bound of the cost-expenditure is given by @(t) > 0 
and on the whole space, a non-negative real number M is given as the limit of 
the total amount of cost. We call the constraints imposed at time points and on 
the whole space the doubly layered constraints. 
For a distribution plan y = {p(& t), z G t E T} , we gain reward f ( y)  . The 
function f (y)  is assumed to be two times continuously differentiable and strictly 
concave and furthermore bounded on the feasible region determined by (AS2), 
which is mathematically defined later by inequations (2)-(4). 

The purpose of the problem is to maximize the reward function f (9) under the above as- 
sumptions. We can flexibly transform the basic model to other ones by relaxing constraints, 
e.g. ma = oo or @(t) = m. The problem is formulated as a concave maximization problem, 
which is equivalent to a convex minimization problem. 

PM ' y x  /(P) 

T K 

w(i, t)  5 M . 
t=11=1 

(4) 

In the case that El Camit 5 @ (t) , the limit @ (t) is not useful and in the case of <!> (t) 5 
M, M is not necessary to the problem. Therefore, we assume the following inequalities 
without loss of generality. 

K 

citmit > @(t), t G T 

@(t) > M . 
t=l  

If /(O) # 0, we can regard the problem as the maximization 
g((p) = f (y)  - /CO). For this reason, we assume f (0) = 0. 

(6) 

of a new objective function 
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Convex Problem with Doubly Layered Limits 111 

Many researchers have studied special cases of this problem. In the typical resource al- 
location problem, the maximization of the concave and separable function is studied under 
constraints (2) and (4), which can be redefined on the one-dimensional space. The separa- 
bility of the objective function brings many fruitful results: the polynomial-time algorithm 
for the optimal solution and so on[5]. In search theory, there have been some studies[l, 111 
of the concave maximization problem with constraints (2) and (3). In these studies, separa- 
bility in time permits use of a solution method that repeats the polynomial-time algorithm 
proposed for the typical resource allocation problem at each time t. The more general form 
of the objective function and the additional constraint (4) on the total amount of resources 
make PM harder. 

3. Necessary and Sufficient Conditions for Optirnality 
Since problem PM is to maximize a strictly concave objective function on a closed convex 
feasible region, it has a unique optimal solution. Here we derive necessary and sufficient 
conditions for optimality by introducing some Lagrange multipliers and elucidate the relation 
between the constraints of the problem and the multipliers. 
3.1 Necessary and sufficient conditions 
Let Q be a feasible region fulfilling constraints (2)-(4). 
Theorem 1 (Necessary and Sufficient Conditions) The feasible solution p E Q which 
satisfies the following conditions is optimal. 

There exist non-negative multipliers A ,  vt7 t = 1, , T which guarantee for every (i, t )  E 

and for every 

if u t > O ,  

furthermore, 

if A > 0 ,  

Proof: Let consider a Lagrangean function with multipliers A, ut, ??it and i = 
l , . . . , K ,  t = l,---,T: 

T K  T K  

+ EE'̂ (^.t) + EEd('"it - 4 i . t ) )  - 
t=li=l t=12=1 

(12) 

Then we have conditions (7)-(11) from the Kuhn-Tucker conditions[10] . Q .E.D. 

Now let us define function Q f /Qv(< t)/cit by p^(y(i, t); p-n} where (p-a denotes a vector 
consisting of all other variables except y (2, t )  . From the strict concavity of f ( a )  , the function 

pu(x; is monotone decreasing for X, equation pa(x; = y has a unique root X that 
is the inverse function p;'(y; p-a). Considering the boundedness and differentiability of 
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f (-)> p& 9-4 is well-defined on the domain of 0  < X < m .  Now we extend the domain 
of ,D./ ( S )  for computational convenience. Let sit (5  0 )  be the lower limit of the domain 
within which pit{x; 9-4 has a finite value. If we redefine pay; p-it) = sit in the case 
of lim.c-,ait+o pit($; p-it) < y  and &-it) = m in the case of lim- pa(x; > y, 
the analytic extension of the domain to (-m, m) is possible; that is, we have the function 

p-it) well-defined on y  (-m, m). For example, if we have a concrete expression of 
pit{x; p-it) = exp(h(p-it}/(x+a)) where h(p-a} is a finite positive-valued function of vector 
p-;( and a is positive, the inverse function p-it) becomes h ( ~ - ~ ~ ) /  log y  - a .  Though 
the inverse function can not be defined for all non-positive y, the extended definition gives 
pit1 (jy; p-it) = m for any y < 1 and sit = -a. By this extended function, the solution 
satisfying conditions (7)-(9) can be expressed in the form 

where symbol [ X ] :  indicates 
b ,  i f  b < x  

[ X ] :  = x ,  i f  a < x < b  . 
a ,  i f  x < ^ a  

Using this notation, we can transform constraints (3)  and (4)  into (14) and (15): 
K 

[ -l ( A  + U,; ^ i t ) ]  "" 5 Cit  Pit 
I== l 

Relation between the upper limits of cost and Lagrangean multipliers 
Here we elucidate some relations between the Lagrange multipliers and the local upper 
limits {W), t  E T }  and the total upper limit M. Consider the problems PwIi with limits 
{ M l ,  +l (t)] and h-, with limits { M 2 ,  s ( t ) }  while upper limits { m d }  are assumed to be 
the same for both problems. Let {Al ,  ul t} ,  {A2,  u21} be optimal multipliers and pi7 p2 be 
optimal solutions for the problems PMi and respectively. If ^p\ # y>2, we have the 
following relation from the strict concavity of f (-). 

Let I. E {(U) I y l ( i , t )  = O}, Il = { ( i , t )  1 0 < p l ( z l t )  < m a }  and I2 = { ( i , t )  1 p l ( i l t )  = 
mit ] . From the optimality of pi satisfying conditions (7)- (g),  it follows that 9  f /9p1  ( 2 ,  t )  < 
cit(\i + vlt) for ( i , t )  G 10, 9 f / 9 m ( i , t )  = cit(A1 + ult) for (2, t)  G I1 and 9 f / 9 y i ( i , t )  2 
cit(A1 + f i t )  for ( 2 ,  t )  G 12. By subdividing the whole space into To,  I1 and I% (16) can be 
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Noting that ( 2 ,  t )  = Ml if Al > 0 and xi city1 (i, t )  = $1 ( t )  if vlt > 0 from the 
complementary slackness, we can transform the above expression to 

5 f ( p 1 )  +Al(M2 - M 1 )  + ^ f 1 , ( @ 2 ( t )  - @ 1 ( t ) )  
t 

We finally obtain an important inequality. 

f ( ~ 2 )  < f (W) + M M 2  - M l )  + f l t  ( @ 2 ( t )  - @l ( t ) )  . 
t 

(17) 

Now we are ready to describe some relations between the Lagrange multipliers and the limits 
of cost. 
Lemma 1 There are the following relations between the total limit of cost M and the La- 
grange multiplier A. 

(i)  When A approaches oo, an optimal solution becomes p = { O ,  - - , O}. That is, A --+ oo 
corresponds to the limit of M = 0 .  

(it) When two problems PM,, PM, where only the total limits Ml and M y  are different 
have optimal multipliers AI > 0 and A2 > 0,  respectively, Al < A2 if M\ > M2 and 
vice versa. 

(iii) Assume that problem PM has optimal multiplier A* = 0 and the weighted total amount 
of optimal solution p* is C = xi,( citp*(i, t ) .  For arbitrary limit M' 2 C ,  p* and 
A* = 0 remain optimal for problem PM,. The number C gives the minimum of the 
weighted total amount of resources corresponding to the multiplier A* = 0.  For this 
reason, we call C the marginal limit of resources. 

Proof: (i) When A approaches oo and vt is finite, + vt; p-it) = sit 5 0 holds for all 
(i , t ) and the assertion follows from (13).  
(ii) Suppose that problems PMi , PM2 have optimal solutions p i ,  ip^ and optimal multipliers 
AI,  A 2 ,  respectively. Since AI,  A2 > 0,  Ml = ~ i t y i ~ ( i ,  t )  # M2 = Eijt citv2(2, t )  and 
therefore p1 # 9 2 .  By applying Q1 ( t )  = h ( t )  to inequality (l?), we obtain f ( p 2 )  < 
f ( p l )  + Al ( M a  - Ml ) . Similarly we have f ( p l )  < f (a) + A2 ( M l  - Mg ) and consequently 
the following relation holds. 

A1 (M1 - M ^ )  < f ( 9 1 )  - f (9%) < A2(Ml - M2) 
It tells us that AI < A2 if M1 > M2 and Al > if Ml < M2.  
(iii) Let p'* and A'* be optimal solution and optimal multiplier for the problem PM,. Since 
C <: M', f ( p * )  <: f (p'*). Assuming p* # p'*, we have f ( p f * )  < f ( p * )  by substituting a = 

p*, p2 = p'*, ( t )  = % (t ) and AI = 0 into inequality (l?'). It contradicts f ( p * )  <: f (p'*).  
Therefore p* = y/*. Q.E.D. 

Similarly we can obtain the relation between the local limit @(t) and the multiplier L+ at 
time point t E T. 
Lemma 2 There are the following relations between the local limit of resources @(t) and 
Lagarange multiplier vt at time point t G T .  

When ut approaches oo, an optimal solution at time t becomes {ifi(i, t )  = 0 ,  z G K}.  
That is, vt --+ oo corresponds to the local limit of @(t) = 0.  
When two problems where the local limits %( t )  and h ( t )  are different only at time t 
have optimal multipliers ult > 0 and vzt > 0,  respectively, qt < ~2~ i f  ^i{t) > a2(t) 
and vice versa. 
Assume that problem PM with the local limit of resources @(t) has optimal multi- 
plier i/* = 0 and the local weighted amount of optimal solution p* at time t is 
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D = E, cit i f*(i ,  t ) .  For the problem with arbitrary local limit W ( t )  2 D,  i f *  and 
U! = 0 remain optimal. T h e  real number D gives the m i n i m u m  of the local weighted 
amount  of resources at t ime t corresponding to the multiplier v! = 0 .  For this reason, 
we call D the marginal local limit of resources at  t ime t .  

As seen from Lemma 1 (ii), the correspondence between A and M varying on [ O ,  oo) is 
one-to-one in a part of the half line [ O ,  00). The following theorem describes a similar 
correspondence between Q ( t )  and v^. 

(i) T h e  necessary and sufficient condition of the marginal limit being 0 is  
that 

for every ( i ,  t )  E K X T .  Otherwise, the marginal limit Mmax corresponding to  A = 0 
is  given by the weighted total distribution in the following problem. 

0 5  if(i,t) <m^ i?K, t ET 
K 

(20)  

~ i t i f ( i ,  t )  < @(t),  t E T . 
i=l 

(21)  

Specifically, letting i f *  be the optimal solution of the problem RPT, the marginal limit 
i s  Mmax = xi,( citif*(i,  t ) .  Using a n e w  definition of Lax G 1 p m )  = O}, 
there i s  the following relationship between the total limit M and the optimal multiplier 
A for problem P M .  
The  multiplier A = 0 corresponds to  arbitrary M of Mmax < M and the limit M = 0 
corresponds to  arbitrary A of Lax < A. T h e  multipliers Ai and A2 of 0 < \\ < A2 < 
Amax correspond to  M l  and M 2  of Mmax > M l  > M 2  > 0 ,  respectively, which indicates 
the monotonic one-to-one correspondence o n  0 < A < Amax and Mmax > M > 0 .  
The  necessary and sufficient condition of the marginal local limit being amax(r) = 0 
at t ime  r i s  that, given optimal solution { i f* ( i ,  t ) ,  i E K ,  r # t E T }  at all other 
t ime points except r ,  

for every i E K .  Otherwise, the marginal local limit amax(7) corresponding to  uT = 0 
i s  given by the local weighted distribution at  t ime  r for the following problem. 

t=l i=l 
Specifically, letting ip be the optimal solution of the problem R P L T 7  the marginal local 
limit i s  given by Qmax(7-) = E, ciTif( i ,  r ) .  W e  make a new feasible solution by adding 

{ i f ( i ,  T )  = 0 ,  E K }  at t ime r to  optimal solution { i f ( i , t ) ,  i E K ,  r # t E T }  at 
any other t ime points except r and define umaX (7) = sup,{<; 1 p,^{\ + c i f % r )  = O}. 
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Then there is the following relationship between the local limit @(r)  and the optimal 
multiplier ur for problem PM.  
The multiplier vr = 0 corresponds to arbitrary @(r) of @rnax(7)  < @(r) and the limit 
@ ( T )  = 0 corresponds to arbitrary ur of v ~ ~ ~ ( T )  < ur. The multipliers vlr and 
of 0 < VIT < ~ 2 7 -  < u ~ ~ ~ ( T )  correspond to @ l ( ~ )  and @ 2 ( ~ )  of @ m a x ( ~ )  > @ i ( ~ )  > 

> 0,  respectively, which indicates the monotonic one-to-one correspondence on 
0 < V~ < Vmax ( r )  and Qmax ( r )  > @ ( r )  > 0. 

Proof: First we prove part (i). The marginal limit Mmax = 0 means that the optimal 
solution becomes p = 0 for any M > 0. If Q f  /9y(i, t )  < 0,  f ( p )  < f (0 )  + V f (0)  p < 0 
holds for any 0 # p E Q, which indicates that the optimal solution is p = 0. Conversely, if 
Q f /+(i, t)\ir,=o > 0 is possible for some ( 2 ,  t ) ,  a small increase of p(?, t )  makes the objective 
function value positive. We have verified the necessary and sufficient condition of Mmax = 0. 
In this case, it is self-evident that A = 0 and vt = 0 are optimal. 

In the case that 9 f /Qy ( i ,  t)\̂ =o 5 0 does not hold, we prove that the marginal limit is 
given by the weighted total amount Mmax of the optimal solution of problem R P T .  Let p~ 
and f M  be the optimal solution and the optimal value of PM,  respectively, and let p* and 
f * be those of RPT.  First f * = /Mmax is clear. For 5 M ,  f * = /Mrnax < f M  is valid. 
Considering that the problem R P T  is made by deleting a constraint on the total amount 
of cost from PM, f M  5 f * follows. Now we have f M  = f * = fMmax. For M < &ax, the 
assumption of f M  = fMrnax leads us to p~ = p* from the uniqueness of the optimal solution, 
which means that the weighted total amount of p~ is Mmax. This contradicts that p~ has 
the limit M on the total amount. Therefore, we have f M  < fMrnax- Next we prove that 
the optimal multiplier of PMmax is A = 0. The necessary and sufficient conditions for the 
optimal solution of R P T  are given by the following conditions in analogy to Theorem 1: 

There exist the non-negative multipliers {vt, t G T }  satisfying 

. . - ,  
and for t = 1, - - , T ,  

K 

i f  V,  > 0,  y>tp( i ,  t )  = @(t )  . 
i=l 

Comparing with the above conditions and conditions (7)-(11) for the problem PMmax , we 
easily know A = 0. From the above results of f M  < fMrnax for M < &ax7 f~ = f~~~~ for 
Mmax < M and the optimal multiplier A = 0, we conclude that Mmax gives the marginal 
limit. 

Next we prove that the optimal multiplier A corresponding to M = 0 must fulfil1 Amax < A. 
Since the optimal solution must be p0 = 0 in the case of M = 0, xi cit'fÂ¡(i t )  = 0 < @(t) and 
hence v, = 0 from condition (10). Now we have pO(i, t )  = [/);'(A; o)]? as the representation 
of the optimal solution. From the monotone non-increasingness of p;1 ( S )  and the definition of 

0 .Amax, (i, t )  = 0 holds for Amax $ A. For A < \^ , p (i, t )  = (A; 0 )  > p*max; 0 )  = 0 
holds on a certain point (i, t )  , which contradicts M = 0. Now we conclude that Amax < A. 
From Lemma 1 (ii) and the preceding discussion, it has been verified that 0 < Al < A2 < 
Amax implies Mmax > Ml > M2 > 0. The proof of the part (ii) can be done similarly by 
usingLemma2. Q.E.D. 
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4. Methods for Optimal Solution 
Derivation of optimal multipliers 

Assume that we have the optimal solution p* = { p * ( i ,  t ) ,  i E K t T} for problem PM. 
Here we consider a procedure to derive the optimal Lagrange multipliers from p*. We define 
a function of y 2 0 and ip E XV which indicates the subtotal amount of cost at time t .  

This is a monotone non-increasing continuous function of y. Since pgl(y; p-it) = sit 5 0 in 
the limit of y 4 m, we have limy400 St(y ,  p )  = 0. In the limit of y -+ -03, p$(y; p-it) = m 
and then limy+_oo St ( y , i p )  = xi C,( mit . Therefore, St ( y  , i p )  is continuous and monotone 
decreasing on the range of values of (0, xi c^m^)  and there exists a unique root [( t  , p) G 
- 0 3 ,  oo) for the equation S t ( [ ( t ,  p ) ,  p )  = < )̂ with 0 < @(t)  < E ~ m i t .  Now we sort 

{ [ ( W * ) ,  t in the order of values, such as Gi7 p*) 5 [ ( ta  p*) < 2 ̂ T , @ ) -  

uppose A* < G, p*). Then since St (Q*) > St ( [ ( t  , p*),  p*) = W ) ,  it must be > 0 
m order to satisfy St(A* + U:, ip*) < @(t)  corresponding to inequality (14) and we have 
A* + ,L$ = [ ( t  , v*) from condit n (10). Suppose A* c ( t ,  f ) .  If v* > 0 ,  &(A* + U& p*) < 
St(\̂ )̂ <St(<(t,^\^) = ( t )  holds which is inconsistent with (10). Therefore U; = 0. 
Summarizing the above discussion, we have the following relation among A*, v! and [ ( t ,  p*). 

(t,ip*), V + 4 = W , $ )  and ~ ^ ( i , t )  = @(t)  , (27) 
i 

i f  A* > <(f,^), U; = o .  (28) 
The multiplier A* must be equal to or greater than [ ( t l ,  p*). Otherwise the supposition 
of A* < f f i l ,  ip*)  implies that equality holds in condition (3) at all t G T from (27) and 
contradicts the basic assumption (6). Now there is a certain integer I such that [ ( t l ,  p*) 5 

- Y < 'f")- From (27) and (B),  we obtain v; = - - U = 0 and A* + vTk = 

[ ( t k ,  p*),  fc = 1 + 1, - ,T and the optimal solution as follows. 

Now we can define the weighted total distribution by the above representation. 
^ ( v ? )  K T K 

Q(\, ip )  = E E tit, [p; (A; p-itk)]:"* + S E sitk [/'ii#(tk7 0;  it^)]:^^ 
k=l i=l k=wJp)+l i=l 

where 

,m) = max{k l ^ k ,  v)  5 A} . (31) 
In the case of pA(ip) = T ,  the second term of (30) is neglected and Q(A, p)  also represents 
the weighted total distribution in the case of ^{tr7 p*) <: A*. We can derive the optimal 
multiplier A* from the function Q ( - )  as follows. 

(i) In the case of Q(O, p*) <: M ;  If V > 0,  Q(A* , i f ' )  < Q(0,  p*) 2 M holds which has 
inconsistency with condition ( 1  1) and hence A* = 0. 

(ii) In the case of Q (0 ,  p *) > M ;  We have A* > 0 from the constraint Q(>*, p*) <: M and 
moreover Q(A*, p*) = M from (11). Considering limhoo Q(A,  p*) = 0 ,  we see that 
there exists a unique A* satisfying Q ( A *  p*) = M on 0 < A* < m. 

Now we have obtained the procedure of giving the optimal multipliers A*, v: when the 
optimal solution p* is provided, as follows. 
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If Q(0, if*) < M ,  the optimal multiplier is A* = 0. Otherwise, it is uniquely determined by 
Q(A* , if*) = M. The other multipliers {v:} are given by v: = 0 for k = 1, . - , /L^* (if*) and 
v:k = ffik, if*) - A* for k = pp (if*) + 1, . , T. Then the optimal solution if* is represented 
bv 

'itk 

[PG^* ; if'-itk )] 0 7 k=l,... 1 ^A* (if*) 
if*(< tk) = 

[ f t i ~ k , ^ i f ' - ~ ~ ) ] : ~ ~  1 k=PA*( i f* )+ l l - - ' lT  
(32) 

where T time points are sorted in the order of values of {((t, if*), t = l, - - , T}, such that 
{(ti1if*) :^(t2,if*) 5 " *  :^(try@) for tl,t2, 1 t ~ -  
4.2 Algorithms for optimal solution 
We propose two algorithms for optimal solution of PM. 
(1) Gradient-completion method 

This algorithm varies the feasible solution so as to satisfy Eqs. (10) and (1 1) and ter- 
minates when Eqs. (7)-(9) are fulfilled. The equations (7)-(9) are the condition for the 
gradient of the Lagrangean function, which is the reason why we call the algorithm the 
gradient-completion method. The outline of it is written down as follows. 

Algorithm GC 
If condition (18) is satisfied, terminate. Zero vector is the optimal solution. 
Otherwise, set j = 0 and any initial feasible solution if), for example, if0 = 

{o, . . .  ,o}. 
Using if' , define p,';'(-; dit) and obtain a set To = {t ? T 1 St(0, y') 5 <S>(t)} 
and Tc = T - To. Let L be the size lTol of To. Number elements of To such as 
tl , t2 , , ti. For t 6 Tc, calculate {[{t, ifi) \ t Tc} satisfying St (f (t, @), ifi) = 
@(t) and assign each element of Tc numbers tL+I, , tT in the order of 0 < 

< ((tT, ŷ ). Obtain A by the following procedure. @ ~ + l , ^ )  5 - - .  
(i) I f Q ( O , i f ~ ) <  M,se tA=O.  

(ii) If Q (0, if'} > M, calculate a unique A > 0 for which Q (A,  if') = M. 
Generate a new feasible solution (p3 using [(tk, ~ 3 )  and A as follows. 

If (p3 = i f 3  terhinate. The current if3 is the optimal solution. Otherwise, 
execute the following line search and generate the next feasible solution = 

if/ i  + e*(Fi - 

where 6 

el = 

e2 == 

{ 

e3 z 

{ 

94 F 

J 
I 

= min{Oi, O2 , 133 , 04} and O1, 02, 03 , O4 are given by four estimations. 
oo , if there i s  no ( i , t )  for  which <y (2, t )  - $(iy t) < 0 

î  (i,t 
minil' { - ( , t ) -A4 t )  1 ip'(i, t) - @(i, t)  < O} , otherwise 

(35) 

oo , if there i s  no (i, t )  for  which @J (i, t )  - ̂ { i , t )  > 0 
mi, -4 (i,t) 

mini.' { G. ( i , t )-Ã§ (.,l) 1 @3(i1 t )  - ̂{g t) > 0) , otherwise 
(36) 

oo , if there i s  no t for  which Y,ica((p'{i,t) - y'(i,t)) > 0 

c,,(? ~ l - ~ .  (i7t)) 1 'Z,, cit(F3(i, t )  - if'(< t))  > 0 

, .  . M-L , citfJ (i,t) 
otherwise ^  ̂cit(^(i7t)-~3{i,t)) 
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Increase j by one, j = j + 1, and go to (GC2). 

The range of 9 in the line search (34) is estimated by considering the feasibility of p' ( 2 ,  t )  = 

@(i ,  t )  + Ã‡($(i t )  - p%, t ) ) :  0 5 p?, t )  < m,,, xi if% t )  < @(t)  and $ ( 2 ,  t )  5 M .  
From definitions (35)-(38), all of 01, 0% 63, are equal to or more than 1 and at least one 
of them is finite and hence 1 < g < oo. 

The procedure of (GC2) and the representation (33) are the same as (29) assuming that 
p' is optimal. By (33),  (p1 is generated so as to satisfy conditions (10) and (11). If ip = p< 

e conditions (?)-(g) become valid at the same time, which indicates that current solution 
is optimal. 

In the case of $3 # y>7 in (GC2),  the next solution p'̂  is generated. Then if we can 
clarify that f ( p i )  < f (@+l), the proof that limj-ioo f ( p i )  converges to an optimal value 
will be completed from the boundedness of the feasible region Q and the finiteness of f ( m ) .  

Since is given by the line search in direction +Y' - if the direction always becomes 
an ascent direction, that is, V f (@) (/p' - p1} > 0, we have fW)  < f ( p i ^ ) .  The assertion 
of ~f ( p j )  ($ - p3) > 0 is made by the mean value theorem and the strict concavity of f ( m )  

below. 

V f ( p J )  (9 - pi) = X (g(t ,  t ,  - v%? t ) )  

-(^ (i, t )  - ̂' ( z ,  t ) )2  
S2.f(ri  l ay( ' ,  p(& t )  = (1  - Qit)ifH(i, t )  + eitp'(i, t )  

v(k7-r) = ift'{k, r ) ( ( k ,  7-1 # ( 2 1  t ) )  

We subdivide K X T into I. = {(z ,  t )  1 /y( i ,  t )  = O } ,  Il = {(z ,  t )  \ 0 < ^ j ( z ,  t )  < mit} and 
IS { ( i ,  t )  I {̂t, t )  = "iit}, and then we can transform the above expression as follows. 

2 E cit(A+yt)(-$(z,t)) + E cit(A + v t ) ( q ( i 7 t )  - y>"(z,t)) 
(i,t)(:Io i,t)<=h 

+ V" + ~t)(mit - p'(i, t)) 
(i,t)<:l2 

= X c , t ( A  + lJ t ) (^( i , t )  - ̂ ( z , t ) )  
i,t 

= A E(ci t$(z l  t )  - city'(2, t ) )  + ~t E(c . t$( i ,  t )  - cityi'(i, t ) )  
i,t t i 

> 0 
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The last inequality comes from the fact that '& cit? (i, t)  = M for A > 0 and xi c @ '  (2, t)  = 

(E>(^) for vt > 0. Now the proof is completed. The gradient-completion method generates a 
sequence of feasible solutions (p0, u>1, (p2, with the increasing values of f (p") < f ((p1) < 
f ((p2) < - - - and terminates to give an optimal solution. 
(2) Tot a1 amount-completion method 

We propose another algorithm for optimal solution. We know that there is a simple 
relation between the optimal multiplier A and the weighted total amount of resources as 
stated in Theorem 2. First we calculate an optimal solution y^* and the marginal limit 
Mmax corresponding to A = 0. If Mmax < M, the optimal solution of the problem is 
nothing but (p'". If Mmax > M, the algorithm adjusts A and finds a solution satisfying 
xi,t cit@*(2> t )  = M at last. The varying of A means the indirect adjustment of the weighted 
total amount of resources. That is why we call the algorithm the total amount-completion 
method. Let (p* be the optimal solution of the problem. The outline of the algorithm is as 
follows. 

Algorithm TAG 

(TAC1) If condition (18) is satisfied, terminate. Zero vector is the optimal solution. 
Otherwise, calculate Amax =  up^,^{$ 1 p;' (c; 0) = O}. 

(TAC2) By a subprocedure ALA which is described later, for A = 0, calculate an optimal 
solution (pA* and the marginal limit Mmax = xiit ~ ~ ~ ( p ~ ( z ,  t). 

(i) If Mmax <: M, terminate. The current (p'" is optimal. 

(ii) If Mmm > M ,  set A = 0 and A = Amax. 
(TAC3) Update A by A = (A + A)/2 and calculate by the subprocedure ALA. 

(i) If xiit c#'" (i, t) = M, terminate. The current solution (p'" is optimal. 
(ii) If xi,, tit (pyi, t)  > M, set A = A and repeat (TAGS). 

(iii) If Eit tit$* (i, t )  < M, set \ = A and repeat (TAC3). 

ALA is the subprocedure to give the optimal solution y^* corresponding to the given mul- 

Algorithm ALA 

As a tentative solution, take (p delivered from the procedure TAG. Substitute 
{<ft{i, t),  i E K} which is derived after the execution of steps (AL2)-(AL4) at 
time t E T for a part {q(i, t )  , i E K} of p. Denote this operation by operator 
At. Repeat the operation of (p = At(p for all t E T and make (p converge to a 
vector which is y^*- 
At a fixed time point t,  initialize ut = 0 and obtain {(p(?, t),  i E K} satisfying 
ip(i, t )  = [&'(A + ut; (?-it)]?t by a subprocedure ALA(vt) which is described 
later. If c^&, t )  < @(t), terminate. Otherwise estimate ut and (p satisfying 
Ei + ~ t ;  = @(t) by the following steps (AL3) and (AL4). 

Set v_ = 0 and P being large enough. 
Update ut by ut = (v_ + and obtain { ~ ( i ,  t)  , i E K} satisfying p(i, t) = 

[pzl(A + ~ t ;  by a subprocedure ALA(vt). 

(i) If E, tit (p (i, t)  = @ (t) , terminate. 
(ii) If zi c.t~>(i, t)  > @(t), set v = ut and repeat (AL4). 

(iii) If xi citv(i7 t)  < Q((), set P = vt and repeat (AL4). 
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The subprocedure ALA(vt )  is a repeating procedure as follows. 

Algorithm AL\{ut) 

Start from current solution ip and repeat the substitution of [JIG' ( A  + vt; for p( i ,  t )  
at every i = 1,2 ,  . . , K until ip converges. 

The total amount-completion method terminates and then gives an optimal solution p* 
as the gradient-completion method does. First let us make sure that Algorithm ALA (v t )  
produces a solution satisfying p( t ,  t )  = + vt; p- i t )]Ft  at time point t .  The calculation 
of [JI;'(,A + vt; i-it)]r7"t is equivalent to finding a p( i ,  t )  satisfying the following conditions. 

9 f  ( P )  < A + Vt , f v(i7 0 = 0 7 a(,, t )  - 

- .  . 

The conditions are the necessary and sufficient conditions for the optimal solution of the 
following univariate convex programming problem. 

l' t 

s.t. 
0 <: p@,  t )  5 m a  

{ p ( j ,  t ) ,  z # j E K }  are  given. 
{ p ( j ,  r ) ,  j ? K ,  t # T E T }  a r e  g iven .  

The above objective function which we denote by f ( y )  is strictly concave and hence the 
problem has a unique optimal solution. By substituting an optimal solution for only an 
element p(< t )  of the current tentative solution { p ( i ,  t ) ,  i E K }  at time t ,  which we denote 
by operator Tn,  it follows that ?(p)  5 f(ray?) while equality holds only if p = r i tp .  
Therefore, the repetition of Fa for z E K  brings the convergence to a solution p which 
fulfills p (i ,  t )  = (A  + vt ; p-it)] for every i E K  at t . 

In steps (AL3)  and (AL4)  of Algorithm ALh while fixing p at any other time point 
except t ,  { y(i,  t )  , i E K }  satisfying the following conditions at t is obtained. 

v(', t )  = + vt; p-it)]5'" , ' â K  
i f  vt > 0 , c,ty(z, t )  = @(t)  . 

1 

These conditions are equivalent to the following conditions as seen by analogy to Theorem 
1 

for i E K  and 
i f  vt > 0 , ^c , , y ( i , t )  = @(t)  . 

2 

These conditions are necessary and sufficient for an optimal solution of the following convex 
programming problem LPt (A)  with a fixed t .  
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s.t. 
0 < p ( i , t )  < m& i E K 

b ( i ,  t )  :S :<Sf (4 
i 

{ p ( % ,  r ) ,  i K ,  t # r E T }  are given,. 
Since the objective function f ( p )  = / ( p )  -A xiT ciTp(i,  T )  is strictly concave and the feasible 
region is a closed convex set, the problem has a unique optimal solution. By the operation 
At y, { p (i ,  t )  , i E K }  is changed to {@(i ,  t )  , G K }  which is the optimal solution of problem 
LPt(\) and hence ?(p)  f ( ~ t p )  where equality holds only if p = Atp. By the repetition 
of At for t = l, - - , T ,  the solution converges to a solution which is just the optimal solution 
of the following problem LP(\). 

0 < p ( i 7 t )  < mit7 M, t â T 

<w(i,t) :S :<Sf(t), E T - 
i 

In case A = 0 ,  the problem LP(\} is identical with the problem R P T  in Theorem 2 and 
Algorithm A L A  gives the marginal limit Mmax and the corresponding optimal solution p^* 
in (TAC2).  We can say that if Mmax :S M holds in (TAC2) ,  $* becomes an ultimately 
optimal solution. In the case of A > 0 ,  denoting the total cost of the solution of A L A  by M A  = 

xi,t c2p(i7 t ) ,  it follows that p(& t )  = [p$ (A+vt; p - m '  for all (i ,  t )  and xi citp(i ,  t )  = $(t)  
if vt > 0 ,  for t E T and moreover MA = xi,; ~ ~ f { i ,  t )  if A > 0. This means that we already 
have obtained the optimal solution y^* with its total amount M A  corresponding to the 
multiplier A. Therefore, just when xi,t cityh(i7 t )  = M occurs by adjusting multiplier A, we 
have obtained an ultimately optimal solution. Now we have proved the validity of the total 
amount-completion method. 

With an additional assumption, only K calculations for i = 1, - - , K are necessary to 
Algorithm A L A  (v t )  instead of repeating the substitution. The assumption is as follows. 

(AS4)  For all i E K, p:' (<; p-it) does not contain {dj, t )  , j E K }  explicitly. 
The revising method of A = (\ + \)l2 in (TAC3)  or vt = (2 + ~ ) / 2  in ( A L 4 )  is simply 
binary search. There could be other ideas for revising the multipliers. We can exploit the 
monotonicity of the relation between the multipliers and the weighted tot a1 distribution 
explained in Theorem 2. That is, assuming that there is an inversely proportional relation 
between them, we obtain a new revising method for A in (TAC3)  or vt in (AL4) .  

Let z and M (z > X )  be the total cost limits corresponding to A and X, respectively. 
The new revising: of A is as follows. - 

M - M -  M - M  
A = -  A+- A .  

M - M  M - M -  
Corresponding to A = 0 and A = Amax, initial setting of = Mmax and M. = 0 must 
be added in (TAC2)  (ii). Similarly, letting $1 and (<E>( > be the local cost limits 
corresponding to v_ and V at time t E T ,  respective%, we may revise vt in (AL4)  by the 
following estimation. 

^-W - Q @ ) - ^  
vt = - v +  - v .  

^t  -3 ^ t  -3 
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5. Numerical Examples 
Here we apply the two methods proposed in the previous section to some examples in 
order to clarify some characteristics of the optimal solution. Furthermore, to elucidate 
the computational efficiency of the proposed methods, we compare our methods with some 
well-known methods of non-linear programming with respect to computational time. Let 
us consider the following search model. 

A searcher wants to detect a target by distributing search effort which can be continu- 
ously divided on the search space of a discrete cell space and a discrete time space. The 
cell space and the time space are denoted by K = {l, - , K} and T = {l, . , T}, 
respectively. 

The available search effort has some constraints on the total amount. Let q(2,t) be 
the effort distributed on a point (i, t)  E K X T. It must be 0 < y(i, t )  < ma. The 
subtotal amounts of effort must not be beyond @(t) and M, respectively, that is, 
#(U) <: @(t) and Ei,t ~ ( 2 7  t )  5 M- 
The target has several possible paths, denoted by f2. Path W e 0 is selected with 
probability 7r(w). The path W is represented by a sequence of cells according to time 
flow, { ~ ( t ) ,  t E T }  where w(t) is the target's position in the cell space at time t. Such 
path information is given to the searcher in advance. It is assumed that T ( W )  = 1. 
By search effort p(< t) distributed on a point (i, t )  E K X T, the target is detected 
at time t with probability 1 - exp(-aip(i, t))  only if W(<)  = 2. The positive real 
number G indicates the detectability of cell i. Events of the detection at each time 
are assumed to occur independently each other. 

In the search model, our purpose is to find a distribution of search effort y = {ŷ , t) ,  (i, t )  
K X T }  maximizing the detection probability of the target. By the search plan (p, the 
probability that the target on path W is detected is 1 -exp(- Et awit)ip(w (t) , t))  and therefore 
the detection probability P ( y )  which is the objective function is given by the following 
expression. 

T 

PM = - T. "I-') ~ X P  (- "w(t)y(w(t)7 t)) . 
wen t=l 

The function is finite and strictly concave for variables {&, t),  (2, t)  E S }  where S 
{(W(^), t) ,  t = 1, . . , T,  W E f2} C K X T .  This problem is obtained by applying tit = 1 
and the objective function P (q )  to the original problem PM- The representation (13) of the 
optimal solution has the following analytic form in this problem. 

1 "i Ewenit "'(W) ~ X P  (-  EL^,^+^ a w ( T )  P(W(T) , r )) 
y(i,t) = -log [ . A + Vt 

where f^ is defined as a set of target paths running through cell 2 at time t ,  that is, 
n̂ = {W e 01 w(t) = 2). 

5.1 Characteristics of the optimal distribution of search effort 
Here we elucidate some characteristics of the optimal distribution of search effort. The 
problem contains too many parameters to execute sensitivity analysis for all cases. We 
mainly focus the analysis on the effect of @(t) or M on the optimal solution. 
Basic case: The search space consists of K = {l, 2,3,4} and T = {l, - ,5} and the 
target selects one of 5 paths with equal probability " ' (W) = 1/5. A set of target paths ^2 is 
illustrated by Table 1 and Figure 1. 
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Table 1 Target paths. 
1 

w \ t  1 2 3 4 5 

Time 
1 2 3 4 5 

Figure 1 Target Paths. 

Paths 1 2 and 3 always stay on cells 1, 2 and 3, respectively. On the other hand, Paths 4 
and 5 move across the cell space right to left or left to right. The total search effort M = 5 is 
available to the searcher on the whole search space and the subtotal effort @(t) = 2 at each 
time t .  The amount of effort on every point is supposed to be unlimited, that is, rnd = oo. 
The detectability parameters are all cri = 0.2 everywhere. Applying the gradient-completion 
and the total amount-completion methods to this problem, an optimal distribution of search 
effort is given as shown in Table 2. The maximum detection probability is P(y?*) = 0.371. 

Table 2 Optimal distribution of search effort in basic case. 

C e l l \ t  1 2 3 4 5 Total 
1 0.75 0 0.75 0 0 
2 0 2.0 0 0 0 
3 0 0 0.75 0 0.75 
4 0 0 0 0 0  

Subtotal 0.75 2.0 1.5 0 0.75 5.0 

In this basic case, Points {(z, t)} = {(l, l), (2,2), (1,3), (3,3), (2,4), (3,5)} are crossing 
points of several paths, and should therefore be efficient points for search. Table 2 numeri- 
cally supports the validity of this understanding. Three paths cross at (2,2), which is why 
the local limit @ (t) = 2 is concentrated on this point at time 2. Paths 2 and 5 are probably 
detected by the (2,2) search, so the detection efficiency of the point (2,4) is relatively low 
and the searcher should not search at time 4. This is the basic case. 

By deleting the local limit @(t) from the basic case, we can estimate the unbiased effi- 
ciency of the detection for all points on the whole space. The obtained result is given in 
Table 3. The distributed effort of point (2,2) increases to be y?*(2,2) = 3.77. In term of 
the unbiased detection efficiency, the point (2,2) becomes very important. Focussing more 
effort on the point (2,2) brings more detection probability P(p*) = 0.386 than the basic 
case. 
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Table 3 Optimal distribution of search effort(local1y unlimited). 

Cell \ t 1 2 3 4 5 Total 
1 0.31 0 0.31 0 0 
2 0 3.77 0 0 0 
3 0 0 0.31 0 0.30 
4 0 0 0 0 0 

Subtotal 0.31 3.76 0.62 0 0.30 5.0 

The following is the case where more total effort ( M  = 12) is available than in the 
basic case. As shown in Table 4, some effort is distributed on point (2,4), which is d- 
ifferent from the above two cases. In this case, the marginal limit of search effort is 
Mmax = 10.0. The optimal Lagrange multiplier A is 0 and the others are {vi, - - - , u5} = 

{0.037,0.042,0.034,0.029,0.031}. The maximum detection probability is P(y*)  = 0.569. 

Table 4 Optimal distribution of search effort(M = 12) 

C e l l \ t  1 2 3 4 5 Total 
1 2.0 0 0.65 0 0 
2 0 2.0 0 2.0 0 
3 0 0 1.35 0 2.0 
4 0 0 0 0 0  

Subtotal 2.0 2.0 2.0 2.0 2.0 10.0 

In the above three cases, crossing points of target paths play a critical role for search. 
However there might be a case that even the points which are estimated to be less important 
from the routing situation come to receive some effort. In the following case, the result of 
which is given in Table 5, system parameters are set to be M = 10, @(l) = Q(2) = Q(3) = 

0.1, Q(4) = Q(5) = 8.0. 

Table 5 Optimal distribution of search effort (early limit, M = 10). 

Cell \ t 1 2 3 4 5 Total 
1 0.1 0 0 0.73 0.73 
2 0 0.1 0 3.49 0 
3 0 0 0.1 0 3.49 
4 0 0 0 0.63 0.63 

Subtotal 0.1 0.1 0.1 4.85 4.85 10.0 

Since the distribution of effort at time points t = 1 ,2 ,3  is depressed, some effort is dis- 
tributed on points (1,4), (4,4), (1,5), (4,5) where only one path runs through. The detection 
probability is reduced to P(tp*) = 0.464 compared to the previous case, even though the 
same total amount of effort is expended. 
5.2 Computational time 
The original problem PM is a convex programming problem and can be solved by not only 
the proposed methods but also other well-known methods of non-linear programming. Here 
we compare the computational time of solving the problem by the proposed methods with 
that of the gradient projection method and the multiplier method. 

As the experimental example, we take the two-dimensional search problem of the previous 
section. Problems are randomly generated as follows. First we decide the number of cells 
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K, the number of time points T and the number of target paths IQI. A target path is 
constructed in such a way that a cell is randomly selected from K cells at each of T time 
points. The one-path-construction is repeated for each path, and we suppose T ( U )  = l/]!21. 
For the detectability parameter a, of cell z, a real number is randomly chosen in the interval 
[g, E]. Finally, we set the limits of search effort mit, *&(t), M and then the generation 
of a problem terminates. Through all computer experiments here, we set 101 = 10, a, = 

0.1, a = 0.5, M = 5, @(t) = 1 and m^ = 6 which means that the local limit m^ gives 
no practical constraint on the amount of search effort. We vary K and T of the space 
by K = 5,20(5), T = 5,20(5) to measure CPU-times of solving many sizes of problems. 
Using a HITACHI S3600/120A mainframe and programming language FORTRAN 77, we 
solve each problem by four methods: the gradient-completion method, the tot a1 amount- 
completion method, the gradient projection method and the multiplier method which are 
abbreviated to the GC method, the TAG method, the GP method and the M method 
for short, respectively. For each size, 50 problems are generated and solved by each of 4 
methods. CPU-times are averaged for 50 problems and shown in Table 6. A symbol *** 
indicates the case that the algorithm did not terminate in 300 seconds. Approximately, 
problems larger K = 10 and T = 10 could not be solved by the M method, or larger than 
K = 20 and T = 20 by the GP method. 

Table 6 CPU-times(sec) of four methods. 

K \ T  5 10 15 20 
GC 5.3 X 10-~ 2.7 X 10-I 4.7 X 10-I 7.1 X 10-I 

5 TAG 4.0 X 10-~ 4.1 X 10-I 8.3 X 10-I 1.3 X 10' 
GP 1.9 X 10-I 9.2 X 10-I 2.6 X 10' 5.9 X 10' 
M 7.9 X l o o  2.6 X 10+~ * * * * * *  
GC 8.9 X 10-~ 4.4 X 10-I 7.8 X 10-I 1.2 X 10' 

10 TAG 5.8 X 10-~ 7.6 X 10-I 1.4 X 10' 2.3 X 10' 
GP 1.1 X 10' 6.2 X 10' 2.3 X 10+l 5.5 X 10+l 
M 6.0 X 10+l * * * * * Y  s j < s f c *  

GC 1 . 4 ~ 1 0 - I  6 . 5 ~ 1 0 - I  l . l x l o O  1 .8x10Â 
15 TAG 7.6 X 10-~ 1.1 X 10' 1.9 X 10' 3.7 X 10' 

GP 4.0 X 10' 2.6 X 10+l 7.7 X 10+l * * * 
M * * * * * *  * * *  * * * 
GC 1.8 X 10-I 6.6 X 10-I 1.3 X 10' 2.1 X 10' 

20 TAC 1.1 X 10-I 1.3 X 10' 2.5 X l oo  4.3 X 10' 
GP l . O x 1 0 + ~  6.1x10+'  * * *  * * * 

From Table 6, we can summarize the tendency of the computational time for each method. 
The computational time of the M method is approximately 100 1000 times as much 
as the proposed methods. The M method can be applied only to small problems. 
The GP method always expends more CPU-time than the proposed methods, espe- 
cially for large K and T .  For small problems, its computational time is 3 10 times 
as large as the proposed methods and 10 100 times as large for large problems. 
Among the proposed two methods, superiority varies by the size of problem. On the 
whole, the GC method is superior to the TAG method. The increase of CPU-time 
with K is low for both methods as seen from the result that the CPU-time for K = 20 
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is only 2 3 times than K = 5. On the other hand, CPU-time increases rapidly with 
T. The CPU-time for T = 20 is about 13 times that of T = 5 for the GC method and 
30 50 times for the TAG method. This is the main reason why the GC method is 
superior to the TAG method for problems where T is large. 
The increase of T directly causes the increase of the number of constraints q t ) .  For 
the execution of the algorithm, the number of subprocedure repetitions becomes larger 
and the convergence speed to an optimal solution becomes lower. Especially the TAG 
method has the algorithmic construction that subprocedure ALA(vt) is called from 
ALA to temporarily obtain a convergence solution for each time. That might be the 
reason why the effect of increasing T is steeper on the TAC method than the GC 
method. 

6. Conclusions 
This paper deals with a kind of two-dimensional resource allocation problem with double 
layers of constraints on the total amount of resources. From the viewpoint of the resource al- 
location problem, the problem is a generalized version which has a general concave objective 
function and doubly layered constraints. From the viewpoint of a non-linear problem, it is 
a specialized version which has a special form of constraints. We proposed two methods for 
the optimal solution. The proposed methods are constructed by making use of the simple 
relation between the constraints and their Lagrange multipliers. By numerical experiment, 
it is verified that the proposed methods perform better than other well-known methods. 
The necessary and sufficient conditions and the relation between the constraints and the 
Lagrange multipliers which we clarified in this paper could be extended on three or more 
dimensional space. 
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