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Abstract In this article, we deal with iterative methods for approximation of fixed points and their
applications. We first discuss fixed point theorems for a nonexpansive mapping or a family of nonexpansive
mappings. In particular, we state a fixed point theorem which answered affirmatively a problem posed
during the Conference on Fixed Point Theory and Applications held at CIRM, Marseille-Luminy, 1989.
Then we discuss nonlinear ergodic theorems of Baillon’s type for nonlinear semigroups of nonexpansive
mappings. In particular, we state nonlinear ergodic theorems which answered affirmatively the problem
posed during the Second World Congress on Nonlinear Analysts, Athens, Greece, 1996. Next, we deal with
weak and strong convergence theorems of Mann’s type and Halpern’s type in a Banach space. Finally, using
these results, we consider the feasibility problem by convex combinations of nonexpansive retractions and
the convex minimization problem of finding a minimizer of a convex function.

1. Introduction

Let C' be a nonempty closed convex subset of a real Hilbert space H and let f be
a proper convex lower semicontinuous function of H into (—o00,00]. Consider a convex
minimization problem

min{f(z):z € C} = a.

The number « is called an optimal value, C is called an admissible set and M = {y € C :
f(y) = a} is called an optimal set. Next, define a function g : H — (—o0, 00] as follows:

_J (@), z€C,
glw) = {oo, z ¢ C.

Then, g is a proper lower semicontinuous convex function of H into (—oo,00]. So, we
consider the convex minimization problem

min{g(z) : » € H}, (%)

where g is a proper lower semicontinuous convex function of H into (—oo, 0c]. For such a
g, we can define a multivalued operator dg on H by

dg(z) ={z* € H:9g(y) 2 g(z) + (z*,y —z),y € H}

for all € H . Such a 0g is said to be the subdifferential of g. Let C' be a nonempty closed
convex subset of a real Hibert space H. Then a mapping T : C — C is called nonezpansive

on C if

1Tz —Ty|| & ||z —y|| forall z,y € C.
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- 88 W. Takahashi

We denote by F(T') the set of fixed point of T. Let A C H x H. Then, we can define a
multivalued operator B from H to H by

Bz ={y € H : (z,y) € A}

for all z € H. Inversely, if B is a multivalued operator from H to H, then we can define a
set Ain Hx Hby A={(z,y):z € H,y € Bz}. So, it is natural to regard a set in H x H
in the same light with a multivalued operator from H to H. Let A C H x H. Then, we
define the domain of A and the range of A as follows:

D(A) = {z € E: Az # ¢};
R(A) = U{Az : z € D(A)}.

We also define a multivalued operator A™! from H to H by
Ay ={re H:yec Az}

for all y € H. From this definition, we have z € A™10 & 0 € Az. An operator A C H x H
is accretive if for (zq,y1), (22, y2) € A,

(501 — T2,Y1 — yz) .Z_ 0.

If A is accretive, we can define, for each positive A, the resolvent Jy : R(I + AA) — D(A)
by Jy = (I + XA)~'. We know that J\ is a nonexpansive mapping. An accretive operator
A C H x H is called m-accretive if R(I + AA) = H forall A > 0. If g : H — (—o00,00] is
a proper lower semicontinuous convex function, then dg is an m-accretive operator. For an
m-accretive operator A, we can consider the following initial value problem:

%%Q + Au(t) 20, t>0, (%)

u(0) = z,

where z is an element of D(A). Then, it is well known that (**) has a unique strong
solution u : [0,00) — H. Putting S(¢)z = u(t), we know that the family {S(¢) : ¢t € [0,00)}

of mappings on D(A) satisfies the following conditions:

(1) S(t+ s)z = S(t)S(s)z for every t,s € [0,00) and z € m;
(ii) S(0)z = = for every z € D(A);

(iii) for each z € D(A), t — S(t)z is continuous;

(iv) |S(t)z — S(t)y|| £ ||z — y|| for every z,y € D(A) and t € [0, c0).

Such a family {S(t) : ¢t € [0,00)} is called a one-parameter nonerpansive semigroup on
D(A); see Brézis [7]. We also know that

0 € dg(zo) < g(z0) = min{g(z): x € H}
& a0 € [V E(S)

£20
where F(S(t)) is the set of fixed points of S(t). Further, we have that for A > 0,

0 € 9g(x0) & Jrzo = 0.
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Thus, a convex minimization problem is equivalent to a fixed point problem for a nonexpan-
sive mapping or a family of nonexpansive mappings. Further, we know that one method for
solving (*) is the prozimal point algorithm first introduced by Martinet [43]. The proximal
point algorithm is based on the notion of resolvent J, i.e.,

1
Jrr = argmin{g(z) + EX”Z —z||*: 2z € H},

introduced by Moreau [47]. The proximal point algorithm is an iterative procedure, which
starts at a point z; € H, and generates recursively a sequence {z,} of points &, = Ji, 2y,
where {)\.} is a sequence of positive numbers; see, for instance, Rockafellar [52]. On the
other hand, let {g,,93,...,9,} be a finite family of real valued continuous convex functions
on a Hilbert space H. The problem is to find a solution of the finite convex inequality
system, i.e., to find such a point z € C that

C={z€H:g(z)£0,:=1,2,... ,n}.

Such a problem is called the feasibility problem. This problem is also connected with ap-
proximation of fixed points.

In this article, we first discuss fixed point theorems for a nonexpansive mapping or a
family of nonexpansive mappings. In particular, we state a fixed point theorem which
answered affirmatively a problem [34] posed during the Conference on Fixed Point Theory
and Applications held at CIRM, Marseille-Luminy, 1989. Then we discuss nonlinear ergodic
theorems of Baillon’s type for nonlinear semigroups of nonexpansive mappings. In particular,
we state nonlinear ergodic theorems which answered affirmatively the problem [69] posed
during the Second World Congress on Nonlinear Analysts, Athens, Greece, 1996. Next, we
deal with weak and strong convergence theorems of Mann’s type and Halpern’s type in a
Banach space. Finally, using these results, we consider the feasibility problem by convex
combinations of nonexpansive retractions and the convex minimization problem of finding
a minimizer of a convex function.

2. Preliminaries

Let C be a nonempty closed convex subset of a Banach space E and let T' be a mapping
of C into C. Then we denote by R(T') the range of T. A mapping T of C into C is said to
be asymptotically regular if for every z € C, T"z — T™1z converges to 0. Let D be a subset
of C and let P be a mapping of C into D. Then P is said to be sunny if

P(Pz + t(z — Pz)) = Pz

whenever Pz +t(z — Pz) € C for z € C and ¢t > 0. A mapping P of C into C is said to be
a retraction if P2 = P. If a mapping P of C into C is a retraction, then Pz = z for every
z € R(P). A subset D of C is said to be a sunny nonerpansive retract of C if there exists a
sunny nonexpansive retraction of C' onto D.

Let E be a Banach space. Then, for every € with 0 < ¢ < 2, the modulus 6(¢) of convezity
of E is defined by

» ) T+y
§(e) = inf{l — [|== : lzll <1, ]lyll <1, ]le -yl > &}.

A Banach space E is said to be uniformly convez if §(¢) > 0 for every ¢ > 0. E is also
said to be strictly convez if ||z + y|| < 2 for z,y € E with ||z]| <1, |ly|| < land z #y. A
uniformly convex Banach space is strictly convex.
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90 W. Takahashi

Let E be a Banach space and let E* be its dual, that is, the space of all continuous linear
functionals z* on E. The value of 2* € E* at z € E will be denoted by (z,z*). With
each z € E, we associate the set J(z) = {2* € E* : (z,2*) = |[z]|* = ||z*||*}. Using the
Hahn-Banach theorem, it is immediately clear that J(z) # ¢ for any z € E. Then the multi-
valued operator J : E — E* is called the duality mappingof E. Let U = {z € E : ||z| = 1}
be the unit sphere of E. Then a Banach space E is said to be smooth provided

ol + 1yl — |
t—0 t

exists for each z,y € U. When this is the case, the norm of E is said to be Giteauz
differentiable. It is said to be Fréchet differentiable if for each z in U, this limit is attained
uniformly for y in U. The space E is said to have a uniformly Giteauz differentiable norm
if for each y € U, the limit is attained uniformly for z € U. It is well known that if F is
smooth, then the duality mapping J is single valued. It is also known that if £ has a Fréchet
differentiable norm, then J is norm to norm continuous; see [17] for more details. A closed
convex subset C of a Banach space E is said to have normal structure if for each closed
bounded convex subset K of C, which contains at least two points, there exists an element
of K which is not a diametral point of K. Baillon and Schoneberg [6] also introduced the
following weakening of the concept of normal structure: A closed convex subset C of a
Banach space is said to have asymptotic normal structure if for each closed bounded convex
subset K of C, which contains at least two points and each sequence {z,} in K satisfying
Znp — Tp41 — 0 as n — oo , there is a point ¢ € K such that liminf,_, ||z, — z|| < §(K),
where §(K) is the diameter of K. It is well known that a closed convex subset of a uniformly
convex Banach space has normal structure and a compact convex subset of a Banach space
has normal structure. A Banach space E is said to satisfy Opial’s condition [48] if z, — =
and z # y imply

liminf ||z, — z|| < liminf ||z, — y||,
n—oo n—+00

where — denotes the weak convergence to z. Let S be a semitopological semigroup, i.e.,
a semigroup with Hausdorff topology such that for each s € S, the mappings ¢ — ts and
t > st of S into itself are continuous. Let B(S) be the Banach space of all bounded real
valued functions on S with supremum norm and let X be a subspace of B(.S) containing
constants. Then, an element p of X* is called a mean on X if ||u|| = p(1) = 1. We know
that g € X* is a mean on X if and only if

inf{f(s):s€ S} < u(f) <sup{f(s):s €S}

for every f € X. A real valued function y on X is called a submean on X if the following
properties are satisfied:

() 1(f +9) < p(f) + p(g) for every f,g € X;;
(ii) p(af) = ap(f) for every f € X and o > 0;
(iii) for f,g € X, f < g implies u(f) < u(g);
(iv) pu(c) = ¢ for every constant function c.

Clearly every mean on X is a submean. The notion of submean was first introduced by
Mizoguchi and Takahashi [46]. For a submean yon X and f € X, sometimes we use p;(f(t))
instead of u(f). For each s € S and f € B(S), we define elements ¢, f and r,f of B(S) given
by (b,f)(t) = f(st) and (r,f)(t) = f(ts) for all ¢ € S. Let X be a subspace of B(S)

containing constants which is invariant under 45, s € S (resp. r5, 7 € S). Then a mean x on
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X is said to be left invariant (resp. right invariant) if p(f) = p(lf) (resp. p(f) = p(rsf))
for all f € X and s € S. An invariant mean is a left and right invariant mean. A submean
p on X is said to be left subinvariant if u(f) < p(lsf) forall f € X and s € S. Let S
be a semitopological semigroup. Then S is called left (resp. right) reversible if any two
closed right (resp. left) ideals of S have non-void intersection. If S is left reversible, (5, <)
is a directed system when the binary relation “<” on S is defined by ¢ < b if and only if
{a}U Sa D {b} U Sb, a,b € S. Similarly, we can define the binary relation “<” on a right
reversible semitopological semigroup S.

3. Fixed Point Theorems

In this section, we discuss fixed point theorems for a nonexpansive mapping or a family
of nonexpansive mappings. The first fixed point theorem for nonexpansive mappings was
established in 1965 by Browder [8]. He proved that if C is a bounded closed convex subset
of a Hilbert space H and T is a nonexpansive mapping of C into itself, then T" has a fixed
point in C. Almost immediately, both Browder [9] and Géhde [20] proved that the same is
true if F is a uniformly convex Banach space. Kirk [31] also proved the following theorem:

Theorem 3.1 ([81]) Let E be a reflexive Banach space and let C be a nonempty bounded
closed convex subset of E which has normal structure. Let T' be a nonezpansive mapping of
C into itself. Then F(T) is nonempty.

After kirk’s theorem, many fixed point theorems concerning nonexpansive mappings have
been proved in a Hilbert space or a Banach space. In particular, Baillon and Schéneberg [6]
introduced the concept of asymptotic normal structure and generalized Kirk’s fixed point
theorem as follows:

Theorem 3.2 ([6]) Let E be a reflexive Banach space and let C be a nonempty bounded
closed convex subset of E which has asymptotic normal structure. Let T' be a nonezpansive
mapping of C into itself. Then F(T) is nonempty.

On the other hand, DeMarr [16] proved the following fixed point theorem for a commu-
tative family of nonexpansive mappings.

Theorem 3.3 ([16]) Let C be a compact convex subset of a Banach space E and let S be
a commutative family of nonezpansive mappings of C into itself. Then S has a common
fized point in C, i.e., there exists z € C such that Tz = z for every T € S.

Browder [9] proved the following fixed point theorem without compactness:

Theorem 3.4 ([9]) Let C be a bounded closed convex subset of a uniformly convex Banach

space E and let S be a commutative family of nonexpansive mappings of C into itself. Then
S has a common fized point in C

Further, we try to extend these theorems to a noncommutative semigroup of nonexpansive
mappings. Let S be a semitopological semigroup and let C' be a nonempty subset of a
Banach space E. Then a family S = {7, : s € S} of mappings of C into itself is called a
nonezpansive semigroup on C if it satisfies the following:

(i) Tyz = T,Tiz for all s,t € S and z € C;

(ii) for each z € C, the mapping s — T,z is continuous;

(iii) for each s € S, T; is a nonexpansive mapping of C into itself.

For a nonexpansive semigroup § = {T; : s € S} on C, we denote by F(S) the set of
common fixed points of T,,s € S. Let S be a semitopological semigroup, let C(.S) be the
Banach space of all bounded continuous functions on S and let RUC(S) be the space of
all bounded right uniformly continuous functions on S, i.e., all f € C(S) such that the
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92 W. Takahashi

mapping s +—+ 75 f is continuous. Then RUC(S) is a closed subalgebra of C(.S) containing
constants and invariant under ¢; and r;, s € S; see [44] for more details.

In 1969, Takahashi [62] proved the first fixed point theorem for a noncommutative semi-
group of nonexpansive mappings which generalizes DeMarr’s fixed point theorem, that is,
he proved that any discrete left amenable semigroup has a common fixed point. Mitchell
[45] generalized Takahashi’s result by showing that any discrete left reversible semigroup
has a common fixed point. Lau proved the following theorem in [33]:

Theorem 3.5 ([33]) Let S be a semitopological semigroup and let A(S) be the space of all
f € C(S) such that {{,f : s € S} is relatively compact in the norm topology of C(S). Let
& ={T,:s € 5} be a nonexpansive semigroup on a compact convex subset C' of a Banach

space E. Then A(S) has a left invariant mean if and only if S has a common fized point in
C.

Lim [41] generalized Kirk’s result [31], Browder’s result [9] and Mitchell’s result [45] by
showing the following theorem:
Theorem 3.6 ([41]) Let S be a left reversible semitopological semigroup. Let C be a weakly
compact convex subset of a Banach space E which has normal structure and let S = {T :
s € S} be a nonezpansive semigroup on C. Then § has a common fized point in C .
Takahashi and Jeong [71] also generalized Browder’s result [9] by using the concept of
submean; see also [79].
Theorem 3.7 ([71]) Let S be a semitopological semigroup. Let S = {T, : s € S} be a
nonezpansive semigroup on a bounded closed convez subset C of a uniformly convex Banach
space E. Suppose that RUC(S) has a left subinvariant submean. Then S has a common
fized point in C.
To prove Theorem 3.7, we need the following lemma [81]:
Lemma 3.8 ([81]) Let p > 1 and b > 0 be two fized numbers. Then a Banach space E

s uniformly convez if and only if there exists a continuous, strictly increasing, and convez
function (depending on p and b) g : [0,00) — [0,00) such that g(0) =0 and

Az + (1= NyllP = Alzll” + (1 = Vllyll” = Wp(Ng(llz = yll)
forallz,y € By and 0 £ X\ < 1, where W,(A) = A(1 — X)P + X?(1 — X) and B, is the closed

ball with radius b and centered at the origin.

We may comment on the relationship between “RUC(S) has an invariant mean” and “S' is
left reversible”. As well known, they do not imply each other in general. But if RUC(S) has
sufficiently many functions to separate closed sets, then “RUC(S) has an invariant mean”
would imply “S is left and right reversible”. Recently, Lau and Takahashi [39] generalized
Lim’s result [41] and Takahashi and Jeong’s result [71].

Theorem 3.9 ([39]) Let S be a semitopological semigroup, let C be a nonempty weakly
compact convex subset of a Banach space E which has normal structure and let S = {T; : s €
S} be a nonexpansive semigroup on C. Suppose RUC(S) has a left subinvariant submean.
Then S has a common fized point in C'.

To prove Theorem 3.9, we need two lemmas.

Lemma 3.10 ([40]) A closed convex subset C of a Banach space has normal structure if
and only if it does not contain a sequence {z,} such that for some ¢ > 0,

1

s — 2l S ¢ and o =7l 2 ¢ = —

foralln 21 and m 2 1, where T, = L Y77 | ;.
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Lemma 3.11 ([19]) Let X be a compact convex subset of a separated topological vector
space E, let f1, fo,... , fn be a finite family of lower semicontinuous convez functions from
X into R and let ¢ € R, where R denotes the set of real numbers. Then the following
conditions (i) and (ii) are equivalent:

(i) There exists zg € X such that fi(zo) S c foralli=1,2,...,n;
i) for any finite non-negative real numbers {oy, aq,... ,0n} with > - a; = 1, there exists
1=1
y € X such that ) . o;fi(y) S c.

Theorem 3.9 answers affirmatively a problem [34] posed during the Conference on Fixed
Point Theory and Applications held at CIRM, Marseille-Luminy, 1989, whether Lim’s result
and Takahashi and Jeong’s result can be fully extended to such Banach spaces for amenable
semigroups. We do not know whether “normal structure ”in Theorem 3.9 would be replaced
by “asymptotic normal structure”.

4. Weak Convergence Theorems
The first nonlinear ergodic theorem for nonexpansive mappings was established in 1975
by Baillon [4] in the framework of a Hilbert space.

Theorem 4.1 ([4]) Let C be a closed convez subset of a Hilbert space H and let T be a
nonexpansive mapping of C into itself. If the set F(T) of fized points of T is nonempty,
then for each =z € C, the Cesdro means

n—1
Sn(z) = % Z Tk
k=0

converge weakly to some y € F(T).

This theorem was extended to a uniformly convex Banach space whose norm is Fréchet

differentiable by Bruck [12].

Theorem 4.2 ([12]) Let C be a closed convex subset of a uniformly convex Banach space
E with a Fréchet differentiable norm. If T : C — C is a nonezpansive mapping with a fized
point, then the Cesdro means of {T"z} converge weakly to a fired point of T'.

In their theorems, putting y = Pz for each z € C, we have that P is a nonexpansive
retraction of C' onto F(T) such that PT™ = T"P = P for all n = 1,2,... and Pz €
co{T"z :n =0,1,2,...} for each z € C, where ¢0A is the closure of the convex hull of A.
We discuss nonlinear ergodic theorems for a nonlinear semigroup of nonexpansive mappings
in a Hilbert space or a Banach space. Before discussing them, we give a definition. Let
{ia : @ € A} be a net of means on RUC(S). Then {u, € A} is said to be asymptotically
invariant if for each f € RUC(S) and s € S,

1ol f) = Hallef) = 0 and pa(f) = pa(ref) = 0.

Let us give an example of asymptotically invariant nets. Let S = {0,1,2,...} and let N be
the set of positive integers. Then for f = (zo,z,...) € B(S) and n € N, the real valued
function p, defined by

n—1

pal) = 3 2

k=0
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is a mean. Further since for f = (z9,21,...) € B(S) and me N

n—1 n-—1
1 1
I:u'ﬂ(f) - ﬂ’n(rmf” = ;{Zwk - ;’L- Z$k+m
k=0 k=0
1
< —=-2m|f|| =0,
n

as n — oo and S is commutative, {u,} is an asymptotically invariant net of means.

If C is a nonempty subset of a Hilbert space H and § = {T, : s € S} is a nonexpansive
semigroup on C such that {T;z : s € S} is bounded for some z € C, then we know that
for each v € C' and v € H, the functions f(t) = ||Tiu — v||* and ¢(t) = (Tu,v) are in
RUC(S). Let u be a mean on RUC(S). Then since for each z € C and y € H, the real
valued function t — (T;z,y) is in RUC(S), we can define the value p;(Tiz,y) of p at this
function. By linearity of x4 and of the inner product, this is linear in y; moreover, since

k(T y)| < Nl - sup |(Tez, y)l < (sup | Tel) - Nyl
it 1s continuous in y. So, by the Riesz theorem, there exists an o € H such that

,Ut(Tti’?ay) = (wo,y)

for every y € H. We write such an z¢ by T,,z; see [64,67] for more details.
Now we can state a nonlinear ergodic theorem for noncommutative semigroups of nonex-
pansive mappings in a Hilbert space.

Theorem 4.3 ([68]) Let C be a nonempty subset of a Hilbert space H and let S be a
semitopological semigroup such that RUC(S) has an invariant mean. Let S = {T; : t € S}
be a nonexpansive semigroup on C such that {Tyz : t € S} is bounded and Nsesco{Tsz : t €
S} C C for some z € C. Then, F(S) # ¢. Further, for an asymptotically invariant net
{pa : @ € A} of means on RUC(S), the net {T,,z: a € A} converges weakly to an element
zo € F(S).

Using Theorem 4.3, we have Theorem 4.1. By the same method, we can prove the following
nonlinear ergodic theorems:

Theorem 4.4 Let C be a closed conver subset of a Hilbert space H and let T' be a one-
parameter nonezpansive mapping of C into itself. If F(T') is nonempty, then for each z € C,

[ee]

Si(z)y=(1-r) Zrkaa:,

k=0
asr 1T 1, converges weakly to an element y € F(T).

Theorem 4.5 ([5]) Let C be a closed convez subset of a Hilbert space H and let S = {S(t) :
t € [0,00)} be a nonezpansive semigroup on C. If F(S) is nonempty, then for each z € C,

Si(z) = ;/0 S(t)zdt,

as A — 0o, converges weakly to an element y € F(S).

Next, we state a nonlinear ergodic theorem for nonexpansive semigroups in a Banach
space. Before stating it, we give a definition. A net {u,} of continuous linear functionals
on RUC(S) is called strongly regular if it satisfies the following conditions:
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(i) sup [|pall < +o0;
(i) limpral) = 1
(ii1) lim||pa — ripel| = 0 for every s € S.

Theorem 4.6 ([24]) Let S be a commutative semitopological semigroup and let E be a
unifromly conver Banach space with a Fréchet differentiable norm. Let C be a nonempty
closed conver subset of E and let S = {T; : t € S} be a nonexpansive semigroup on C such
that F(S) is nonempty. Then there ezists a unique nonexpansive retraction P of C' onto
F(8) such that PT, = T;P = P for everyt € S and Pz € co{T z : t € S} for every z € C.
Further, if {ua} is a strongly regular net of continuous linear functionals on RUC(S), then
for each x € C, T, Tiz converges weakly to Pz uniformly int € S.

We have not known whether Theorem 4.6 would hold in the case when S is noncommu-
tative (cf. [69]). Recently, Lau, Shioji and Takahashi [36] solved the problem as follows:

Theorem 4.7 ([36]) Let C be a closed convex subset of a uniformly convexr Banach space
E, let S be a semitopological semigroup which RUC(S) has an invariant mean, and let
S ={T: : t € S} be a nonexpansive semigroup on C with F(S) # 0. Then there exists a
nonezpansive retraction P from C onto F(S) such that PT; = T;P = P for each t € S and
Pz € co{Tiz : t € S} for each z € C.

This is a generalization of Takahashi’s result [64] for an amenable semigroup of nonexpan-
sive mappings on a Hilbert space. Further they extended Rodé’s result [53] to an amenable

semigroup of nonexpansive mappings on a uniformly convex Banach space whose norm is
Fréchet differentiable.

Theorem 4.8 ([36]) Let E be a uniformly convex Banach space with a Fréchet differen-
tiable norm and let S be a semitopological semigroup. Let C be a closed convex subset of
E and let S = {T, : t € S} be a nonezpansive semigroup on C with F(S) # ¢. Suppose
that RUC(S) has an invariant mean. Then there exists a unique nonerpansive retraction
P from C onto F(S) such that PT; = T;P = P for each t € S and Pz € co{Tyz : t € S}
for each x € C. Further, if {us} is an asymptotically invariant net of means on X, then
for each z € C, {T,,z} converges weakly to Pxz.

To prove Theorem 4.8, they used Theorem 4.7 and the following lemma which has been
proved in Lau, Nishiura and Takahashi [35].

Lemma 4.9 ([35]) Let E be a uniformly convex Banach space with a Fréchet differentiable
norm and let S be a semitopological semigroup. Let C be a closed convex subset of E and
let § = {T; : t € S} be a nonezpansive semigroup on C with F(S) # ¢. Then, for each
r € C, F(S)NNsesco{Tisz : t € S} consists of at most one point.

The following theorem has been proved in Takahashi [66] and Lau, Nishiura and Takahashi
[35] when E is a Hilbert space.

Theorem 4.10 ([36]) Let E be a uniformly convex Banach space with a Fréchet differen-
tiable norm and let S be a semitopological semigroup. Let C be a closed convex subset of
E andlet S = {T; : t € S} be a nonezpansive semigroup on C with F(S) # ¢. Suppose
that for each x € C, F(S) N Nsesto{Tisz : t € S} is nonempty. Then there exists a non-
expansive retraction P from C' onto F(S) such that P1; = T,P = P for each t € S and
Pz e co{Tyx:t € S} for each z € C.

On the other hand, Mann [42] introduced an iteration procedure for approximating fixed
points of a mapping 7' in a Hilbert space as follows: z; = z € C' and

Tpi1 = anZp + (1 — )Tz, forn >1,
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where {a,} is a sequence in [0,1]. Later, Reich [49] discussed this iteration procedure in
a uniformly convex Banach space whose norm is Fréchet differentiable and obtained the
following theorem:

Theorem 4.11 ([49]) Let C be a closed convez subset of a uniformly convexr Banach space
E with a Fréchet differentiable norm, let T : C — C be a nonezpansive mapping with a
fized point, and let {c,} be a real sequence such that 0 < ¢, <1 and £2 ,c,(1 — ¢,) = oo.
Ifz, € C and

o1 = Tz, + (1 —cp)zn forn>1,

then {z,} converges weakly to a fized point of T.

This theorem has been known for those uniformly convex Banach spaces that satisfy
Opial’s condition (cf. [48]). Tan and Xu [78] proved the following interesting result which
generalizes the result of Reich [49].

Theorem 4.12 ([78]) Let C be a closed convex subset of a uniformly conver Banach space
E which satisfies Opial’s condition or whose norm is Fréchet differentiable and let T : C —

C be a nonezpansive mapping with a fired point. Then for any initial data z, in C, the
iterates {z,} defined by

Tpt1 = a,T[Bp Tz, + (1 = Bn)zn] + (1 — o)z, forn >1,

where {a,} and {B,} are chosen so that T2 0,(1 — a,) = oo, 2 ,8,(1 — ) < o0,
limsup,,_, ., B, <1, converge weakly to a fized point of T.

To prove Theorem 4.12, Tan and Xu [78] used the following two lemmas.

Lemma 4.13 ([49],[72]) Let C be a nonempty closed convez subset of a uniformly convez
Banach space E with a Fréchet differentiable norm and let {Ty,T5, T3, ...} be a sequence of
nonezpansive mappings of C into C' such that NS>, F(T,) is nonempty. Let x € C and put
Sn=T,Thy... Ty for n > 1. Then, the set U N N, co{Smz : m > n} consists of at most
one point, where U = N, F(T,).

Lemma 4.14 ([54]) Let E be a uniformly convex Banach space, let {t,} be a real sequence
such that 0 <b<t, <c<1 forn>1 and let a > 0. Suppose that {z,} and {y.} are
sequences of E such that limsup,_,. ||z.|| < @, limsup,_,, |lv.|| < @ and lim, o, ||[thz, +
(1 —=t,)ys|l = 0. Then lim,o ||z, — yal| = 0.

Takahashi and Kim [72] also proved the following theorem:

Theorem 4.15 ([72]) Let E be a uniformly convez Banach space E which satisfies Opial’s
condition or whose norm is Fréchet differentiable, let C' be a nonempty closed conver subset
of E, and let T : C — C be a nonezpansive mapping with a fized point. Suppose z1 € C,
and {z,} is given by

Tnt1 = T [Bn Ty + (1 = Bo)zn] + (1 — o)z, for alln > 1,

where {a,} and {B,} are chosen so that a, € [a,b] and B, € [0,b] or a, € [a,1] and
Br € [a,b] for some a,b with0 < a <b< 1. Then {z,} converges weakly to a fired point of
T.

Motivated by Theorems 4.12 and 4.15, Suzuki and Takahashi [60] obtained the following
theorem:
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Theorem 4.16 ([60]) Let C be a nonempty closed conver subset of a uniformly convez
Banach space E which satisfies Opial’s condition or whose norm is Fréchet differentiable.
Let T be a nonexpansive mapping from C into itself with a fized point. Suppose that {z,}
is given by z, € C' and

Tot1 = @ T[BnTzn 4+ (1 — Bn)z,] + (1 — an)zn,  foralln >1,

where {ay,} and {B,} are sequences in [0,1] with £ 0, (1 — o) = 00 and limsup,,_,o, Bn <
1, or 2 0,3, = oo and limsup,_,., Bn < 1. Then {z,} converges weakly to a fized point
of T.

To prove Theorem 4.16, Suzuki and Takahashi [60] used the following two lemmas. Let I
be an infinite subset of positive integers N. If {),} is a sequence of nonnegative numbers,
then we denote by {); : ¢ € I'} the subsequence of {A,}.

Lemma 4.17 ([60]) Let {\.} and {u,} be sequences of nonnegative numbers such that
Y2 A, = 00 and X5 App, < 0o0. Then for € > 0, there exists an infinite subset I of N
such that £{); : j € N\I} < ¢ and the subsequence {u; : i € I} of {un} converges to 0.

Lemma 4.18 ([60]) Let {)\.} and {u,} be sequences of nonnegative numbers such that
MAg1 < Ap + pn for alln € N. Suppose there exists a subsequence {p; : i € I} of {un} such
that p; — 0, X\; = a and X{u; : j € N\I} < co. Then A, = a.

Compare Theorem 4.16 with Theorem 4.12 of Tan and Xu [78]. This indicates that the
assumption X2 8, (1 — a,) < oo in Theorem 4.12 is superfluous. We do not know whether
the assumptions X2, 0,0, = oo and limsup,_, ., 3, < 1 in Theorem 4.16 are replaced by
¥  Bn(1—=05,) = oo and liminf, _,, a, > 0. We also know the following strong convergence

theorem which is connected with Rhoades [51], Tan and Xu [78], and Takahashi and Kim
[72].

Theorem 4.19 ([59]) Let E be a strictly conver Banach space, let C' be a nonempty closed
convez subset of E, and let T : C — C be a nonezpansive mapping which T(C') is contained
in a compact subset of C'. Suppose z, € C, and {z,} C C is given by

Tpi1 = @ T[BnTzn + (1 — Bu)zn] + (1 — an)z,,  forn > 1,

where {a,} and {B,} are chosen so that ¥ a,(1 — o) = 00 and
limsup, ., Bn < 1, or £22,0,(1 — B,) = oo and liminf, o an, > 0. Then {z,} converges
strongly to a fized point of T.

Let C be a closed convex subset of a Banach space E, and let TS be selfmaps on C.
Then Das and Debata [14] considered the following iteration scheme: z; € C, and

Tpyy = ans[ﬁnTwn + (1 - /Bn)xn] + (]. - an)zn fOI' n 2 17

where {a,} and {3,} are real sequences in [0,1]. They proved a strong converence theorem
concerning Roades’ result [51]. Takahashi and Tamura [76] obtained the following weak
convergence theorem.

Theorem 4.20 ([76]) Let E be a uniformly conver Banach space E which satisfies Opial’s
condition or whose norm is Fréchet differentiable, let C be a nonempty closed conver subset
of E, and let S,T : C — C be nonezxpansive mappings such that F(S)N F(T) is nonempty.
Suppose z, € C, and {z,} is given by

Tnt1 = a0 S[GuTz, + (1 = Br)zn] + (1 — o)z, forn > 1,

where {a,} and {B,} are chosen so that a,,B, € [a,b] for some a,b with 0 < a < b < 1.
Then {z,} converges weakly to a common fized point of S and T

Copyright © by ORSJ. Unauthorized reproduction.of this article is prohibited.



98 W. Takahashi

Further, Takahashi and Tamura [76] obtained the following theorem:
Theorem 4.21 ([76]) Let C be a nonempty closed convex subset of a uniformly convex
Banach space E, and let S,T : C — C be nonezpansive mappings such that F(S)N F(T) is
nonempty. Let P be the metric projection of E onto F(S)N F(T) and suppose z; € C, and
{z,} is given by

Top1 = 0SB Tx, + (1 — Br)zn] + (1 — o)z, forn >1,

where {a,} and {B,} are real sequences in [0,1]. Then {Pz,} converges strongly to a
common fized point of S and T

To apply convergence theorems of Mann’s type to the feasibility problem, we need to
extend Theorem 4.20 to a family of finite mappings. Let C be a nonempty convex subset of
a Banach space E. Let T, T3, ... , T, be finite mappings of C into itself and let ay, o, ... ,
be real numbers such that 0 £ o; < 1 for every 1 = 1,2,... ,r. Then, we define a mapping
W of C into itself as follows:

U1 = O£1T1 + (1 — al)I,
U2 - a2T2U1 + (]. - az)I,

Uy = v TraUra + (1 — 1)1,
W=U,=oTU_1+(1—a)l

Such a W is called the W-mapping generated by T},75,... ,T, and oy, 0, ... ,q;.

Theorem 4.22 ([74]) Let E be a uniformly convez Banach space E which satisfies Opial’s
condition or whose norm is Fréchet differentiable, let C be a nonempty closed convex subset
of E, and let {T},T,,...,T.} be finite nonezpansive mappings of C into itself such that

r_F(T,) is nonempty. Let a,b be real numbers with 0 < a < b < 1 and suppose z, € C,

and {z,} is given by
Tnyl = Wz, fOT n2>1,

where W,, are W -mappings generated by Ty, Ts, ... , T, and oy, 0tpo, =+ , Oy € [a,b]. Then
{z,} converges weakly to a common fized point of Ty, T5,... ,T,.

We will finally show a weak convergence theorem of Mann’s type for a nonexpansive semi-
group in a Banach space.

Theorem 4.23 ([1]) Let E be a uniformly conver Banach space E with a Fréchet differ-
entiable norm. Let C be a nonempty closed convez subset of E and let S = {T; :t € S} be
a nonexpansive semigroup on C such that F(S) # ¢. Let {,} be a sequence of means on
RCU(S) such that ||ptn, — £pin|| = 0 for every s € S. Suppose x; =z € C and {z,} is given
by

Tpy1 = nZn + (1 — o)1,z for everyn > 1,

where {a,} is a sequence in [0,1]. If {an} is chosen so that oy, € [0,a] for some a with
0 <a<1, then {z,} converges weakly to an element zo € F(S).

Using Theorem 4.23, we can prove a weak convergence theorem of Mann’s type for a
one-parameter nonexpansive semigroup.
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Theorem 4.24 Let E be a uniformly convex Banach space E with a Fréchet differentiable
norm and let C be a closed conver subset of E. Let S = {S(t) : t € [0,00)} be a one-
parameter nonezpansive semigroup on C such that F(S) # &. Suppose z; = z € C and
{z,} is given by

1 [
Tny1 = 0nZn + (1 — a")s_/ S(t)z,dt for every n 21,
n Jo

where s, — 00 as n — oo and {a,} is a sequence in [0,1]. If {a,} is chosen so that

a, € [0,a] for some a with 0 < a < 1, then {z,} converges weakly to a common fized point
z € F(S).

5. Strong Convergence Theorems

In this section,we discuss strong convergence theorems for nonexpansive mappings. Let
C be a nonempty closed convex subset of a real Hilbert space H. In 1967, Browder [10]
obtained the following strong convergence theorem: For a given u € C and each n € N,
define a contraction 7, : C — C by

Thx = (1—}->T:E+lu for all z € C,
n

n

where T is a nonexpansive mapping of C into itself. Then, there exists a unique fixed point

z, of T, in C such that
1 1
T, = (1 — ——) Tz, + —u.
n

n

Further if the set F(T) of fixed points of T' is nonempty, then {z,} converges strongly as
n —+ oo to a fixed point of 7. After Browder’s result, such a problem has been investigated
by several authors. In particular, Reich [50] and Takahashi and Ueda [77] also extended
Browder’s result to strong convergence theorems for resolvents of accretive operators in a
Banach space. Before stating them, we give two definitions. A closed convex subset C of a
Banach space E is said to have the fized point property for nonexpansive mappings if every
nonexpansive mapping of C into itself has a fixed point in every nonempty bounded closed
convex subset of C such that T leaves invariant. Let A be an accretive operator in a Banach
space E. Then A is said to satisfy the range condition if D(A) C R(I +rA) for every r > 0.
Now we can prove the first strong convergence theorem for resolvents of accretive operators.

Theorem 5.1 ([77]) Let E be a reflexive Banach space with a uniformly Gateaux differ-
entiable norm and let A C E x E be an accretive operator that satisfies the range condition.
Let C be a closed convex subset of E such that

D(A)c Cc()RUI+rA)

r>0

and every weakly compact convex subset of C has the fized point property for nonexpansive
mappings. If 0 € R(A), then for each x in C, lim;_, ., Jiz exists and belongs to A™'0.
As direct consequences of Theorem 5.1, we obtain the following two results.

Theorem 5.2 ([50]) Let E be a uniformly conver and uniformly smooth Banach space,
and let A C E x E be m-accretive. If0 € R(A), then for each € E, limy_,, J; ezists and
belongs to A710.
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Theorem 5.3 ([50]) Let E be a reflezive Banach space with a uniformly Géateauz differ-
entiable norm, let A C E x E be an accretive operator that satisfies the range condition.
Suppose that every weakly compact convez subset of E has the fized point property for non-
expansive mappings. If A'0 # ¢ and D(A) is convez, then for each x € D(A), limy_yeo Jiz
exists and belongs to A™10.

We also know the following theorem:
Theorem 5.4 ([67]) Let C be a closed convex subset of a Banach space E and let T be a
nonezxpansive mapping of C into itself. Then the following hold:

(i) If A=1 —T, then A is accretive;
(i) C = D(A) C (50 R(I +rA).

Theorem 5.3 generalizes Browder’s strong convergence theorem. In fact, from

T, = (1 — l) Tz, + lu,
n n

we have
z,+(n—-1)T-T)z, = u. (% * *)

Putting A = I — T, we have from Thorem 5.4 that A is accretive and satisfies the range
condition. Since J,_ju = z, from (* * %), we have, by Theorem 5.3,

lim Jou = lim .4, € (I —T)7'0 = F(T).
n—00

n—00

Recently, Wittmann [80] dealt with the following iterative process in a Hilbert space:
z; =1z € C and

Tpy1 =+ (1 —a,)Tz, forn>1,

where {a,} is a sequence in [0, 1]; see originally Halpern [23]. The following theorem was
proved by Wittmann.

Theorem 5.5 ([80]) Let H be a Hilbert space. Let C be a nonempty closed convex subset
of H. Let T' be a nonezpansive mapping of C into itself such that F(T) # (. Let {8,} be a
sequence of real numbers such that 0 < £, <1, lim, oo B, =0, Y oo | |Brt1 — Bal < 00 and
Yo 1 B = 00. Suppose that {z,}is given by z; =z € C and

Tpy1 = Buz+ (1 = Bn)Tz, for n>1.
Then, {z,} converges strongly to Pz € F(T'), where P is the metric projection from C onto
F(T).
Shioji and Takahashi [56] extended Wittmann’s theorem to a Banach space by using Theo-
rem 5.1 as follows:

Theorem 5.6 ([56]) Let E be a uniformly convex Banach space with a uniformly Gateaus
differentiable norm. Let C be a nonempty closed convex subset of . Let T be a nonerpansive
mapping of C into itself such that F(T) # 0. Let {B,} be a sequence of real numbers such
that 0 < B, < 1, limy oo Bn = 0, Yooy |Brt1 — Bu] < 00 and 3.7 B, = 00. Suppose that
{z,}is given by z; =z € C and

Tpi1 =Puz+ (1 = B.)Tz, for n>1.
Then, {z,} converges strongly to Pz € F(T), where P is a unique sunny nonerpansive

retraction from C onto F(T).
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Kamimura and Takahashi [30] also obtained the following result by using Theorem 5.1,
which is connected with the proximal point algorithm.

Theorem 5.7 ([30]) Let E be a uniformly convex Banach space with a umformly Gateaux
differentiable norm and let A C E x E be an m-accretive operator. Let x € E and let {z,}
be a sequence defined by £, = = and

Tpt1 = ant + (1 — an)Jr,zn forn 21,

where {a,} C [0,1] and {r,} C (0, 00) satisfylim,con =0, > o> | @y = 00 and limy 400 1 =
oo. If A7*0 # ¢, then {z, } converges strongly to an element Pz € A~'0, where P is a unique
sunny nonexpansive retraction of E onto A™10.

Atsushiba and Takahashi [3] proved a strong convergence theorem for finite nonexpansive
mappings which is connected with the feasibility problem.

Theorem 5.8 Let E be a uniformly convex Banach space with a uniformly Gateauz differ-
entiable norm. Let C' be a nonempty closed convex subset of E, let ay1,ana,. .. ,0n be real
numbers such that 0 < an; <1 for everyt=1,2,...,r—1andn=1,2,...,0 < a, 1
for everyn = 1,2,--- and let T1,T,,--- , T, be finite nonexpansive mappings of C into it-
self such that ﬂ§=1F(Ti) # (0. Let Wo(n = 1,2,---) be the W-mappings of C into itself
generated by TI,TZ, T, and a1, Qng, - - 0. Let {B,} be a sequence of real numbers
such that 0 £ 3, £'1 for every n = 1,2,--+ ,lim, o B = 0, E - |ﬂn+1 Bn| < 00 and
Yo By = 00. Suppose that Y - |an+h am| < oo for everyi =1,2,---,r and {z,} is
given by £, =z € C and

Tpnt1 = /8n37 + (1 - IBn)W'n.xn

for every n = 1,2,---. Then, {z,} converges strongly to Pz € N, F(W,) = N_,F(T;),
where P is a unique sunny nonezpansive retraction from C onto ﬂz_lF(T-).

We will finally show a strong convergence theorem [58] for a nonexpansive semigroup in
a Banach space without compactness.
Theorem 5.9 ([58]) Let E be a uniformly convex Banach space E with a uniformly Gateauz
differentiable norm. Let C be a nonempty closed convez subset of E and let S = {T;: t € S}
be a nonerpansive semigroup on C such that F(S) # ¢. Let {u,} be a sequence of means on
RUC(S) such that ||, — Lip,|| = 0 for every s € S. Suppose z,y, € C and {y,} is given
by

Ynt1 = Pn® + (1= Bn)Ty,yn  for everyn > 1,

where {B,} is in [0,1]. If {B.} is chosen so that lim, o B, = 0 and ¥2,6, = oo, then
{yn} converges strongly to the element of F(S) which is nearest to z in F(S) ‘

Using Theorem 5.9, we can prove a strong convergence theorem for a one-parameter
nonexpansive semigroup.

Theorem 5.10 Let E be a uniformly convez Banach space E with a uniformly Gdteaux
differentiable norm. Let C' be a nonempty closed convez subset of E and let S = {S(t): ¢t 2
0} be a one-parameter nonezpansive semigroup on C such that F(S) # 0. Suppose z,y, € C
and {y,} is given by
1 [
nis = B+ (1= o)1 [ S@Oundt for every n 21,
n Jo

where {B,} is a sequence in [0,1]. If {8,} and {\.} are chosen so that lim,_,, 3, = 0,

Yo Bn =00 and A\, = oo, then {y,} converges strongly to the element of F(S) which is
nearest to z in F(S).
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6. Applications

In this section, we first deal with convergence theorems which are connected with the
feasibility problem; for the feasibility problem, see Section 1. Using a nonlinear ergodic
theorem, Grombez [13] considerd the feasibility problem in a Hilbert space setting. Let H
be a Hilbert space, let Cy,C5,...,C, be nonempty closed convex subsets of H and let I
be the identity operator on H. Then the feasibility problem in a Hilbert space setting may
be stated as follows: The original (unknown) image z is known a priori to belong to the
intersection Cy of r well-defined sets Cy, Cy, ... ,C, in a Hilbert space; given only the metric
projections F; of H onto Ci(z = 1,2,... ,r), recover z by an iterative scheme. Crombez [13]
proved the following: Let T' = aol + ) ;o a;T; with T; = I+ );(P; — 1) for all 4, 0 < \; < 2,
o; 2 0fori=0,1,2,...,7, >._,; = 1 where each P; is the metric projection of H onto
C; and Cy = N[_;C; is nonempty. Then starting from an arbitrary element = of H, the
sequence {T"z} converges weakly to an element of Cy. Later, Kitahara and Takahashi [32]
and Takahashi and Tamura {[75] dealt with the feasibility problem by convex combinations
of sunny nonexpansive retractions in uniformly convex Banach spaces.

Theorem 6.1 ([75]) Let E be a uniformly convex Banach space with a Fréchet differen-
tiable norm and let C' be a nonempty closed convex subset of E. Let Cy,Cs,... ,C, be
nonerpansive retracts of C such that NI_,C; # ¢. Let T be a mapping on C given by
T =53 _,0T,0<ao<]1, i@ = 1, such that for each ¢, T; = (1 — X\)I + NP,
0 < A; <1, where P; is a nonexpansive retraction of C onto C;. Then, F(T) = Ni_,C; and
further, for each x € C {T"z} converges weakly to an element of NI_,C;.

Takahashi and Shimoji [74] solved the feasibility problem by using the convergence theo-
rem of Mann’s type (Theorem 4.22).

Theorem 6.2 ([74]) Let E be a unifomly convex Banach space with a Fréchet differentiable
norm. Let Cy,Cy,...,C, be nonezpansive retracts of C' such that N;_,C; # ¢. Let W be
the W-mapping of C into itself generated by Py, P,,... , P, and ay,ay, ... ,a, where P; is
a nonezpansive retraction of C onto C; and 0 < a; < 1 for every i =1,2,... ,r. Then for
each z € C, {W™z} converges weakly to an element of NI_,C;.

When N;_,;C; is empty in Theorem 6.2, we have the following two theorems.

Theorem 6.3 ([74]) Let E be a reflexive Banach space and let C' be a nonempty closed

conver subset of E which has normal structure. Let Cy,Cy,... ,C, be nonempty bounded
nonexpansive retracts of C. Let W be the W-mapping generated by Py, P,,...,P. and
oy, 9, ... ,a,, where 0 < ay,...,a, <1 and P; is a nonezpansive retraction of C onto C;.

Then F(W) is nonempty. Further, assume that E is strictly conver and Ni_,C; = (. Then
FW)NC; =0 for some 1.

Let C and D be nonempty convex subsets of a Banach space E. Then we denote by ic D

the set of z € D such that for any « € C, there exists A € (0,1) with Az + (1 —X)z € D
and by dcD the set of z € D such that there exists ¢ € C with Az + (1 — A)z ¢ D for all
X € (0,1).
Theorem 6.4 ([T4]) Let E be a strictly conver and reflexive Banach space and let C' be
a nonempty closed conver subset of E which has normal structure. Let C1,Cs,...,C, be
nonempty bounded sunny nonerpansive retracts of C such that for each i, an element of
OcC; is an extreme point of C;. Let W be the W-mapping generated Py, Ps,... ,P. and
ay, g, ... ,ap, where 0 < ai,... ,a, < 1 and P; is a sunny nonezpansive retraction of C
onto C;. If N'_,C; is empty, then F(W) consists of one point.

Atsushiba and Takahashi [3] proved the following strong convergence theorem.
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Theorem 6.5 ([3]) Let E be a uniformly convez Banach space with a uniformly Gateaux

differentiable norm, let C be a nonempty closed convex subset of E and let C1,Cs, ... ,C, be

nonezpansive retracts of C such that NI_,C; # 0. Let W be the W-mapping of C into itself

generated by Py, P,,... , P, and ay,qs,... ,a,, where Pi(i = 1,2,...,r) is a nonexpansive

retraction from C onto C; and 0 < a; < 1 for everyi=1,2,... ,r—1 and 0 < o, < 1. Let

{ﬂn} be a sequence of real numbers such that0 < 8, <1 for everyn = 1,2,...,lim, o, B, =
0, Do 1Brt1 — Bn| < oo and 3.7, B = oco. If {yn} is given by y; =z € C and

Yn+1 = ﬂnx + (1 - ﬂn)Wy'n.

for everyn =1,2,..., then {y,} converges strongly to Pz € F(W) = NI_,C;, where P is a
unique sunny nonexpanswe retraction from C onto F(W) = Ni_,C;.

Using Theorems 6.2 and 6.5, we consider the problem of finding a common fixed pomt
for a finite commuting family of nonexpansive mappings.

Theorem 6.6 ([74]) Let E be a uniformly convez Banach with a Féchet differentiable norm
and let C' be a nonempty closed convex subset of E. Let {S1,S52,...,S5,} be a commuting
finite family of nonexpansive mappings on C with F(S;) #0,i=1,2,...,r. Let W be the
W -mapping generated by Py, P,,... , P, and ay,0a,... ,a, where for each 1, 0 < a; < 1 and
P; is a nonexpansive retraction of C onto F(S;). Then, F(W) = Ni_,F(S;) is nonempty.
Further, for each x € C, {W"z} converges weakly to an element of NI_, F(S;).

Theorem 6.7 ([3]) Let E be a uniformly convex Banach with a uniformly Gateauz differ-
entiable norm and let C' be a closed convex subset of E. Let {S;,S3,...,5,} be a commuting
finite family of nonexpansive mappings of C into itself with F(S;) # ¢, 1 =1,2,...,r. Let
W be the W -mapping generated by Py, P,,... ,P. and oy, s,... ,a,, where 0 < o; < 1 for

every i = 1,2,...,r—1,0 < o £ 1 and P; is a unique sunny none:vpansive retraction
from C onto F(S;) for every i1 = 1,2,...,r. Then, F(W) = F(S;) # &. Let {Bn}
be a sequence of real numbers such that 0 < B, < 1 for everyn = 1 2,...,limy 00 B =

0, mei |Bnt1 — Bul < 00 and 3.7 | B, = co. Suppose y; =z € C' and {yn} is given by
Yn+1 = Bnt + (1 — Bn)Wyy

for everyn =1,2,.... Then, {y,} converges strongly to Pz € F(W), where P is a unique

sunny nonezpansive retraction from C onto F(W) = Ni_ F(S;).

Finally, we consider two proximal point algorithms for sloving (%) in Section 1, with
parameters {r,}, starting at an initial point z; in a Hilbert space H. As a direct consequence
of Theorem 5.7, we obtain the following result.

Theorem 6.8 Let H be a Hilbert space and A C H x H be an m-accretive operator. Let
€ H and let {z,} be a sequence defined by x, = = and

Tpp1 =02+ (1 — o)z, forn 21,

where {a,,} C [0,1] and {r,} C (0, 00) satisfylim, o an, =0, Y o0 o, = 00 and lim,,_,o, 7, =
oo. If A='0 # ¢, then {z,} converges strongly to Pz € A~ 1O where P is the metric projec-
tion of H onto A™'0.

Using Theorem 6.8, we obtain the following theorem.
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Theorem 6.9 ([29]) Let H be a Hilbert space and let f : H — (—00,00] be a lower semi-
continuous proper convez function. Let x € H and let {z,} be a sequence defined by z, =
and

Tpp1 = anz+ (1 —ay)d,,z, forn 21,

1
Jyn T = arg min {f(z) + 27”2' —z,|*: 2z € H} ,

where {a, } C [0,1] and {r,} C (0, 00) satisfylim, oo, =0, Y 7 | &, = 00 and lim, ;o 7, =
co. If (0f)710 # ¢, then {z,} converges strongly to v € H, which is the minimizer of f
nearest to x. Further

1 - a,

f(@ns1) = f(v)

VAN

an(f(z) = f(v)) + [Jrnn = 0l[[rnn = Za]-

Tn

The following is the proximal point algorithm by the Mann iteration proceduce.

Theorem 6.10 ([29]) Let H be a Hilbert space and let f : H — (—o0, 0] be a lower
semicontinuous proper convez function. Let x € H and let {z,} be a sequence defined by
;= and

Tpp1 = onzy + (1 — o),z forn 21,
1
J,, T, = arg min {f(z) + 2—||z —z,|*: 2 € H} ,
Tn

where {a,} C [0,1] and {r,} C (0,00) satisfy o, € [0,k] for some k with 0 < k <1 and
lim, oo 7 = 00. If(8f)710 # ¢, then {z,} converges weakly to v € H, which is a minimizer
of f. Further

1—-a,

f(@nt1) = f(v) S an(f(zn) = f(v)) +

[Jran = 0l[[[Jrn@n = @a]-
n
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