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Abstract In this article, we deal with iterative methods for approximation of fixed points and their 
applications. We first discuss fixed point theorems for a nonexpansive mapping or a family of nonexpansive 
mappings. In particular, we state a fixed point theorem which answered affirmatively a problem posed 
during the Conference on Fixed Point Theory and Applications held at CIRM, Marseille-Luminy, 1989. 
Then we discuss nonlinear ergodic theorems of Baillon's type for nonlinear semigroups of nonexpansive 
mappings. In particular, we state nonlinear ergodic theorems which answered affirmatively the problem 
posed during the Second World Congress on Nonlinear Analysts, Athens, Greece, 1996. Next, we deal with 
weak and strong convergence theorems of Mann's type and Halpern's type in a Banach space. Finally, using 
these results, we consider the feasibility problem by convex combinations of nonexpansive retractions and 
the convex minimization problem of finding a minimizer of a convex function. 

1. Introduction 
Let C be a nonempty closed convex subset of a real Hilbert space H  and let f be 

a proper convex lower semicontinuous function of H into (-m, m]. Consider a convex 
minimization problem 

The number a is called an optimal value, C is called an admissible set and M = {y G C : 
f (y) = a} is called an optimal set. Next, define a function g : H -+ (-m, W] as follows: 

Then, g is a proper lower semicontinuous convex function of H into (-m, W]. So, we 
consider the convex minimization problem 

min{g(x) : X G H } ,  (*l 
where g is a proper lower semicontinuous convex function of H into (-m, m]. For such a 
g, we can define a multivalued operator 9g on H by 

for all X E H . Such a Qg is said to be the subdifferential of g. Let C be a nonempty closed 
convex subset of a real Hibert space H .  Then a mapping T : C Ã‘> C is called nonexpansive 
on C if 
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88 W. Takahashi 

We denote by F(T)  the set of fixed point of T. Let A C H X H. Then, we can define a 
multivalued operator B from H to H by 

for all X E H .  Inversely, if B is a multivalued operator from H to H, then we can define a 
set A in H X H by A = {(X, y) : X G H, y E Bx}. So, it is natural to regard a set in H X H 
in the same light with a multivalued operator from H to H. Let A C H X H. Then, we 
define the domain of A and the range of A as follows: 

We also define a multivalued operator A 1  from H to H by 

A-\ = {X E H :  y E Ax} 

for all y 6 H. From this definition, we have X E A^O H 0 E Ax. An operator A C H X H 
is accretive if for (xi, yl), (x2, y2) 6 A, 

If A is accretive, we can define, for each positive A, the resolvent JA : R ( I  + AA) -+ D(A) 
by JA = ( I  + A A ) l .  We know that JA is a nonexpansive mapping. An accretive operator 
A C H X H is called m-accretive if R(I + AA) = H for all A > 0. If g : H -+ (-m, m]  is 
a proper lower semicontinuous convex function, then 9g is an m-accretive operator. For an 
m-accretive operator A, we can consider the following initial value problem: 

where X is an element of D(A). Then, it is well known that (**) has a unique strong 
solution U : [O, m )  -+ H. Putting S(t)x = U((), we know that the family {S(t) : t E [O, m)} 
of mappings on D(A) satisfies the following conditions: 

(i) S( t  + s)x = S(t)S(s)x for every t ,  S E [O, oo) and X E D(A); 
(ii) S(0)x = X for every X G D(A); 

(iii) for each X E D(A), t I--+ S(t)x is continuous; 
(iv) \\S{t}x - S(t)y\\ 5 IIx - 911 for every X, y G D(A) and t G [O, m) .  

Such a family {S(t) : t E [O, m)} is called a one-parameter nonexpansive semigroup on 
(A); see Br6zis [7]. We also know that 

where F(S(t)) is the set of fixed points of S((). Further, we have that for A > 0, 
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Thus, a convex minimization problem is equivalent to a fixed point problem for a nonexpan- 
sive mapping or a family of nonexpansive mappings. Further, we know that one method for 
solving (*) is the proximal point algorithm first introduced by Martinet [43]. The proximal 
point algorithm is based on the notion of resolvent Jh i.e., 

1 
JAX = argmin{g(z) + -112 - xl12 : z S H}, 

2A 

introduced by Moreau [47]. The proximal point algorithm is an iterative procedure, which 
starts at a point xi G H, and generates recursively a sequence {xn} of points xn+1 = J@ni 

where {An} is a sequence of positive numbers; see, for instance, Rockafellar [52]. On the 
other hand, let {gl, g2, . . . , gn} be a finite family of real valued continuous convex functions 
on a Hilbert space H. The problem is to find a solution of the finite convex inequality 
system, i.e., to find such a point X C C that 

Such a problem is called the feasibility problem. This problem is also connected with ap- 
proximation of fixed points. 

In this article, we first discuss fixed point theorems for a nonexpansive mapping or a 
family of nonexpansive mappings. In particular, we state a fixed point theorem which 
answered affirmatively a problem [34] posed during the Conference on Fixed Point Theory 
and Applications held at CIRM, Marseille-Luminy, 1989. Then we discuss nonlinear ergodic 
theorems of Baillon's type for nonlinear semigroups of nonexpansive mappings. In particular, 
we state nonlinear ergodic theorems which answered affirmatively the problem [69] posed 
during the Second World Congress on Nonlinear Analysts, Athens, Greece, 1996. Next, we 
deal with weak and strong convergence theorems of Mann's type and Halpern's type in a 
Banach space. Finally, using these results, we consider the feasibility problem by convex 
combinations of nonexpansive retractions and the convex minimization problem of finding 
a minimizer of a convex function. 

2. Preliminaries 
Let C be a nonempty closed convex subset of a Banach space E and let T be a mapping 

of C into C. Then we denote by R(T) the range of T. A mapping T of C into C is said to 
be asymptotically regular if for every X G C, Tnx - Tn+lx converges to 0. Let D be a subset 
of C and let P be a mapping of C into D. Then P is said to be sunny if 

P ( P x  + t(x - Px)) = P x  

whenever P x  + t(x - Px)  6 C for X E C and t 2 0. A mapping P of C into C is said to be 
a retraction if P2 = P. If a mapping P of C into C is a retraction, then P z  = z for every 
z 6 R(P). A subset D of C is said to be a sunny nonexpansive retract of C if there exists a 
sunny nonexpansive retraction of C onto D. 

Let E be a Banach space. Then, for every e with 0 <: e < 2, the modulus S(&) of convexity 
of E is defined by 

A Banach space E is said to be uniformly convex if S(&) > 0 for every e > 0. E is also 
said to be strictly convex if llx + y\\ < 2 for X, y G E with ~~x~~ 1, 1 1  yl[ 5 1 and X # y. A 
uniformly convex Banach space is strictly convex. 
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Let E be a Banach space and let E* be its dual, that is, the space of all continuous linear 
functionals X* on E. The value of X* G E* at X E E will be denoted by (X,$*).  With 
each X E E, we associate the set J (x )  = {X* E E* : ( X ,  X*) = ~ ~ x ~ ~ 2  = l 1 ~ * 1 1 ~ } .  Using the 

anach theorem, it is immediately clear that J (x )  + 4> for any X G E. Then the multi- 
valued operator J : E -+ E* is called the duality mapping of E. Let U = {X E E : ~~x~~ = 1) 
be the unit sphere of E. Then a Banach space E is said to be smooth provided 

lim llx + t~ l 1  - llxll 

exists for each X,  y G U. When this is the case, the norm of E is said to be Gateaux 
differentiable. It is said to be FrLchet differentiable if for each X in U, this limit is attained 
uniformly for y in U. The space E is said to have a uniformly Gateaux differentiable norm 
if for each y E U, the limit is attained uniformly for X E U. It is well known that if E is 
smooth, then the duality mapping J is single valued. It is also known that if E has a Frkchet 
differentiable norm, then J is norm to norm continuous; see [l71 for more details. A closed 
convex subset C of a Banach space E is said to have normal structure if for each closed 
bounded convex subset K of C, which contains at least two points, there exists an element 
of K which is not a diametral point of K.  aillon and Schoneberg [6] also introduced the 
following weakening of the concept of normal structure: A closed convex subset C of a 
Banach space is said to have asymptotic normal structure if for each closed bounded convex 
subset K of (7, which contains at least two points and each sequence {xn) in K satisfying 
X - X n + l  -+ 0 as n -+ oo , there is a point x E K such that liminfn+oollxn - X I )  < S(K), 
where &(K} is the diameter of K. It is well known that a closed convex subset of a uniformly 
convex Banach space has normal structure and a compact convex subset of a Banach space 
has normal structure. A Banach space E is said to satisfy Opial's condition [48] if Xn X 

and x + y imply 

liminf \\Xn -X\\ < liminf \ X n  - y\\, 
n-i-00 n-+m 

where denotes the weak convergence to X. Let S be a semitopological semigroup, i.e., 
a semigroup with Hausdorff topology such that for each s G S, the mappings t I-+ ts  and 
t I-+ s t  of S into itself are continuous. Let B(S) be the Banach space of all bounded real 
valued functions on S with supremum norm and let X be a subspace of B(S) containing 
constants. Then, an element p of X* is called a mean on X if llpll = p(1) = 1. We know 
that p E X* is a mean on X if and only if 

for every f G X. A real valued function p on X is called a submean on X if the following 
properties are satisfied: 

(1) p ( f  + ̂ ) 5 ~ ( f )  + p(g) for every f ,  g c X; 
(ii) p ( a f )  = a p ( f )  for every f E X and a > 0; 

'iii) for f , g  E X, f 5 g implies P(/) 5 ^(g); 
(iv) p(c) = c for every constant function c. 

Clearly every mean on X is a submean. The notion of submean was first introduced by 
Mizoguchi and Takahashi [46]. For a submean p on X and f E X, sometimes we use ^( f (t)) 
instead of p( f ) .  For each s E S and f E B(S), we define elements isj and r ,  f of B(S) given 

by (l, f ) ( t )  = f (st) and (r, f ) ( t )  = f (ts) for all t E S .  Let X be a subspace of B(S) 
containing constants which is invariant under l,, s E S (resp. r,, r E S).  Then a mean p on 
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X is said to be left invariant (resp. right invariant) if p(/) = p(& f )  (resp. p(/) = p(rS f))  
for all f E X and S E S. An invariant mean is a left and right invariant mean. A submean 
p on X is said to be left subinvariant if p(f)  < p(ls f )  for all f G X and s E S. Let S 
be a sernitopological semigroup. Then S is called left (resp. right) reversible if any two 
closed right (resp. left) ideals of S have non-void intersection. If S is left reversible, (S, <) 
is a directed system when the binary relation "<" on S is defined by a < b if and only if 
{a}  U Sa 3 { b }  U S, a, b E S. Similarly, we can define the binary relation "<" on a right 
reversible semitopological semigroup S. 

3. Fixed Point Theorems 
In this section, we discuss fixed point theorems for a nonexpansive mapping or a family 

of nonexpansive mappings. The first fixed point theorem for nonexpansive mappings was 
established in 1965 by Browder [g]. He proved that if C is a bounded closed convex subset 
of a Hilbert space H and T is a nonexpansive mapping of C into itself, then T has a fixed 
point in C. Almost immediately, both Browder [g] and Gohde [20] proved that the same is 
true if E is a uniformly convex Banach space. Kirk [31] also proved the following theorem: 

Theorem 3.1 ([31]) Let E be a reflexive Banach space and let C be a nonempty bounded 
closed convex subset of E which has normal structure. Let T be a nonexpansive mapping of 
C into itself. Then F(T) is nonempty. 

After kirk's theorem, many fixed point theorems concerning nonexpansive mappings have 
been proved in a Hilbert space or a Banach space. In particular, Baillon and Schoneberg [6] 
introduced the concept of asymptotic normal structure and generalized Kirk's fixed point 
theorem as follows: 

Theorem 3.2 ([6]) Let E be a reflexive Banach space and let C be a nonempty bounded 
closed convex subset of E which has asymptotic normal structure. Let T be a nonexpansive 
mapping of C into itself. Then F(T) is nonempty. 

On the other hand, DeMarr [l61 proved the following fixed point theorem for a cornmu- 
tative family of nonexpansive mappings. 

Theorem 3.3 ([16]) Let C be a compact convex subset of a Banach space E and let S be 
a commutative family of nonexpansive mappings of C into itself. Then S has a common 
fixed point in C, i.e., there exists z 6 C such that Tz = z for every T G S. 

Browder [g] proved the following fixed point theorem without compactness: 

Theorem 3.4 ([g]) Let C be a bounded closed convex subset of a uniformly convex Banach 
space E and let S be a commutative family of nonexpansive mappings of C into itself. Then 
S has a common fixed point in C 

Further, we try to extend these theorems to a noncommutative semigroup of nonexpansive 
mappings. Let S be a semitopological semigroup and let C be a nonempty subset of a 
Banach space E. Then a family S = {Ts : S E S} of mappings of C into itself is called a 
nonexpansive semigroup on C if it satisfies the following: 

i )  Tstx = TsTtx for all s, t  E S and X E C; 
(ii) for each X E C, the mapping S I--+ Tsx is continuous; 

(iii) for each s G S, Ts is a nonexpansive mapping of C into itself. 
For a nonexpansive semigroup S = {Ts : s G S} on C, we denote by F(S) the set of 
common fixed points of Ts, s G S. Let S be a semitopological semigroup, let C(S) be the 
Banach space of all bounded continuous functions on S and let RUC(S) be the space of 
all bounded right uniformly continuous functions on S, i.e., all f E C(S) such that the 
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mapping s t--+ rs f is continuous. Then RUC(S) is a closed subalgebra of C(S) containing 
constants and invariant under is and rs ,  S E S; see [44] for more details. 

In 1969, Takahashi [62] proved the first fixed point theorem for a noncommutative semi- 
roup of nonexpansive mappings which generalizes DeMarr7s fixed point theorem, that is, 

he proved that any discrete left amenable semigroup has a common fixed point. Mitchell 
[45] generalized Takahashi's result by showing that any discrete left reversible semigroup 
has a common fixed point. Lau proved the following theorem in [33]: 

([M]) Let S be a semitopological semigroup and let A(S) be the space of all 
f E C{S) such that vs f : s E S} is relatively compact in the norm topology of C(S). Let 

= {TS : s C S} be a nonexpansive semigroup on a compact convex subset C of a Banach 
space E .  Then A(S) has a left invariant mean if and only i f S  has a common fixed point in 
c 

Lim [41] generalized Kirk's result [31], Browder's result [g] and Mitchell's result [45] by 
s bowing the following theorem: 

Theorem 3.6 ([41]) Let S be a left reversible semitopological semigroup. Let C be a weakly 
compact convex subset of a Banach space E which has normal structure and let S = {Ts : 

be a nonexpansive semigroup on C. Then S has a common fixed point in C . 
akahashi and Jeong [71] also generalized rowder9s result [9] by using the concept of 

ean; see also [79]. 

([71]) Let S be a semitopological semigroup. Let S = {Ts : s G S} be a 
emigroup on a bounded closed convex subset C of a uniformly convex Banach 
ose that RUC(S) has a left subinvariant submean. Then S has a common 

To prove Theorem 3.7, we need the following lemma [81] : 

[Sl]) Let p > 1 and b > 0 be two fixed numbers. Then a Banach space E 
rmly convex i f  and only if there exists a continuous, strictly increasing, and convex 

function (depending on p and b) g : [O, m) -+ [O, m)  such that g(0) = 0 and 

for all x ,  y E Bb and 0 A 5 1, where Wp(A) = A(1 - X}" + AP(1 - A) and Bt is the closed 
ball with radius b and centered at the origin. 

We may comment on the relationship between "RUC(S) has an invariant mean" and "S is 
left reversible". As well known, they do not imply each other in general. But if RUC(S) has 
sufficiently many functions to separate closed sets, then 6'RUC(S) has an invariant mean" 
would imply " S  is left and right reversible". Recently, Lau and Takahashi [39] generalized 
Lim's result [41] and Takahashi and Jeong's result [71]. 

Theorem 3.9 ([39]) Let S be a semitopological semigroup, let C be a nonempty weakly 
compact convex subset of a Banach space E which has normal structure and let S = \Ts : s ? 
S} be a nonexpansive semigroup on C.  Suppose RUC(S) has a left subinvariant submean. 

has a common fixed point in C .  
To prove Theorem 3.9, we need two lemmas. 

Lemma 3.10 ([40]) A closed convex subset C of a Banach space has normal structure if 
and only i f  it does not contain a sequence {xn} such that for some c > 0,  

1 for all n 2 1 and m 2 1, where = a'r 
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Lemma 3.11 ([19]) Let X be a compact convex subset of a separated topological vector 
space E ,  let fi, f a , .  . . , fn be a finite family of lower semicontinuous convex functions from 
X into R and let c G R, where R denotes the set of real numbers. Then the following 
conditions (i) and (ii) are equivalent: 

(i) There exists XQ G X such that fi(xo) 5 c for all i = 1,2 , .  . . , n; 
(ii) for any finite non-negative real numbers {a1, a 2 , .  . . , an} with V,̂ , a; = 1, there exists 

y G X such that xi a,f,(y) 2 c. 

Theorem 3.9 answers affirmatively a problem [34] posed during the Conference on Fixed 
Point Theory and Applications held at CIRM, Marseille-Luminy, 1989, whether Lim's result 
and Takahashi and Jeong's result can be fully extended to such Banach spaces for amenable 
semigroups. We do not know whether "normal structure "in Theorem 3.9 would be replaced 
by "asymptotic normal structure". 

4. Weak Convergence Theorems 
The first nonlinear ergodic theorem for nonexpansive mappings was established in 1975 

by Baillon [4] in the framework of a Hilbert space. 

Theorem 4.1 ([4]) Let C be a closed convex subset of a Hilbert space H and let T be a 
nonexpansive mapping of C into itself. If the set F(T) of fixed points of T is nonempty, 
then for each X G C ,  the Ceshro means 

converge weakly to some y G F(T) .  

This theorem was extended to a uniformly convex Banach space whose norm is Frkchet 
differentiable by Bruck [12]. 

Theorem 4.2 ([12]) Let C be a closed convex subset of a uniformly convex Banach space 
E with a Frhchet differentiable norm. If T : C + C is a nonexpansive mapping with a fixed 
point, then the Ceshro means of {Tnx} converge weakly to a fixed point of T. 

In their theorems, putting y = P x  for each X G C ,  we have that P is a nonexpansive 
retraction of C onto F (T)  such that PTn  = T n P  = P for all n = 1,2, .  . . and P x  G 
- 
co{Tnx : n = 0,1,2, .  . . } for each X G C ,  where ~zA is the closure of the convex hull of A. 
We discuss nonlinear ergodic theorems for a nonlinear semigroup of nonexpansive mappings 
in a Hilbert space or a Banach space. Before discussing them, we give a definition. Let 
{p.a : a G A} be a net of means on RUC(S). Then {pff E A} is said to be asymptotically 
invariant if for each f G RUC(S) and S G S, 

Let us give an example of asymptotically invariant nets. Let S = {O, 1 ,2 , .  . . } and let N be 
the set of positive integers. Then for f = (x0, xi , .  . . ) G B(S)  and n G N, the real valued 
function pn defined by 
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is a mean. Further since for f = (xo, X I ,  . . . ) G B(S) and m G N 

as n -+ oo and S is commutative, {pn} is an asymptotically invariant net of means. 
If C is a nonempty subset of a Hilbert space H and S = {Ts : s G S} is a nonexpansive 

semigroup on C such that {Tp : s G S} is bounded for some x G C, then we know that 
for each U 6 C and v 6 H, the functions f ( t )  = IlT,u - vl12 and g(t) = (Ttu,v) are in 
RUC(S). Let p be a mean on RUC(S). Then since for each X E C and y G H, the real 
valued function t t-+ (Ttx, y )  is in RUC(S), we can define the value A T t x ,  y )  of p at this 
function. By linearity of p and of the inner product, this is linear in y ;  moreover, since 

it is continuous in y. So, by the Riesz theorem, there exists an xo G H such that 

for every y G H.  We write such an XQ by TPx; see [64,67] for more details. 
Now we can state a nonlinear ergodic theorem for noncommutative semigroups of nonex- 

pansive mappings in a Hilbert space. 

Theorem 4.3 ([68]) Let C be a nonempty subset of a Hilbert space H and let S be a 
semitopological semigroup such that RUC(S) has an invariant mean. Let S = {Tt : t G S} 
be a nonexpansive semigroup on C such that {Ttx : t E S} is bounded and nsE@{Tstx : t E 
S} C C for some X E C. Then, F(S) # 4. Further, for an asymptotically invariant net 
{pa : a E A} of means on RUC(S), the net {TPa-r : a E A} converges weakly to an element 
xo E F(S) .  

Using Theorem 4.3, we have Theorem 4.1. By the same method, we can prove the following 
nonlinear ergo die theorems: 

Theorem 4.4 Let C be a closed convex subset of a Hilbert space H and let T be a one- 
parameter nonexpansive mapping of C into itself. If F(T) is nonempty, then for each X G C, 

as r '[ 1, converges weakly to an element y G F(T).  

Theorem 4.5 ([5]) Let C be a closed convex subset of a Hdbert space H and let S = {S(t) : 
t E [O, oo)} be a nonexpansive semigroup on C. If F(S) is nonempty, then for each X G C, 

as A -+ m, converges weakly to  an element y G F(S). 
Next, we state a nonlinear ergodic theorem for nonexpansive semigroups in a Banach 

space. Before stating it, we give a definition. A net {p.a} of continuous linear functionals 
on RUC(Â§' is called strongly regular if it satisfies the following conditions: 
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(i) sup Ilpall < +m; 
a 

(ii) l i m b c l )  = 1; 
a 

Theorem 4.6 ([24]) Let S be a commutative semitopological semigroup and let E be a 
unifromly convex Banach space with a Frichet differentiable norm. Let C be a nonempty 
closed convex subset of E and let S = {Tt : t G S} be a nonexpansive semigroup on C such 
that F(S) is nonempty. Then there exists a unique nonexpansive retraction P of C onto 
F(S)  such that PTt = TtP = P for every t G S and P x  G ET{Ttx : t E S} for every X E C.  
Further, if {pa} is a strongly regular net of continuous linear functionals on RUC(S), then 
for each X G C, T^TfX converges weakly to P x  uniformly in t E S .  

We have not known whether Theorem 4.6 would hold in the case when S is noncommu- 
tative (cf. [69]). Recently, Lau, Shioji and Takahashi [36] solved the problem as follows: 

Theorem 4.7 ([36]) Let C be a closed convex subset of a uniformly convex Banach space 
E ,  let S be a semitopological semigroup which RUC(S) has an invariant mean, and let 
S = {Tt : t E S} be a nonexpansive semigroup on C with F(S) # 0 .  Then there exists a 
nonexpansive retraction P from C onto F(S) such that PTt = TtP = P for each t G S and 
P x  E ET{Ttx : t G S} for each X G C .  

This is a generalization of Takahashi's result [64] for an amenable semigroup of nonexpan- 
sive mappings on a Hilbert space. Further they extended Rode's result [53] to an amenable 
semigroup of nonexpansive mappings on a uniformly convex Banach space whose norm is 
Frkchet differentiable. 

Theorem 4.8 ([36]) Let E be a uniformly convex Banach space with a Frichet differen- 
tiable norm and let S be a semitopological semigroup. Let C be a closed convex subset of 
E and let S = {Tt : t E S} be a nonexpansive semigroup on C with F(S) # 4. Suppose 
that RUC(S) has an invariant mean. Then there exists a unique nonexpansive retraction 
P from C onto F(S)  such that PTt = TtP = P for each t G S and P x  E ={Ttx : t E S} 
for each X G C. Further, i f  {po,} is an asymptotically invariant net of means on X ,  then 
for each X G C, { T k x }  converges weakly to Px.  

To prove Theorem 4.8, they used Theorem 4.7 and the following lemma which has been 
proved in Lau, Nishiura and Takahashi [35]. 

Lemma 4.9 ([35]) Let E be a uniformly convex Banach space with a Frichet differentiable 
norm and let S be a semitopological semigroup. Let C be a closed convex subset of E and 
let S = {Tt : t E S} be a nonexpansive semigroup on C with F(S) # 4. Then, for each 
X ? C, F(S) f l  flses^Â¡{Tts : t E S} consists of at most one point. 

The following theorem has been proved in Takahashi [66] and Lau, Nishiura and Takahashi 
1351 when E is a Hilbert space. 

Theorem 4.10 ([36]) Let E be a uniformly convex Banach space with a Frichet differen- 
tiable norm and let S be a semitopological semigroup. Let C be a closed convex subset of 
E and let S = {Tt : t G S} be a nonexpansive semigroup on C with F(S) # 4. Suppose 
that for each X G C ,  F(S)  n nsgSco{Ttsx : t E S} is nonempty. Then there exists a non- 
expansive retraction P from C onto F(S) such that PTt = TtP = P for each t G S and 
P x  ={Ttx : t G S} for each X E C .  

On the other hand, Mann [42] introduced an iteration procedure for approximating fixed 
points of a mapping T in a Hilbert space as follows: xi = X G C and 

Xn+l = wn + (1 - an)Txn for n 2 1, 
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where {an} is a sequence in [O, l]. Later, Reich 1491 discussed this iteration procedure in 
a uniformly convex Banach space whose norm is Frhchet differentiable and obtained the 
following theorem: 

Theorem 4.11 ([49]) Let C be a closed convex subset of a uniformly convex Banach space 
E with a Frtchet differentiable norm, let T : C -+ C be a nonexpansive mapping with a 
fixed point, and let {cn} be a real sequence such that 0 < cn < 1 and S;=l~n(l - C,) = CQ. 

a ; l â ‚ ¬ C  

xn+l c ~ T x ~  + (1 - cn)xn for n > 1, 

then {X,) converges weakly to a fixed point of T .  

This theorem has been known for those uniformly convex Banach spaces that satisfy 
Opia17s condition (cf. [48]). Tan and Xu [78] proved the following interesting result which 
generalizes the result of Reich [49]. 

Theorem 4.12 ([78]) Let C be a closed convex subset of a uniformly convex Banach space 
E which satisfies Opial's condition or whose norm is Frechet differentiable and let T : C -+ 
C be a nonexpansive mapping with a fixed point. Then for any initial data xl in C ,  the 
iterates {X,] defined b y  

where {an} and {P,} are chosen SO that E>an(l  - an) = W ,  Szl/?n(l - an) < W ,  

limsupn+ooftn < 1 ,  converge weakly to a fixed point of 7'. 

To prove Theorem 4.12, Tan and Xu 1781 used the following two lemmas. 

Lemma 4.13 ([49],[72]) Let C be a nonempty closed convex subset of a uniformly convex 
Banach space E with a Frichet differentiable norm and let {Tl, Ta, T3, . . . } be a sequence of 
nonexpansive mappings of C into C such that H;=~F(T~) is nonempty. Let X G C and put 
Sn = TnTn-i . . . Ti for n > 1. Then, the set U n n;=l~{Sm~ : m > n }  consists of at most 
one point, where U = 1-3;~~ F(Tn). 

Lemma 4.14 ([54]) Let E be a uniformly convex Banach space, let {t,} be a real sequence 
such that 0 < b <tn < c < l for n 2 1 and let a > 0. Suppose that {X,} and {y,} are 
sequences of E such that lim sup,+^ \X, 1 1  <_ a, lim supn+^ Ily, 1 1  < a and limn+^ \\tnxn + 
(1 - tn)yÃ§l = 0. Then limn+^ llx, - ynl] = 0. 

Takahashi and Kirn [72] also proved the following theorem: 

Theorem 4.15 ([72]) Let E be a uniformly convex Banach space E which satisfies Opial's 
condition or whose norm is Frichet differentiable, let C be a nonempty closed convex subset 
of E ,  and let T : C -+ C be a nonexpansive mapping with a fixed point. Suppose xl E C ,  
and {Xn} is given b y  

where {aÃ£ and {Pn} are chosen so that a, E [a,b] and & E- [O,b] or an E [a, l]  and 
Pn â [a,  b] for some a, b with 0 < a < b < 1. Then {X,} converges weakly to a fixed point of 
T .  

Motivated by Theorems 4.12 and 4.15, Suzuki and Takahashi [60] obtained the following 
theorem: 
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Theorem 4.16 ([60]) Let C be a nonempty closed convex subset of a uniformly convex 
Banach space E which satisfies Opia17s condition or whose norm is Frichet differentiable. 
Let T be a nonexpansive mapping from C into itself with a fixed point. Suppose that {xn} 
is given b y  xl G C and 

where {an} and {Pn} are sequences in [O, l] with E z l a n ( l  -an) = m and l i m ~ u p , + ~  Pn < 
1, or E z l a n P n  = m and limsupn+^, ,On < 1. Then {xn} converges weakly to a fixed point 
of T .  

To prove Theorem 4.16, Suzuki and Takahashi [60] used the following two lemmas. Let I 
be an infinite subset of positive integers N. If {An} is a sequence of nonnegative numbers, 
then we denote by {A; : i 6 I} the subsequence of {An}- 
Lemma 4.17 ([60]) Let {An} and {pn} be sequences of nonnegative numbers such that 
E s A n  = m and S S A n p n  < m. Then for E > 0, there exists an infinite subset I of N 
such that S{Aj : j G N\I} < E and the subsequence {p; : i G I} of {pn} converges to 0. 

Lemma 4.18 ([60]) Let {An} and {pn} be sequences of nonnegative numbers such that 
An+1 5 An + pn for all n G N .  Suppose there exists a subsequence {pi : i E I }  of {pn} such 
that -+ 0, \i + a and S{pj : j G N\I} < oo. Then An -+ a .  

Compare Theorem 4.16 with Theorem 4.12 of Tan and Xu [78]. This indicates that the 
assumption Sr=l/5n(l - an) < m in Theorem 4.12 is superfluous. We do not know whether 
the assumptions E:=lan/Sn = m and limsupn+.-, Pn < 1 in Theorem 4.16 are replaced by 
Er1/3n(1 -pn) = m and lirninfn+- an > 0. We also know the following strong convergence 
theorem which is connected with Rhoades [51], Tan and Xu [78], and Takahashi and Kim 
[72l 
Theorem 4.19 ([59]) Let E be a strictly convex Banach space, let C be a nonempty closed 
convex subset of E ,  and let T : C + C be a nonexpansive mapping which T(C) is contained 
in a compact subset of C .  Suppose xi E C, and {xn} C C is given b y  

where {an} and {Pn} are chosen SO that Sr=l~n(l - an) = m and 
l i r n s ~ p , + ~  ,& < 1, or Sgl/5n(l - ftn) = oo and liminfn+m an > 0. Then {xn} converges 
strongly to a fixed point of T.  

Let C be a closed convex subset of a Banach space E ,  and let T , S  be selfmaps on C. 
Then Das and Debata [l41 considered the following iteration scheme: xl E C, and 

where {an,} and {A} are real sequences in [O, l] .  They proved a strong converence theorem 
concerning Roades' result [51]. Takahashi and Tamura [76] obtained the following weak 
convergence theorem. 

Theorem 4.20 ([76]) Let E be a uniformly convex Banach space E which satisfies Opia17s 
condition or whose norm is Frechet differentiable, let C be a nonempty closed convex subset 
of E ,  and let S , T  : C -+ C be nonexpansive mappings such that F ( S )  17 F(T) is nonempty. 
Suppose xi E C,  and {xn\ is given b y  

where {an,} and {ftn} are chosen so that a^ftn E [a, b] for some a, b with 0 < a < b < 1. 
Then {X%} converges weakly to a common fixed point of S and T .  
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Further, Takahashi and Tamura [76] obtained the following theorem: 
Theorem 4.21 ([76]) Let C be a nonempty closed convex subset of a uniformly convex 
Banach space E ,  and let S, T : C --+ C be nonexpansive mappings such that F(S) n F(T) is 
nonempty. Let P be the metric projection of E onto F(S) F\ F(T) and suppose xl E C ,  and 

where {an} and {Pn} are real sequences in [O, l ] .  Then {Pxn} converges strongly to a 
common fixed point of S and T .  

To apply convergence theorems of Mann's type to the feasibility problem, we need to 
extend Theorem 4.20 to a family of finite mappings. Let C be a nonempty convex subset of 
a Banach space E. Let Th T2,. . . , Tr be finite mappings of C into itself and let al, a s ) .  . . , Or 

be real numbers such that 0 <: a; < 1 for every i = 1,2, .  . . , r. Then, we define a mapping 
W of C into itself as follows: 

Such a W is called the W-mapping generated by Tl, Tay . .  . ,TT and al, era,. . . , Qr. 

Theorem 4.22 ([74]) Let E be a uniformly convex Banach space E which satisfies Opial's 
condition or whose norm is Frichet differentiable, let C be a nonempty closed convex subset 
of E ,  and let {T17T2,. . . ,TT} be finite nonexpansive mappings of C into itself such that 
nk=lF(Tn) is nonempty. Let a, b be real numbers with 0 < a < b < 1 and suppose xl E C ,  
and {xn} is given b y  

x n + ~  = Wnxn for n >\, 

where Wn are W-mappings generated b y  Ti, T2, . . . , TT and anl, , anr â [a, b].  Then 
x n }  converges weakly to a common fixed point of Ti, T2,. . . , Tr. 

We will finally show a weak convergence theorem of Mann's type for a nonexpansive semi- 
group in a Banach space. 

Theorem 4.23 ([l]) Let E be a uniformly convex Banach space E with a Frichet differ- 
entiable norm. Let C be a nonempty closed convex subset of E and let S = {Tt : t E S} be 
a nonexpansive semigroup on C such that F(S) # <b. Let {pn} be a sequence of means on 
RCU(S) such that !]pn -l:̂ \\ = 0 for every .S E S .  Suppose xi = X G C and {xn} M given 
b y  

+ l  = Qnxn + (l - an)Thxn for every n > 1, 

where {an} is a sequence in [O, l]. If {an} is chosen so that an E [O, U]  for some a with 
0 < a < 1 ,  then {xn} converges weakly to an element XQ E F(S) .  

Using Theorem 4.23, we can prove a weak convergence theorem of Mann's type for a 
one-parameter nonexpansive semigroup. 
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Theorem 4.24 Let E be a uniformly convex Banach space E with a Frichet differentiable 
norm and let C be a closed convex subset of E .  Let S = { S ( t )  : t E [O, m)}  be a one- 
parameter nonexpansive semigroup on C such that F ( S )  # 4. Suppose xi = X G C and 
{xn} is given b y  

Xn+i  = C t n X n  + (1 - an)-'- S(t)xndt for every n >: 1, 
S n L 

where sn Ã‘ cm as n Ã‘> oo and { a n }  is a sequence in [0, l]. I f  { an}  is chosen so that 
an E [O, a] for some a with 0 < a < 1, then { x n }  converges weakly to a common fixed point 
z E F ( S ) .  

5. Strong Convergence Theorems 
In this section,we discuss strong convergence theorems for nonexpansive mappings. Let 

C be a nonempty closed convex subset of a real Hilbert space H. In 1967, Browder [l01 
obtained the following strong convergence theorem: For a given U E C and each n E N, 
define a contraction Tn : C -+ C by 

where T is a nonexpansive mapping of C into itself. Then, there exists a unique fixed point 
X n  of Tn in C such that 

Further if the set F ( T )  of fixed points of T is nonempty, then {xn}  converges strongly as 
n --+ oo to a fixed point of T .  After Browder's result, such a problem has been investigated 
by several authors. In particular, Reich [50] and Takahashi and Ueda [77] also extended 
Browder's result to strong convergence theorems for resolvents of accretive operators in a 
Banach space. Before stating them, we give two definitions. A closed convex subset C of a 
Banach space E is said to have the fixed point property for nonexpansive mappings if every 
nonexpansive mapping of C into itself has a fixed point in every nonempty bounded closed 
convex subset of C such that T leaves invariant. Let A be an accretive operator in a Banach 
space E. Then A is said to satisfy the range condition if D ( A )  C R ( I + r A )  for every r > 0. 
Now we can prove the first strong convergence theorem for resolvents of accretive operators. 

Theorem 5.1 ([77]) Let E be a reflexive Banach space with a uniformly Gateaux differ- 
entiable norm and let A C E X E be an accretive operator that satisfies the range condition. 
Let C be a closed convex subset of E such that 

and every weakly compact convex subset of C has the fixed point property for nonexpansive 
mappings. If0 G &(A), then for each X in C ,  limt+oo J tx  exists and belongs to A^O. 

As direct consequences of Theorem 5.1, we obtain the following two results. 

Theorem 5.2 ([50]) Let E be a uniformly convex and uniformly smooth Banach space, 
and let A C E X E be m-accretive. If 0 E R ( A ) ,  then for each X G E ,  limt+<^ Jtx exists and 
belongs to A I O .  
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Theorem 5.3 ( [ 5 0 ] )  Let E be a reflexive Banach space with a uniformly Gateaux differ- 
entiable norm, let A C E X E be an accretive operator that satisfies the range condition. 
Suppose that every weakly compact convex subset of E has the fixed point property for non- 
expansive mappings. If A I O  # d> and D ( A )  is convex, then for each X E D ( A ) ,  lirn++oo & X  

exists and belongs to A 1  

also know the following theorem: 

( [ 6 7 ] )  Let C be a closed convex subset of a Banach space E and let T be a 
nonexpansive mapping of C into itself. Then the following hold: 

(i) If A = I - T,, then A is accretive; 
( i i ) C = D ( A ) c  ,, yR{I + rA ) .  

Theorem 5.3 generalizes Browder's strong convergence theorem. In fact, from 

Putting A = I - T ,  we have from Thorem 5.4 that A is accretive and satisfies the range 
condition. Since J n - 1 ~  = X n  from (* * *), we have, by Theorem 5.3, 

lim Jnu = lim xnt1 E ( I  - T)-% = F ( T ) .  
n+m n+oo 

Recently, Wit tmann [80] dealt with the following iterative process in a Hilbert space: 
XI = X  E C7 and 

where {an}  is a sequence in [ O ,  l ] ;  see originally Halpern 1231. The following theorem was 
proved by Wittmann. 

Theorem 5.5 ( [ 8 0 ] )  Let H be a Hilbert space. Let C be a nonempty closed convex subset 
of H .  Let T be a nonexpansive mapping of C into itself such that F ( T )  # 0. Let { p n }  be a 
sequence of real numbers such that 0 <_ Pn 5 1, limn+oo = 0, I,Bn+l - pn1 < oo and 

00 = ,  Pn = m. Suppose that {xn}is given b y  x1 = X G C and 

Then, { xn}  converges strongly to P x  E F ( T ) ,  where P is the metric projection from C onto 
F ( ' v  
Shioji and Takahashi 1561 extended Wittmann's theorem to a Banach space by using Theo- 
rem 5.1 as follows: 

Theorem 5.6 ( [ 5 6 ] )  Let E be a uniformly convex Banach space with a uniformly Gateaux 
differentiable norm. Let C be a nonempty closed convex subset of E .  Let T be a nonexpansive 
mapping of C into itself such that F ( T )  # 0. Let {Pn}  be a sequence of real numbers such 
that 0 5 5 1,  = 0,  Er=, IA+I - &,l < oo and A = m. Suppose that 
{ ~ n } i s  given by xl = X E C and 

Then, { x n }  converges strongly to Px  E F ( T ) ,  where P is a unique sunny nonexpansive 
retraction from C onto F ( T ) .  
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Kamimura and Takahashi [30] also obtained the following result by using Theorem 5.1, 
which is connected with the proximal point algorithm. 

Theorem 5.7 ([30]) Let E be a uniformly convex Banach space with a uniformly Gateaux 
differentiable norm and let A C E X E be an m-accretive operator. Let X E E and let { x n }  
be a sequence defined b y  xi = X and 

00 where {an}  C [ O ,  l ]  and { r n }  C (0 ,  m)  satisfy limn+ an = 0,  xnZl an = W and linin-Ãˆc rn = 
W .  If A I O  # h then { x n }  converges strongly to an element P x  E A I O ,  where P is a unique 
sunny nonexpansive retraction of E onto A I O .  

Atsushiba and Takahashi [3] proved a strong convergence theorem for finite nonexpansive 
mappings which is connected with the feasibility problem. 

Theorem 5.8 Let E be a uniformly convex Banach space with a uniformly Gateaux differ- 
entiable norm. Let C  be a nonempty closed convex subset of E ,  let an17 ~ ' ~ 2 , .  . . , ~ - n r  be real 
numbers such that 0  < < 1 for everyi = 1,2, ... ,r - 1  and n = 1,2 ,... , 0  < anr 5 1  
for every n = l ,  2, and let Tl ,  T2, , Tr be finite nonexpansive mappings of C into it- 
self such that r \ ^ F ( Q  # 0. Let W n ( n  = 1,2, - - - )  be the W-mappings of C  into itself 
generated b y  T17 T 2 ,  - - , T,. and an17 an2, , an,.. Let { p n }  be a sequence of real numbers 
such that 0  5 pn 2 1  for every n = 1 , 2 , - - -  71imn+00A = 0, - pn1 < oo and 

,& = CO- Suppose that xl - ani l < oo for every i = 1,2, , r and { x n }  is 
given b y  xl = X E C and 

for every n = 1,2, . Then, {a-,} converges strongly to P x  E nzl F ( W n )  = nLl F(Ti) ,  
where P is a unique sunny nonexpansive retraction from C onto nzZlF(Tt}.  

We will finally show a strong convergence theorem [58] for a nonexpansive semigroup in 
a Banach space without compactness. 

Theorem 5.9 ([58]) Let E be a uniformly convex Banach space E with a uniformly Gateaux 
differentiable norm. Let C  be a nonempty closed convex subset of E and let S  = {Tt : t E S }  
be a nonexpansive semigroup on C  such that F ( S )  # 0. Let { p n }  be a sequence of means on 
R U C ( S )  such that \pn - l*pnll = 0 for every s E S .  Suppose X ,  yl E C and {yn] is given 
b y  

where {pn} is in [ O ,  l ] .  If {pn}  is chosen so that limn+m = 0  and Sr=l/?n = m, then 
{yn} converges strongly to the element of F ( S )  which is nearest to X in F ( S ) ,  

Using Theorem 5.9, we can prove a strong convergence theorem for a one-parameter 
nonexpansive semigroup. 

Theorem 5.10 Let E be a uniformly convex Banach space E with a uniformly Gateaux 
differentiable norm. Let C be a nonempty closed convex subset of E and let S = { S ( t )  : t 2 
O} be a one-parameter nonexpansive semigroup on C  such that F ( S )  # 0. Suppose X ,  yl E C 
and {yn} is given b y  

1  An 
~ n + l  = AT+ ( l  - p n ) - I  S ( t )  yn dt for every n 2 1, 

An 

where {pn}  is a sequence in [O,  l ] .  If {pn}  and {An} are chosen so that limn+OO ,Bn = 0, 
E r l  pn = m and An -+ W ,  then {yn}  converges strongly to the element of F ( S )  which is 
nearest to X in F ( S ) .  
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. Applications 
In this section, we first deal with convergence theorems which are connected with the 

feasibility problem; for the feasibility problem, see Section 1. Using a nonlinear ergodic 
theorem, Grornbez [l31 considerd the feasibility problem in a Hilbert space setting. Let H 
be a Hilbert space, let Cb C->. . . . ,Cr  be nonernpty closed convex subsets of H and let I 

e identity operator on H. Then the feasibility problem in a Hilbert space setting may 
ted as follows: The original (unknown) image z known a priori to belong to the 

intersection CO of r well-defined sets Cb C2, . . . , Cr in a Ibert space; given only the metric 
of H onto Ci(i  = 1,2, , r ) ,  recover z by an iterative scheme. Crombez [l31 

proved the following: Let T = aoJ + L. airi with T, = I+ &(P,  -I) for all i ,  0 < A, < 2, 
for i = 0,1,2 ,... , r ,  _ n  a;  = 1 where each Pi is the metric projection of H onto 

pty. Then starting from an arbitrary element X of H, the 
converges weakly to an element of Co. Later, Kitahara and Takahashi [32] 
nd Tamura [?S] dealt with the feasibili roblem by convex combinations 
ansive retractions in uniformly convex 

( [ 7 5 ] )  Let E be a uniformly convex anach space with a %het differen- 
liable norm and let C be a nonempty closed convex subset of E .  Let G, Ĉ , . . . , Cr be 
nonexpansive retracts of C such that nL,Ci # 6 Let T be a mapping on C given b y  

q = 1, such that for each z,T; = (1 - & ) I  + .AiPi, 
ve retraction of C onto (7;. Then, F(T) = nLiCi  and 

r each x G C,{ 'X} converges weakly to an element o/17&~C'i. 

akahashi and Shimoji [?4] solved the feasibility problem by using the convergence theo- 
rem of Mann's type (Theorem 4.22). 

(1741) Let E be a unifomly convex Banach space with a Frkhet differentiable 
C2,.  . . , Cr be nonexpansive retracts of C such that Cfsi # (f), Let W be 

g of C into itself generated b PI, P2,.  . . , Pr and al, a2,. . . , ar where Pi is 
etraction of C onto Ci and < a ,  < 1 for every i = 1,2, .  . . , r .  Then for 
a;}  converges weakly to an ement of n h d .  

When n^Ji  is empty in Theorem 6.2, we have the following two theorems. 

741) Let E be a reflexive Banach space and let C be a nonempty closed 
convex subset o f  E which has normal structure. Let Cl, C2,. . . , Cr be nonempty bounded 
nonexpansive retracts of C .  Let W be the W-mapping generated b y  PI, P^, .  . . ,Py and 
aiy a2,. . . ,W, where < a l , .  . . , ay. < 1 and Pi is a nonexpansive retraction of C onto Ci. 

F(W) is nonempty. Further, assume that E is strictly convex and nLiCi = 0. Then 
D = 0 for some i. 

Let C and D be nonempty convex subsets of a Banach space E. Then we denote by icD 
the set of 2 E D such that for any X G C, there exists A G (0,1) with Ax + (1 - A)z E D 
and by Q& the set of z E D such that there exists x E C with Ax + (1 - \)z 6 D for all 
A G (0, I). 

Theorem 6.4 ([74]) Let E be a strictly convex and reflexive Banach space and let C be 
a nonempty closed convex subset of E which has normal structure. Let Cl, (72,. . . , Cr be 
nonempty bounded sunny nonexpansive retracts of C such that for each 4 an element of 
OcG is an extreme point of Ci. Let W be the W-mapping generated P d . .  . , Pr and 
al, a 2 ,  . . . , a.r, where < ai, . . . , ~ . r  < 1 and Pi is a sunny nonexpansive retraction of C 
onto Ci. If CfL1Ci is empty, then F ( W )  consists of one point. 

Atsushiba and Takahashi [3] proved the following strong convergence theorem. 
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Theorem 6.5 ([3]) Let E be a uniformly convex Banach space with a uniformly Gateaux 
differentiable norm, let C be a nonempty closed convex subset of E and let Cl ,  C2,  . . . , C,. be 
nonexpansive retracts of C such that fIy=lCi # 0. Let W be the W-mapping of C into itself 
generated b y  Pi, P2,. . . , P,. and a^, . . . , where Pi(i = 1,2,. . . , r )  is a nonexpansive 
retraction from C onto C, and 0 < a ,  < 1 for every i = 1,2, .  . . , r - 1 and 0 < a,. < 1. Let 
{Pn}  be a sequence of real numbers such that 0 <  ̂ Qn <  ̂ 1 for every n = 1,2,. . . , limn+oo ftn = 
0, E:sl IA+i - ,%l < CO and Pn = m. // { y n }  is given b y  yl = X G C and 

for every n = 1,2,. . . , then {yn} converges strongly to Px E F ( W )  = Dy=lCi, where P is a 
unique sunny nonexpansive retraction from C onto F ( W )  = fILC',. 

Using Theorems 6.2 and 6.5, we consider the problem of finding a common fixed point 
for a finite commuting family of nonexpansive mappings. 

Theorem 6.6 ([74]) Let E be a uniformly convex Banach with a Fichet differentiable norm 
and let C be a nonempty closed convex subset of E .  Let { S l ,  S^ , .  . . , Sr}  be a commuting 
finite family of nonexpansive mappings on C with F[Si) # 0,  i = 1,2,. . . , r .  Let W be the 
W-mapping generated b y  Pi, P2,. . . , P,. and a i ,  a2,. . . , a,. where for each i ,  0 < a,  < 1 and 
Pi is a nonexpansive retraction of C onto F(Si) .  Then, F ( W )  = nL1F(S i )  is nonempty. 
Further, for each x G C ,  { W n x }  converges weakly to an element of n;=lF(Si). 

Theorem 6.7 ([3]) Let E be a uniformly convex Banach with a uniformly Gateaux differ- 
entiable norm and let C be a closed convex subset of E .  Let { S l ,  S2 , .  . . , S,.} be a commuting 
finite family of nonexpansive mappings of C into itself with F($)  # ( p ,  i = 1,2, .  . . , r .  Let 
W be the W-mapping generated b y  Pi, P2,. . . , P,. and a1, a2,. . . , Ctr ,  where 0 < a,  < 1 for 
every i = 1,2,. . . ,r  - 1, 0 < a,. 2 1 and Pi is a unique sunny nonexpansive retraction 
from C onto F(S i )  for every i = 1,2,. . . , r .  Then, F ( W )  = r\^,F(Si) # 4 .  Let {pÃ£ 
be a sequence of real numbers such that 0 5 Qn 5 1 for every n = 1,2,. . . ,limn+oo Pn = 
0, lA+l - A>l < m and A = m. Suppose yl = X E C and {yn} is given b y  

for every n = 1,2,. . . . Then, { i f n }  converges strongly to Px E F ( W ) ,  where P is a unique 
sunny nonexpansive retraction from C onto F ( W )  = r\^^F(Si). 

Finally, we consider two proximal point algorithms for sloving (*) in Section 1, with 
parameters {rn},  starting at an initial point xl in a Hilbert space H .  As a direct consequence 
of Theorem 5.7, we obtain the following result. 

Theorem 6.8 Let H be a Hilbert space and A C H X H be an m-accretive operator. Let 
X G H and let  {xn}  be a sequence defined b y  xl = X and 

00 where {an}  C [ O ,  l ]  and {rn} C (0, CO)  satisfy limn+ an = 0, EnZl an = 00 and lioin+oo rn = 
m. If A I O  # 4, then {xn} converges strongly to Px E A-l0, where P is the metric projec- 
tion of H onto A I O .  

Using Theorem 6.8, we obtain the following theorem. 
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Theorem 6.9 ([29]) Let H be a Hilbert space and let f : H -+ (-m, CO] be a lower semi- 
continuous proper convex function. Let X G H and let { x n }  be a sequence defined b y  xl = X 

and 

Jrnxn = argmin - $nil2 : z â H 

where { a n }  C [ O ,  11 and {rn}  C (0 ,  C O )  satisfy limn+m an = 0,  Er=, an = CO and linin+m rn = 
m. If ( 9 f ) ' Q  # 4,  then { x n }  converges strongly to v G H ,  which is the minimizer of f 
nearest to X. Further 

The following is the proximal point algorithm by the Mann iteration proceduce. 

Theorem 6.10 ([29]) Let H be a Hilbert space and let f : H + (-CO, CO] be a lower 
semicontinuous proper convex function. Let X G H and let {xn}  be a sequence defined b y  
xl = X and 

Jrnxn = argmin - xnl12 : z G H , 1 
where { a n }  C [ O ,  l ]  and {rn}  C (0 ,  oo) satisfy an  E [ O ,  k ]  for some k with 0 < k < 1 and 
limn-too rn = W. If ( 9  f ) l 0  # 4,  then { x n }  converges weakly to v E H ,  which is a minimizer 
o f f .  Further 

1 - an 
f (xn+i) - f ( v )  5 an( /  ( i n )  - f (V)) + \\ Jrnxn - ~ 1 1 1 1  Jrnxn - xnll- 

r n 

Acknowledgments. The author would like to thank two anonymous referees for their 
valuable comment S. 

References 

[ l]  S. Atsushiba, N. Shioji and W .  Takahashi: Approximating common fixed points by the 
Mann iteration process in Banach spaces. J. Nonlinear Convex Anal., to appear. 

21 S. Atsushiba and W. Takahashi: Approximating common fixed points of nonexpansive 
semigroups by the Mann iteration process. Ann. Univ. Mariae Curie-Sklodowska, 51 
(1997) 1-16. 

[3] S. Atushiba and W. Takahashi: Strong convergence theorems for a finite family of 
nonexpansive mappings and applications. Indian J. Math., to appear. 

[4] J. B. Baillon: Un theoreme de type ergodic pour les contraction non linkaires dans un 
espace de Hilbert. C. R. Acad. Sci. Paris, 280 (1975) 1511-1514. 

[S] J .  B.  Baillon: Quelques properietks de convergence asymptotique pour les sernigroupes 
de contractions impdres. C. R. Acad. Sci. Paris, 283 (1976) 75-78. 

. Baillon and R. Schoneberg: Asymptotic normal structure and fixed points of 
nonexpansive mappings. Proc. Arner. Math. Soc., 81 (1981) 257-264. 

: Opirateurs Maximaux Monotones. Mathematics Studies No.5( North-Holland, 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



Approximation of  Fixed Points 105 

[S] F. E. Browder: Fixed point theorems for noncompact mappings in Hilbert space. Proc. 
Nut. Sci. USA, 43 (1965) 1272-1276. 

[g] F. E. Browder: Nonexpansive nonlinear operators in a Banach space. Proc. Nut. Acad. 
Sci. USA, 54 (1965) 1041-1044. 

[l01 F. E. Browder: Convergence of approximants to fixed points of nonexpansive nonlinear 
mappings in Banach space. Archs. Ratio. Anal., 24 (1967) 82-90. 

[l11 R. E. Bruck: A common fixed point theorem for a commuting family of nonexpansive 
mappings. Pacific J. Math., 53 (1974) 59-71. 

[l21 R. E. Bruck: A simple proof of the mean ergodic theorem for nonlinear contractions in 
Banach spaces. Israel J. Math., 32 (1979) 107-116. 

[l31 G. Crombez: Image recovery by convex combinations of projections. J. Math. Anal. 
Appl., 155 (1991) 413-419. 

[l41 G. Das and J. P. Debata: Fixed points of quasinonexpansive mappings. Indian J.  Pure 
Appl. Math., 17 (1986) 1263-1269. 

[l51 M. M. Day: Amenable semigroups. Illinois J. Math., 1 (1957) 509-544. 
[l61 E. DeMarr: Common fixed points for commuting contraction mappings. Pacific J. 

Math., 13 (1963) 1139-1 141. 
[l71 J. Diestel: Geometry of Banach spaces, Selected Topics. Lecture Notes in Mathematics 

485 (Springer, Berlin, 1975). 
[l81 M. Edelstein and R. C. O'Brien: Nonexpansive mappings, asymptotic regularity and 

successive approximations. J. London Math. Soc., 17 (1978) 547-554. 
[l 91 K. Fan: Existence theorems and extreme solutions for inequalities concerning convex 

functions or linear transformations. Math. Z., 68 (1957) 205-21 7. 
201 D Gohde: Zum prinzip der kontraktiven abbildung. Math. Nach., 30 (1965) 251-258. 
[21] C. W. Groetsch: A note on segmenting Mann iterates. J. Math. Anal. Appl., 40 (1972) 

369-372. 
[22] 0. Giiler: On the convergence of the proximal point algorithm for convex minimization. 

SIAM J. Control Optim., 29 (1991) 403-419. 
[23] B. Halpern: Fixed points of nonexpanding maps. Bull. Amer. Math. Soc., 73 (1967) 

957-961. 
[24] N. Hirano, K. Kido and W. Takahashi: Nonexpansive retractions and nonlinear ergodic 

theorems in Banach spaces. Nonlinear Analysis, 12 (1988) 1269-1281. 
[25] S. Ishikawa: Fixed points and iteration of a nonexpansive mapping in a Banach space. 

Proc. Amer. Math. Soc., 59 (1976) 65-71. 
[26] 0. Kada, A. T. Lau and W. Takahashi: Asymptotically invariant net and fixed point 

set for semigroup of nonexpansive mappings. Nonlinear Analysis, 29 (1997) 539-550. 
[27] 0 .  Kada and W. Takahashi: Nonlinear ergodic theorems of almost nonexpansive curves 

for commutative sernigroups. Topol. Methods Nonlinear Anal., 5 (1995) 305-324. 
[28] 0. Kada and W. Takahashi: Strong convergence and nonlinear ergodic theorems for 

commutative semigroups of nonexpansive mappings. Nonlinear Analysis, 28 (1997) 
495-5 11. 

[29] S. Kamimura and W. Takahashi: Approximating solutions of maximal monotone oper- 
ators in Hilbert spaces. J. Approximation Theory, to appear. 

[30] S. Kamimura and W. Takahashi: Weak and strong convergence to solutions of accretive 
operators and applications. Set- Valued Analysis, to appear. 

[3 l] W. A. Kirk: A fixed point theorem for mappings which do not increase distances. Amer. 
Math. Monthly, 72 (1965) 1004-1006. 

[32] S. Kitahara and W. Takahashi: Image recovery by convex combinations of sunny non- 
expansive retractions. Topol. Methods Nonlinear Analysis, 2 (1993) 333-342. 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



106 W. Takahashi 

[33] A. T. Lau: Invariant means on almost periodic functions and fixed point properties. 
Rocky Mountain J. Math., 3 (1973) 69-76. 

[34] A. T. Lau: Amenability and fixed point property for semigroup of non-expansive map- 
pings. In M. A. Th6ra and J. B. Baillon (eds.): Fixed Point Theory and Applications, 
Pitman Research Notes in Mathematics Series #S52 (1991) 303-313. 

[35] A. T. Lau, K. Nishiura and W. Takahashi: Nonlinear ergodic theorems for semigroups 
of nonexpansive mappings and left ideals. Nonlinear Analysis, 26 (1996) 141 1-1427. 

au, N. Shioji and W. Takahashi: Existence of nonexpansive retractions for 
amenable semigroups of nonexpansive mappings and nonlinear ergodic theorems in 

anach spaces. J. Functional Analysis, 161 (1999) 62-75. 
[37] A. T. Lan and W. Takahashi: Weak convergence and non-linear ergodic theorems for 

reversible semigroups of nonexpansive mappings. Pacific J. Math., 126 (1987) 277-294. 
[38] A. T. Lan and W. Takahashi: Invariant means and fixed point properties for non- 

expansive representations of topological semigroups. Topol. Methods Nonlinear Anal., 

. Takahashi: Invariant submeans and semigroups of nonexpansive 
nach spaces with normal structure. J. Functional Analysis, 142 (1996) 

[40] T. C. Lim: A fixed point theorem for families of nonexpansive mappings. Pacific J. 
1974) 484-493. 

: Characterization of normal structure. Proc. Amer. Math. Soc., 43 (1974) 

nn: Mean value methods in iteration. Proc. Amer. Math. Soc., 4 (1953) 

t :  Regularisation, d'inhquations variationelles par approximations succe- 
sives. Revue Francaise d7Informatique et d e  Recherche Operationelle, (1970) 154-159. 

Mitchell: Topological semigroups and fixed points. Illinois J. Math., 14 (1970) 

ell: Fixed points of reversible semigroups of nonexpansive mappings. K6dai 
th. Sem. R e p . ,  22 (1970) 322-323. 

uchi and W. Takahashi: On the existence of fixed points and ergodic re- 
tractions for Lipschitzian semigroups in Hilbert spaces. Nonlinear Analysis, 14 (1990) 
69-80. 

[47] J. J. Moreau: roxirnitk et dualit6 dans un espace Hilbertien. Bull. Soc. Math., 
3 (1965) 273-299. 

Weak convergence of the sequence of successive approximations for nonex- 
pansive mappings. Bull. Amer. Math. Soc., 73 (1967) 591-597. 

[49] S. Reich: Weak convergence theorems for nonexpansive mappings in Banach spaces. 
th. Anal. Appl., 67 (1979) 274-276. 
ch: Strong convergence theorems for resolvents of accretive operators in Banach 

spaces. J. Math. Anal. Appl., 75 (1980) 287-292. 
oades: Comments on two fixed point iteration methods. J. Math. Anal. 
(1976) 741-750. 

ckafellar: Monotone operators and the proximal point algorithm. SIAM J. 
Control Optim., 14 (1976) 877-898. 

eorem for semigroups of nonexpansive mappings in a Hilbert 
pi., 85 (1982) 172-178. 

[54] J. Schu: Weak and strong convergence to fixed points of asymptotically nonexpansive 
mappings. Bull. Austral. Math. Soc., 43 (1991) 153-159. 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



Approximation of  Fixed Points 107 

[55] T. Shimizu and W. Takahashi: Strong convergence to common fixed points of families 
of nonexpansive mappings. J. Math. Anal. Appl., 211 (1997) 71-83. 

[56] N. Shioji and W. Takahashi: Strong convergence of approximated sequence for nonex- 
pansive mappings in Banach spaces. Proc. Amer. Math. Soc., 125 (1997) 3641-3645. 

[5 71 N. Shioji and W. Takahashi: Strong convergence theorems for asymptotically nonex- 
pansive semigroups in Hilbert spaces. Nonlinear Analysis, 34 (1998) 87-99. 

[58] N. Shioji and W. Takahashi: Strong convergence theorems for asymptotically nonex- 
pansive semigroups in Banach spaces. J. Nonlinear Convex Anal., to appear. 

[59] N. Shioji,W. Takahashi and N. Tsukiyama: A strong convergence theorem for nonex- 
pansive mappings by the Ishikawa iteration process. to appear. 

[60] T. Suzuki and W. Takahashi: On weak convergence to fixed points of nonexpansive 
mappings in Banach spaces. In W. Takahashi and T. Tanaka (eds.):Nonlinear Analysis 
and Convex Analysis (World Scientific, 1999) 341-347. 

[61] G. Rode: An ergodic theorem for semigroups of nonexpansive mappings in a Hilbert 
space. J. Math. Anal. Appl., 85 (1982) 172-178. 

[62] W. Takahashi: Fixed point theorem for amenable semigroups of non-expansive map- 
pings. Kodai Math. Sem. Rep., 21 (1969) 383-386. 

[63] W. Takahashi: Recent results in fixed point theory. SEA Bull. Math., 4 (1981) 59-85. 
[64] W. Takahashi: A nonlinear ergodic theorem for an amenable semigroup of nonexpan- 

sive mappings in a Hilbert space. Proc. Amer. Math. Soc., 81 (1981) 253-256. 
[65] W. Takahashi: Fixed point theorems for families of nonexpansive mappings on un- 

bounded sets. J. Math. Soc. Japan, 36 (1984) 543-553. 
[66] W. Takahashi: A nonlinear ergodic theorem for a reversible semigroup of nonexpansive 

mappings in a Hilbert space. Proc. Amer. Math. Soc., 97 (1986) 55-58. 
[67] W. Takahashi: Nonlinear Functional Analysis (Japanese) . (Kindaikagakusha, Tokyo, 

1988). 
[68] W. Takahashi: Fixed point theorem and nonlinear ergodic theorem for nonexpansive 

semigroups without convexity. Can. J .  Math., 44 (1992) 880-887. 
[69] W. Takahashi: Fixed point theorems and nonlinear ergodic theorems for nonlinear 

semigroups and their applications. Nonlinear Analysis, 30 (1997) 1283-1293. 
[70] W. Takahashi: Fan's existence theorem for inequalities concerning ocnvex functions and 

its applications. In S. Simons and B. Ricceri(eds.): Minimax Theory and Applications 
(Kluwer Academic Publishers, 1998) 241-260. 

[71] W. Takahashi and D. H. Jeong: Fixed point theorem for nonexpansive semigroups on 
Banach space. Proc. Amer. Math. Soc., 122 (1994) 1175-1179. 

721 W. Takahashi and G. E. Kim: Approximating fixed points of nonexpansive mappings 
in Banach spaces. Math. Japonica, 48 (1998) 1-9. 

[73] W. Takahashi and J .  Y. Park: On the asymptotic behavior of almost orbits of comrnu- 
tative semigroups in Banach spaces. In B. L. Lin and S. Simons (eds.): Nonlinear and 
Convex Analysis, Lecture Notes in Pure and Appl. Math. (Marcel Dekker, Inc., New 
York, 1987) 271-293. 

[74] W. Takahashi and K. Shimoji: Convergence theorems for nonexpansive mappings and 
feasibility problems. Mathematical and Computer Modelling, to appear. 

[75] W. Takahashi and T. Tamura: Limit theorems of operators by convex combinations 
of nonexpansive retract ions in Banach spaces. J. Approximation Theory, 91 (1 997) 
386-397. 

[76] W. Takahashi and T. Tamura: Convergence theorems for a pair of nonexpansive 
mappings. J .  Convex Analysis, 5 (1998) 45-56. 

[77] W. Takahashi and Y. Ueda: On Reich's strong convergence theorems for resolvents of 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



108 W. Takahashi 

accretive operators. J. Math. Anal. Appl., 104 (1984) 546-553. 
1781 K. K. Tan and H. K. Xu: Approximating fixed points of nonexpansive mappings by 

the Ishikawa iteration process. J. Math. Anal. Appl., 178 (1993) 301-308. 
[79] K. K. Tan and H. K. Xu: Continuous representation of semitopological sernigroup as 

nonexpansive mappings on Banach space. to appear. 
Wittmann: Approximation of fixed points of nonexpansive mappings. Arch. Math., 
(1 992) 486-49 1. 
K. Xu: Inequalities in Banach spaces with applications. Nonlinear Analysis, 16 

(1991) 1127-1138. 

Wataru Takahashi 

Department of Mathematical and Computing Sciences 

Tokyo Institute of Technology 

Oh-okayama, Meguro-ku, Tokyo 152-8552, Japan 

E-mail: wataru0is .  t i t e c h  . a c  . j p 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.




