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Abstract For measuring an individual's voting power of a voting game, some power indices are proposed. 
In this paper, we discuss the problems for calculating the Shapley-Shubik index, the Banzhaf index and the 
Deegan-Packel index of weighted majority games. 

1. Introdution 
In 1944, John von Neumann and Oskar Motgenstern studied the distribution of power in 
voting systems in their book Theory  of G a m e s  and Economic  Behavior [19]. They dealt 
with a ""simple game" in which the only goal is "winning". This is an abstraction of the 
constitutional political machinery for voting. This paper deals with the weighted majority 
game, which is a familiar example of voting systems. 

In 1960s) U.S. Supreme Court handed down a series of "one person one vote" decisions. 
After that, calculations of power indices using real data were carried out and presented 
as evidence in the courtroom. For example, the courts in New York State have accepted 
the Banzhaf index (also called the Coleman value or Chow parameters) as an appropriate 
measure for weighted voting systems. The calcula,tion normally requires the aid of a 
computer and so many counties in U.S. hire specialized consult ant S, mathematicians or 
computer scientists (see [13]). 

In this paper, we discuss some algorithms for calculating power indices. In Section 2, 
we define weighted majority games and related concepts. Section 3 defines three power 
indices, the S hapley-Shubik power index, the Banzhaf index and the Deegan-Packel index. 
Section 4 shows complexity classes of the problems for calculating power indices. In 
Sections 5,6 and 7, we discuss dynamic programming techniques, enumeration methods 
and Monte Carlo methods. 

In papers [21,22], Owen proposed approximation algorithms for calculating the Shapley- 
Shubik indices and the Banzhaf indices based on mult i l inear extensions. The methods are 
written in Owen's book [23] (Chapter XII) in detail with a numerical example of the Pres- 
idential Election Game in United States. So, we omit Owen's approximation algorithms. 

2. Weighted Majority Games 
In this paper, we consider a special class of cooperative games called weighted ma jor i t y  
games.  Let N = {l, 2,. . . , n} be a set of players. A subset of players is called a coalition. 
A weighted majority game G is defined by a sequence of nonnegative numbers 
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where we may think of wi as the number of votes, or w e i g h t  of player i and q as the threshold 
or q u o t a  needed for a coalition to win. In this paper, we assume that q ,  wl, W % .  . . , wn 
are nonnegative integers and (112) l;>"=! Wi < q <_ W,. We also assume the following 
property. 
Assumption 1 T h e  s e t  of p layers  are  arranged  t o  s a t i s f y  t h e  inequal i t ies  

A coalition S is called a w i n n i n g  coalition when the inequality ziE5 wi 2 q holds. The 
family of all the winning coalitions is denoted by W(G), or W when there is no ambiguity. 
A coalition S is called a l o s ing  coalition if S is not winning. A minimal coalition in 
the family of winning coalitions is called a m i n i m a l  w i n n i n g  coal i t ion.  For any family of 
coalitions F C_ 2^, we denote the family of minimal coalitions in F by minF.  So, the 
family of minimal winning coalitions is denoted by min W. For any player 4 the family of 
all the winning coalitions including i is denoted by W ,  and the family of all the winning 
coalitions excluding i is denoted by W!. For any coalition S E W!, the coalition S U { i }  
is winning and so we have the inequality lwl <. IVV.1. Given a weighted majority game 
G defined on the set of players N ,  the charac ter i s t i c  f u n c t i o n  V Q  : 2^ Ã‘ {o, l} is defined 
a,s 

When there is no ambiguity, we denote the characteristic function by v. For any set S 
and a singleton {e}, we denote S U {e} by S + e and S \ {e} by S - e. For any set S, both 
\S\ and #S denote the cardinality (the number of elements) of S .  

For further discussions of (general) voting games, see books [23], [l81 and 1271 for 
example. 

3. The Power Indices 
Sometimes, similar weighted majority games have very different structures of winning 
coalitions. For example, let us consider games Gn = [5n - 4; 10,10, . . . , 10, l] with n > 2 
players. If 12 is an even number, v ( S  + n) = v ( S  - n) for all S C N and so player n can 
contribute nothing t,o any coalition. If n is an odd number, a coalition is winning if and 
only if the size is greater than n/2 and so each player seems to have the same power. 

Measure of power plays a useful role in assessing the character of players in the weighted 
majority games. In this paper, we deal with three measures of power or p o w e r  ind ices ;  (1) 
the Shapley-Shubik index [25,26], (2) the Banzhaf index [1,8], and (3) the Deegan-Packel 
index [5]. 

The Shapley-Shubik index 
The Shapley value is a solution concept of n-person c~opera~tive games derived from a 
set of axioms [25,7]. In 1954, Shapley and Shubik discussed the Shapley value of voting 
games, and so the Shapley value of voting games is called the S h a p l e y - S h u b i k  i n d e x  (S-S 
index) 1261. 

Let 0 = (ol, 02, . . . , on) be a periiiutation defined on the set of players N. We say that 
player 0, is the p ivo t  of the permuta,tion o", if {ol, 02, . . . , is a losing coalition and 
o l ,  0 2 ,  . . . , %_l, U;} is a winning coalition. When we assume that all the permutations 
have the same probability 1/n!, the pivot probability 
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Calculating Power Indices of Voting Games 73 

is the Shapley-Shubik index (S-S index) of player i. We denote the S-S index of player 
i by 9,. It is easy to show that the inequalit,ies u;l 2 wi 2 - -  wn imply that the S-S 
indices satisfy the inequalities <^l > 9 2  2 - > pn. 
3.2. The Banzhaf index 
The Banzhaf index (Bz index) is proposed by Banzhaf in 1965 [I]. The index is also called 
the Coleman value or Chow parameters. Dubey and Shapley discussed axioms to derive 
the Bz index [8]. 

A pair of coalitions (S + i, S) is called a swing for player i, if S + i is winning and 
S 5 N - i is losing. The number of swings of player i is called the raw Banzhaf index of 
player i. If we assign probability 1 /2" '  to each coalition S 2 N - i, the swing probability 

3, = ^ ^ " - ^ { S r n - i : S + i e ~ ,  S#'W) 
= (l/2Ãˆ-1)y"{i,( + i) - v(S) : S C N - i} 

is called the Banzhaf index (Bz index) of player i and denoted by Pi. 
Clearly, the Bz index /3, is equivalent to the value ,Bi = (1/2n-1)(lq1 - 

is called the Dahlingham index [8]. The Bz indices do not add up to 1. Th 
wl 2 w2 > - > Wn implies the inequalities > Q2 > - > fin, 
3.3. The Deegan-Packel index 

l), which 
e assumption 

In 1978, Deegan and Packel proposed a power index based on the minimal winning coali- 
tions [S]. The Deegan-Packel index (D-P index) 7; of player i is defined by 

(l/lmin W l ) ~ { l / l S l  : i E S 6 minW} ( if {S : i E S 6 minW} + g), 
yi = { 0 ( i f  { S : i ~ S â ‚ ¬ m i n W } = 0  

The sum total of D-P indices is equal to 1. Even if the weights satisfy the inequalities q > 
w2 >. - > wn7 the D-P indices do not always satisfy the inequalities 71 > 7 2  - . > yn. 
For example, the weighted majority game [26; 20,6,5,2,1,1,1, l] with eight players has 
seven n~inimal winning coalitions 

and so corresponding D-P indices are 

In this case, inequalities w2 > w3 > w4 and y3 > y9 = y4 hold. 
3.4. Numerical example 
Here we show a numerical example of a weighted majority game and corresponding power 
indices. The present method of choosing a president for the United States of America is 
an interesting example of the weighted majority games. The voters within each state elect 
members of Electoral College, who in turn vote for the president. We assume that all 
electors from a given state vote together. Then it becomes a 51-player weighted majority 
game defined as; 

(for complete description, see Table 1) where the weight S (the numbers of electoral votes) 
are obtained from 1996 census data on the following internet home page. 
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Ta,ble 1 : Electoral College Game. 
Electoral votes Number of states S-S Bz D-P 

54 1 0.10813 0.46645 0.02125 
33 1 0.06297 0.25959 0.02020 

ht tp://www.fec.gov/pubrec/mapl .htm 
Table 1 shows the power indices of this game. The number of minimal winning coalitions 
of this game is 51,476,401,254,318. 

The above numerical result is calculated by Ogawa [20]. His c,omputer program is based 
on the dynamic programming technique in Section 5 and calculates the power indices on 
the table in a few minutes by using a popular engineering workstation. One can calculate 
the power indices 011 the following internet h~mepa~ges. 

http://www.misojiro.t .U-tokyo.ac.jp/- toinomi/voting/voting.l~tml 
http://algo.kua~inp.kyoto-u.ac.jp/tokutei98/da~t~aba~se/index.htinl 

4. Complexity for Calculating Power Indices 
When player i satisfies that V S  2 N - i ,  v{S) = v ( S  + i ) ,  player i is called a d u m m y  
player .  When a pair of players z , j  satisfies V S  N \ { i , j } ,  v ( S  + i )  = v ( S  + j ) ,  we say 
that the pair is symmetric. The following theorem shows the hardness for checking these 
characters of players. 

Theorem 2 U n d e r  A s s u m p t i o n  1, b o t h  of  t h e  fo l lowing  t w o  prob lems  are  A f ' P - c o m p l e t e .  
( 1 )  Is p l a y e r  n  n o t  a d u m m y  p layer?  
( 2 )  I s  t h e  pair  o f  p layers  1 and 2 n o t  s y m m e t r i c ?  

Proof Player n  is not a dummy player if and only if there exists a coalition S 2 N - { n }  
satisfying that S is losing and S U { n }  is winning. The pair of players 1 and 2 is not 
symmetric if and only if there exists a coalition S C N - { l ,  2} satisfying that S U {l} is 
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winning and S U {2} is losing, since W\ 2 W ^ .  Thus, both problems have polynomial size 
YES certificates and so belong to class A^P. 

We show a polynomial time reduction of the p a r t i t i o n  p r o b l e m  [9,11] defined below 
to problems (1) and (2). Given a set of positive integers {al, a2, . . . , a^}, the partition 
problem checks the existence of an index subset T C {l, 2, . . . , A ; }  satisfying the condition 
that xier a! = (1/2)M where M = zl a;. To prove NP-completeness of (1) and (2). 
we construct two games 

G1 = [ql;al,a2,* ,an, l] and G2 = [q2;M -k l,M,a17. ,an] 

where ql  and q2 are the minimum integers which is greater than the half of the sum 
of all the voting weights, respectively. Then it is easy to show that the following three 
statements are equivalent; (a) the given partition problem has YES answer, (b) player 
n of game Gl is not a dummy player, and (c) the pair of players 1 and 2 of G2 is not 
symmetric. 

The NP-completeness of problem (1) is described in the book [g] by Garey and Johnson 
without proof (see p.280, problem [M%]). Problem (2) is discussed in [16]. 

For the S-S index, the Bz index, and the D-P index, player i is dummy if and only if 
the corresponding index of player z is equal to 0. It implies the following. 

Corollary 3 U n d e r  A s s u m p t i o n  1, all  t h e  prob lems  f o r  calculat ing p layer  n ' s  i n d i c e s  
ifin(the S - S  i n d e x ) ,  Pn(the Bz i n d e x ) ,  a n d   the D-P i n d e x )  are  h f P - h a r d .  

The above corollary says that it is ha,rd to calculate power indices of a weighted majority 
game when the input size is large. 

For the S-S index and the Bz index, a pair of players is symmetric if and only if the 
corresponding pairs of indices are equivalent. So, we have the following. 

Corollary 4 U n d e r  A s s u m p t i o n  1, both  of  t h e  prob lems  f o r  calculat ing t h e  p a i r  o f  S - S  
i n d i c e s  (pi ,  y2 )  a n d  t h e  pa i r  o f  Bz i n d i c e s  (Pl, ,L&) a r e  A t F - h a r d .  

The above result implies that even if we need to calculate indices of biggest and second 
biggest players, it is still hard. For the D-P indices, the situation is complicated. Even if 
the D-P indices of a pair of players are equivalent, the pair is not always symmetric (see 
the numerical example in the subsection of the definition of t,he D-P index). 

In [6], Deng and Papadimitriou proved the following result. 
Theorem 5 U n d e r  A s s u m p t i o n  1 ,  bo th  of  t h e  prob lems  t o  calculate  p o w e r  i n d i c e s  ipn a n d  
/!ln a r e  # P - c o m p l e t e .  
The paper [6] proved the above theorem in the case of the S-S index. However, we can 
show the case of the Bz index in a similar way. 

Lastly, we consider a well-solvable special case. 

Theorem 6 U n d e r  A s s u m p t i o n  1 ,  t h e  fo l lowing  s t a t e m e n t s  a r e  equivalent .  
(1)  T h e  pa i r  of  p layers  1 a n d  n i s  s y m m e t r i c .  
(2)  E a c h  pa i r  o f  p layers  i s  s y m m e t r i c .  
(3) T h e r e  ex i s t s  a pos i t i ve  i n t e g e r  k s a t i s f y i n g  t h a t  W = { S  5 N : \S\ 2 k}. 
(̂ ) T h e r e  ex i s t s  a posi t ive  i n t e g e r  k s a t i s f y i n g  t h a t  

Proof: Obviously, (1) and (2) are equivalent. It is easy to show that (3) implies (2) 
Next, we show (2) implies (3). Put k = min{[Sl : S W }  and S* = arg min{lSl : S W }  
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If there exists a losing coalition S' satisfying IS'] 2 lS*l, then any pair of players ( i , j )  
satisfying i G S'\ S*, and j 6 S* \ S' implies S' - i + j  6 W, since the pair i, j  is symmetric: 
By updating 5" by S'- i + j  and applying the above procedure iteratively, we can construct 
a losing coalit ion containing S*. Contradiction. 

It is easy to show that (3) implies (4). Lastly, we show that (4) implies (3). For any 
coalition S satisfying 1 S1 2 k, the inequality xi,cs wi 2 wn-(k-l) + + wn 2 q holds and 

. If a coalition S' satisfies \S'\ < k ,  then wi < wl + - - a + wk-1 < q and so 
5" is losing. D 
The above theorem shows that we can check the symmetricity of player 1 and player n in 
O ( n )  time. 

5. Dynamic Programming 
In this section, we assume that wi < q for each player i .  We partition the set of players 
N into coalitions NI, -/Va7 . . . , satisfying that: 

(1) NlUN2U. . -UATz=N,  NxnATy=O(x^yY 

(2) 1 < V x  < 'dy <: z ,  Vz E Nx7 V j  E Ny, wi > wj, 

(3) 1 <Vx ^ z ,  V2,Vj E ^ ,  W, = W .  f 

In addition, we denote the cardinality 1 NJ by nz and the weight of a player in Nx by K. 
5.1. Preprocedure 
Here we describe the preprocedure. The preprocedure solves the following two problems; 
(1) problem for constructing the set of all dummy players, and (2) problem for counting 
the number of all the minimal winning coalitions. If there exist dummy players, we can 
delete the players without changing power indices (the S-S index, the Bz index and the 
D-P index). Thus, by removing all the dummy players, we may reduce the computational 
efforts required at the main procedure described in the next subsection. We use the result 
of the problem (2)  when we calculate the D-P index in the main procedure. 

The following property plays an important role to construct the set of all the dummy 
players. 

Theorem 7 U n d e r  A s s u m p t i o n  1, p layer  j i s  a d u m m y  player  i f  a n d  o n l y  i f  t h e  inequa l i t y  
q + WJ + wj+l + . - - + wn < q ho lds  w h e r e  

Proof : First, we show that a, + wj + W J + ~  + - .  . + uln > q implies that player j is not a 
dummy player. From the assumption, there exists a player k 6 {j. j  + l, . . . , n} satisfying 
that 

q + wj + wj+l 4- a a - + wk-1 < q < a, + WJ + w j + ~  + - - + wk. 

Thus we have 

and so player j  is not a dummy player. 
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Next, we show tlie inverse implication. Since player j  is not a dummy player, there 
exists a coalition S C N - j  such that S W and S+j  E W. Put S' = Sn{1,2, .  . . , j - l} .  
Then we have the inequalities 

The definition of a, implies that Y,iEsl wi <: aj and so the following inequalities 

are satisfied. 

From the above theorem, we can identify the set of all the dummy players from the se- 
quence of values (a2, a3, . . . , an).  The problems for calculating the values (a2, 03 ,  . . . , a.) 
are called knapsa,ck problems. There exists a pseudo polynomial time algorithm for knap- 
sack problems [3]. The following preprocedure finds the sequence (a2,  03, . . . , an) simul- 
t aneously. 

For any pair of non-negative integers W and X ,  c(w, X) denotes the number 

2 q+Wsc-1 

Then the number of minimal winning coalitions is denoted by c(w, X). A player 
x=l  w=q 

i ? Nx is a dummy player if and only if 

where 
~ = i n a , x { w  : 0 s w  ̂ q - l a n d l < :  3 y < x - - 1 , c ( w , y )  >0}. 

Here we describe an algorithm for calculating the values {c(w, X )  : 0 < W <  ̂ q - 
1, 1 X < z} by using ordinary dyna,mic programming techniques. At tlie end of 
xth iteration of the following algorithm, the variables c* and a* represent the values 
c(w , l )  + c(w ,2 )  + - - - + c(w , X) and a;, respectively. 

begin 
for w = 1,2, .  . . , q  - 1 d o  c(w) := 0; 
c(0) := 1; c* := 0; a* := 0; W' := W1 + - - + wn; 
for X = 1,2, . . . ,  z d o  { 

.- . W' - Wx * IT,-,; 

for w = a * , a * - 1 ,  . . . ,  0 d o  { 
if c(w) > 0 t h e n  { 

c' .- - 1; (I11 the following iterations, c' =.^Cy..) 
for y = 1,2, .  . . , nx  d o  { 

c' := c' * (nx - y + l) /y;  
if w + v y < . q - l t h e n  { 

c(w + m x *  y) :=c(w+w,*  ~ ) + c ( w ) * c ' ;  
a* := max{a*,w +& * y} 

}; 
else if q <  ̂ W + W x +  y < q - 1 + W x  t h e n  c" :=c* +c(w) *c' 
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1 } 1; 
if a* + W' < q - 1 t h e n  {output  (c*, x + 1); STOP } 

1; 
ou tpu t  (c*, "no dummy player") 

e n  

If the above algorithm output the pair of values (c*, X + 1) and stopped, then the value 
c* is equal to the number of all the minimal winning coalitions and the set of all the 

ummy players is equal to U U - - - U NZ.  The time complexity of this algorithm 
is bounded by O(nq) and the space complexity is bounded by 0 ( n  + q). 

Dynamic programming for calculating power indices 

There exist dynamic programming algorithms for calculating the S-S index and the Bz 
index [4,15,12]. 

In the following, we modify the algorithms in [4,15,12] and construct a dynamic pro- 
gramming algorithm for calculating the S-S index, the Bz index and the D-P index simul- 
t aneously in pseudo polynomial time. 

For any player 2 ,  ci ( W ,  t ,  X) denotes the number 

Then the power indices of the player i 6 Ny is described as follows, 

n-1 0-1 t!(n - t - l)!  
v i = ~ ~ e  n! ci(w) i, X ) ,  

t = l  w=q-Wi x=l  

In the above equalities, we used t,he property z Ny  in the descript,ion of 7,. 
Now we describe our algorithm. 

egin 
for ( W ,  f )  E {l, 2 , .  . . , q  - l} X {l, 2 , .  . . , n - l} d o  ~ ( u I ,  t )  = 0; 
c(0,O) := 1; t* := 0; ^ := 0; p* := 0; 7- := 0; 
for t = 0,1, .  . . , n - 1 d o  a ( t )  := 0; 
for x = 1,2, . . . ,  z d o  { 

y' := INx - il; 
for t = t*,t* - l, . . . ,  0 d o  { 

for W = a ( t ) , a ( t )  - 1,. . . , 0  d o  { 
if c(w,t) > 0 t h e n  { 

c/ .- - 1; (In the following iterations, c' = y ~  Cy .) 
for y = l , 2 ,  . . . ,  ? /do  { 

c' := c'* (y' - y + l)/?/; 
if w + ~ ~ * y < q - l t h e n  { 

c(w +Ex * y, t  + y) := c(w +W, * y,t  + y) +c(w,t)  *c ' ;  
Q.{t + y) := max{a(t + y) ,  w + W^ * y} 
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1; 
if q - ~ ~ < w + ~ ~ * y < , q - l t h e n  { 

if* := if* + (t + y)!(n - t - y - l)!  c(w,t) *cf; 
p* := p* + c(w, t)  * c'}; 

if q - w ~ < w + ~ ~ * y < i m n { q - 1 , q - 1 - w ~ + ~ } t h e n  { 
y* := y* + (1/(t + y + 1)) * c(w , t)  * c'} 

l } } } ;  
r := t* + y' 

1; 
ou tpu t  ( ~ * / n ! ,  /3*/2"-\ 'y*/l rnin W l )  e n d  

The time complexity and space requirement of the above algorithm is bounded by 
0(n2^)  and O(nq), respectively. 

6. Enumerat ion Algorithm 

In this section, we propose enumeration algorithms for calculating the power indices. 
First, we define some notations. Given a positive real vector a = (a1, 09,. . . , aklT and 

a real number b, we define a family of indices F(a, b) { F  g {l, 2 , .  . . , k} : a, > b}. 
The vector f (a ,  b) (fi, f 2 ,  . . . , f k ) T  consists of elements 

6.1. Enumerat ion algori thm for calculating D-P indices 

Clearly from the definition, we can calculate the D-P indices by generating all the minimal 
winning coalitions. In this subsection, we consider an efficient algorithm for generating 
all the minimal winning coalitions. 

We consider the problem for generating all the minimal sets in F ( a ,  b) where a = 
(al ,  0 2 ,  . . . , an)T is a positive integer vector and b is an integer. The algorithm uses the 
divide and conquer technique based on the following theorem. 

Theorem 8 Let a = (al7 a^, . . . ,an)T be a positive real vector and b be a real number 
satisfying the conditions that a1 > a2 >_ . 2 an > 0 and al + a2 + - + an 2 b. Then the 
pair of families 

F: {S : l E S E ^(a, b)}, F': = { S  : l S 6 ̂ (a, b)}, 

satisfies that if 0 F ( a ,  b), then m i n q a ,  b) is equal to the direct sum of minF1 and 
rnin P. 
Proof  : It is easy to show t,hat rnin F(a, b) C, rnin F; U min F: and rnin .^(a, b) 2 
rnin F ,̂ . If we assume that 35 E rnin .F: - rnin F(a, b), then we have S - 1 E F ( a ,  b) 
and so ziEs-l ai ^> b. The inequalities a1 > 2 an imply that if there exists a player 
j E S-  1, then ai ^> a; 2 b a,nd it contradicts with the condition S E min F:. 
From the above S = {l} and so S - 1 = 0 E F(a, 6). Contradiction. D 
By using the ( n  - l)-vector a' = (a;, 13 ,  . . . , an)T,  we can describe the pair of families f1 
and .F: appeared in the above proof as follows; 

The above discussion directly implies a divide and conquer type algorithm. 
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Input :  positive real vector a = (al ,  u 2 , .  . . , a# and a positive real number 6 
satisfying al  + 0 2  + a - - + an 2 b where a1 > a.2 2 . - > an 

Output :  all the minimal sets in the family F(a, b) 
rocedure ENUMERATE (S', d, b'); 

if n' = n t h e n  {output  S1 U {n}; r e tu rn  } 
else { 

if (anl+l + . + 0,) 2 b1 t hen  ENUMERATE (S', n' + 1,b ') ;  
if an/ >. b t h e n  {output  S' U {n'}} 

s e  ENUMERATE (5" U {nl}, n1 + 1, b' - ant) ; 
r e t u r n  } 

e n d  ; 
b egin(main routine) 

ENUMERATE (@,l, b) 
end.  

The above recursive algorithm either outputs a minimal set or calls procedure ENU- 
MERATE at least once. The height of the recursive tree of the algorithm is less than n and 
so the number of calls of procedure ENUMERATE is less than or equal to n times the 
number of minimal sets. The time complexity of each line in procedure ENUMERATE 
is bounded by O(1) when we update the value (an/+l + + - + an)  at each iteration. Thus, 
the time complexity of the above algorithm is 0 ( n \  min F(a, b) l) and memory complexity 
is O(n). 

Now we construct our algorithm for calculating the D-P indices as follows. When 
the above algorithm generates an additional minimal winning coalit ion, we update the 
(current) D-P indices. The algorithm updat>es the current D-P indices of all the players 
and so we can obtain the D-P indices of all the players in O(nl min Wl)  time and 0 ( n )  
space. 
6.2. Enumera t ion  algori thm for calculating S-S indices a n d  Bz indices 
In this subsection, we describe algorithms for calculating the S-S index and the Bz in- 
dex of player i. We denote the (n - l)-vector (wl, w2, . . . , wi-1, wi+i, . . . , by w1 = 
(W^ w'y , . . . , w'_- , )~.  The pair of vectors f (W', q - W;) and f{w'  q) are denoted by f ̂  and 
f respectively. Then the definition of power indices directly imply that 

n-1 t!(n - t - l ) !  n-1 

w = E  
t=l n! W - /C), ft = (1/zn-l) E(/: t = l  - /c). 

So, we only need to construct an algorithm for solving the following problem. 

Input :  a positive real vector a -= (al, a& . . . , and an integer number b satisfying 
a1 > a-7 > - . -  > an > 0 and al + a 2 + . . . + a n  > b 

Ou tpu t :  vector f ( a ,  b) 

In the following algorithm, we denote the vector of binomial coefficients (^Co, /;Cl, . . . , 
by O k .  The A;-dimensional zero vector is denoted by O k .  

function SHELLING (n', b'); 
(comment : an, + . a + an > b' holds) 

egin 
if n' = n t h e n  r e t u r n  ( (0 , l ) )  
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else { 
if (an,+l + . - + an) 2 b' t h e n  f1 := SHELLING (n' + 1,b ' )  else f1  := On-n/ ; 
(comment : all the index subsets excluding n' are considered) 
if ant 2 b' t h e n  f := On.+/ else f 2  := SHELLING (n' + 1 ,b '  - an/); 
(comment : all the index subsets including n' are considered) 
f' := (f:, fi + f?, fi + fi, . - 7  fA-nl+  f l -nf -1 ,  f i - h  
re tu rn  ( f )  } 

end;  
begin(main routine) 

SHELLING (l, b); 
end. 

In the above recursive algorithm, the number of calls of procedure SHELLING is 
bounded by n times the number of minimal sets, i.e., the number of outputs. When 
we construct binomial sequences 01, 02,. . . , On in a preprocedure, each line in function is 
bounded by O(n). Thus the total time complexity is 0 ( n 2  1 min ̂ (a, b) l ) .  Since the height 
of the recursive call tree is less than n, we only need to maintain at most n vectors whose 
dimension is less than or equal to n. Each element in the vector is an integer less than or 
equal to n! and so the space complexity is also bounded by a polynomial of n. 

If we apply the above algorithm for calculating f' and f , the time complexity is 
0 ( n 2  1 min W: I + n2 \ min W! 1 )  = O(n2 1 min W l), where the preprocedure for constructing 
the binomial sequences requires additional 0 (n2)  computational effort S. 

From the above discussions, we can construct an algorithm for calculating the S-S 
index and the Bz index of player i which requires 0(n21 min W])  time and 0(n2)  space. 

7. Monte  Carlo Method 
In this section, we consider the most likelihood method based on Monte Carlo sampling 
for calculating the S-S indices and the Bz indices. 
7.1. Monte  Carlo method for calculating S-S indices 
The definition of the S-S index says that the S-S index of player i is equal to the probability 
that the player i becomes the pivot player under the assumption t hai all the permutations 
have the same probability l/n!. 

Choose p* permutations of players at random. Let Pi be the number of permutations 
such that the player i is the pivot player. Then the random variables Pi, . . . , Pn have a 
multinomial distribution: 

where p = (pl, . . . , pn)T is a non-negative integer vector satisfying that the sum of its 
components is equal to p*. From the above, the maximum likelihood estimates of the S-S 
indices are (p&*, p2/p*, . . . , pn/p*). It is easy to see that the error of estimate goes to 
zero like l/@. We refer to this method as the simple Monte Carlo method. 

In 1960, Mann and Shapley proposed some variations of Monte Carlo sampling meth- 
ods [14]. They applied their Monte Carlo methods for obtaining the S-S indices of the 
Electoral College game(see Section 3.4) . By calculating a gain of each method, they 
showed that a "cycling scheme" described below was effectual. A target player i is singled 
out, and the remaining players are placed in a random order. However, this order is then 
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put through all of its cyclic pern~ut~ations, and the player i is inserted in each position in 
each permutation. Thus ( N  - 1)N permutations are generated. We illustrate below the 
cycling sampling scheme for five players a,  b9 c, d and i. 

i a b c d  i b c d a  i c d a b  i d a b c  
a i c d b i c d a  c i d a b  d i a b c  
a b i c d  b c i d a  c d i a b  d a i b c  
a b c i d  b c d i a  c d a i b  d a b i c  
a b c d i  b c d a i  c d a , b i  d a b c i  

The above four sets of permutations a,re based on four permutations ( a ,  6, c,  d ) ,  (b, c,  d, a ) ,  
( c ,  d., a ,  6) and (d, a ,  b, c). In this example., (5 - 1)5 = 20 permutations are generated. The 
random variable P; of player i of the cycling sampling method is defined as 

pi - (number of permutations such that player i is the pivot). (N-1)N 

It is easily seen that Pi is an unbiased estimate of S-S index y\-. 
The definition of S-S index directly shows that inequalities wl 2 w2 > + - > wn (see 

Assumption 1) imply the inequalities yl ^> 9 2  2 - - > yn. Thus we need to improve the 
estimates under the monotonicity restriction. When we employ the simple Monte Carlo 
method, the set of maximum likelihood estimates of the S-S indices under mon~tonicit~y 
restriction is optimal solutions of the following problem: 

MLE(p) : maximize 

subject to 

where the objective is the maximizat ion 
the solutjion met hod of this problem. 

For any non-negative vector p = (pl, 

of log-likelihood. In t lie following, we describe 

. . . , the vector pc = (p:, p:, . . . , sat- 
isfying & = 0 and = p1 + + . - + pi is called the cumulative sum vector of p. Given. 
a non-negative vector p = (pl ? pi, . . . , &IT,  f : [O, n] ̂ - R denotes the function de- 
fined by f (x) = minaeQ g ( x )  where G is the set of continuous concave functions satisfying 
Vi G {Q, 1 , .  . . , n}, Vg E G ,  g(i) 2 pf = p1 + p2 + - - - + pi. We denote the vector 

by p = (pi &,. - . , pn)^- The vector p is called the isotonic regression of p .  Then we have 
the following theorem. 

Theorem 9 Given a positive vector p = (pl,.  . . , pn}^, the vector (l/p*)p is an optimal 
solution of MLE(p) where p* = pi + p2 + . . - + pn. 
Proof : We denote h(p, X )  = pi log X;. For any feasible solution X of MLE(p), we 
show that the following equality a,nd inequalities hold; 

(i) First, we show h(p,  (l/p*)p) = h@, (l/p*)p). 
The definition of isotonic regression says that if (pÂ - p:) is positive, then pi = 

So, for all i = 1 2 , .  . . , n - 1, we have (p^ - pf)(10gj5i - logj?i+l) = 0. These equalities 
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imply that ; 

( - ~ ? ) l o g P i  + E(-(p?-i - P L )  + (p? - ~?)) logPi  
i=2  

and so xi pi logoi = pi log Then we have the following result; 

(ii) Next, we show that h(p, (l/p*)p) 2 h(p, X) for any X feasible to MLE(p). 
We discuss properties of optimal solutions of MLE(p). If we remove the constraint 

(7.1) from MLE(p), the K-K-T condition of the relaxed problem becomes 

p i / x i Ã ‘ A =  ( i = 1 ,  ..., n), x 1 + x 2 + . - . + x n = 1 .  

The solution X* = (l/p*)$ = (g1 /p*, . . . , and the Lagrange multiplier A* = p* 
satisfies the K-K-T condition and X* = (l/p*)p is optimal to the relaxed problem. Since 
the solution X* = (l/p*)p satisfies the constraint (7.1), X* = (l/p*)p is also optimal to 
MLE(p). Any feasible solution X of MLE(p) is also feasible to MLE(p) and so we have 

A .-. 
h(p7 (~/P*)P) = S?=l pi log(pi/p*) 2 zYBl pi log xi = X). 
(iii) Lastly, we show that h(p, X) 2 h(p, X). 

From the definition, the value (p^-l - p:-,) is non-negative. For any feasible solution 
X of MLE(p), constraint (7.1) implies that log xi - log xi+) 2 0. Then we can derive the 
following inequalities; 

A and SO h(p, X )  = pi log X; > ELl pi log X i  = X). 
In the above, we have shown that for any feasible solution X of MLE(p), the following 

equality and inequalities hold; 

Thus (l/p*)p is optimal to MLE(p). 0 

The isotonic regression is discussed in the well-known book [2]. The above theorem is 
also discussed in the book in a more general setting. 

From the convex hull of points Q = {(i, qi) : i = 0,1, . . . , n} C R ~ ,  we can construct the 
isotonic regression of p easily. The combination of bucket sorting algorithm and Graham 
scan method [l01 finds the convex hull of Q in O(n) time (see [24] Section 3.3.2). The 
pool-adjacent-algorithm described in [2] also finds the isotonic regression of p in 0 ( n )  
time. 
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7.2. Monte Carlo method for calculating Bz indices 
The definition of Bz index says that the Bz index of player i is equal to the probability 
that a pair of coalition (S + i, S} becomes a swing for player i under the assumption that 
all the pairs have the same probability 112"-l. 

Choose p* coalitions excluding i at random. Let Pi be the number of coalitions such 
at ( S  + i, S} are swings for player i .  Then the set of maximum likelihood estimates 

z indices under the monotonicity constraints is an optimal solution of the following 
problem; 

n 

MLE'(p) : maximize Ehi log xi + (p* - pi) log(l - xi)) 
i=1 

subject to 1 > xi > x2 2 . . . 2 xn 0, (7.3) 

where the objective function is the log-likelihood function. Then the following theorem 
holds. 

Theorem 10 For any positive vector p = (pi,. . . , pn)T, the vector (l/p*)@ is optimal to 
MLE7(p) where p* = pl +p2  + - .  - +pn.  
Proof : The proof is almost the same as that of Theorem 9. Here we describe the outline 
of the proof. In the following, we denote h(p, X )  Y,^i (pi log xi + (p* -pi) log(l -xi)). We 
show that for any feasible solution X of MLE9(p), the following equality and inequalities 
hold; 

h ( ~ l  ('/P*)P) = h(@i ('/P*)P) 2 h ( ~ ,  X )  2 X)* 

(i) The definition of the isotonic regression implies that when (pf - pc) is positive, then 
pi = pi+l. Since h(p, X )  is a linear function of p, h(p, (l/p*)p) = h(& (l/p*)p). 
(ii) It is easy to show that the solution (l /p*)p is optimal to MLE1(p). For any feasible 
solution X of MLE7(p), X is also feasible to MLE7(p) and so we have the inequality 

h@, (l/P*)@) > h ( k  4 .  
(iii) From the definition of the isotonic regression, (p^-l - p^-l) is non-negative. For any 
feasible solution X of MLE'(p), xi > XGI implies that log xi - log( l - xi) > log xi+1 - 
log(l - ). From tJhe a,bove, we have the following inequalities; 

and so h ( k  X )  > h(p ,  X) is proved. D 

8. Discussion 
In this pa,per, we discussed algorithms for calculating some power indices of weighted 
majority games. 

In many practical settings, we need to calculate the power indices for analyzing systems 
and commit tees; e.g., the parliamentary systems, electoral systems and the commit tee of 
stockholders. Here, we considered ordinary weighted majority games. However, many 
problems are left unsolved. We need to consider more complicated vot,ing systems, (see 
[17], [23] Section XII.5, [l81 and [27] for example). Efficient sensitivity analysis methods 
and approximate algorit him are also required. 
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