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Abstmct This paper reviews i) the background for the modern Hw control theory, and then ii) how it led 
to the modern optimization theory such as those using LMIs (linear matrix inequalities) and BMIs (bilinear 
matrix inequalities). Starting from the simplest sensitivity minimization problem, we give solutions via the 
Nevalinna-Pick interpolation and the Nehari theorem. The latter lea,ds to a Riccati equation on which most 
of the Hw solutions are based. This in turn leads to the modern approach using mathematical programming 
such as LMIs and BMIs. Two types of global optimization algorithms to solve BMIs are introduced. 

Introduction 

The theory of feedback control dates back to the time of the industrial revolution, partic- 
ularly that of the celebrated discovery of the principle of feedback in the introduction of a 
centrifugal governor to steam engines by J. Watt. 

Before the invention of Watt, it was always troublesome to keep the rotational speed 
of steam engines constant against various load changes. When the speed becomes slower, 
the valve to  the cylinder should be opened so that the engine picks up more power; on 
the other hand, if the load becomes lighter, the valve should be again adjusted to reduce 
the rotational speed- Such a change may be done manually, but will be considerably more 
difficult if the load change becomes very frequent and fast. 

The obvious desire then is to do this job (i.e., control) automatically by some machine. 
The centrifugal governor introduced by Watt precisely did this job. It measures the current 
rotational speed, and feed it back to the valve opening, thereby controlling the overall speed 
to  a constant. The important fact we should note here is that control systems such as steam 
engines are exposed to fluctuations/disturbances that are often unknown or unpredictable, 
such as load changes, and the control systems should take care of such undesirable uncer- 
tainty in the total system. Furthermore, in operating conditions, the real plants (systems) 
such as steam engines are exposed to many different kinds of fluctuations from the ideal sit- 
uation in which the total system was designed. First of all, there are some parasitic effects 
introduced by friction, back-lash, etc. There are also disturbances coming from external 
conditions, winds, external temperature change, just to name a few. And, most of all, the 
model we work with are very far from complete. There are unmodeled dynamics everywhere. 
In a word, if we expect a control system to work in a real situation, it should be effective in 
reducing such uncertaznties. The primary role of feedback lies precisely in this: it reduces 
sensitivity against such undesirable fluctuations. 

To obtain a more elaborate response (such as tracking to various different set-points), 
one may have to increase the order of the controller. This is bound to introduce more delays 
in signal transmission in the feedback loop. This makes it more difficult to increase the gain 
of the controller, because it tends to induce instability of the overall system. 

© 2000 The Operations Research Society of Japan



Optimization in Control System Design 49 

This stability problem captured the interest of Sir Maxwell, and he wrote perhaps the 
first paper on the theory of control: "On Governors" [28]. He could derive stability con- 
ditions for systems with order less than or equal to 3, but no more. The general case was 
later resolved independently by Routh and Hurwitz. 

Great progress has been made since then. The notion of frequency response was found 
and greatly contributed to the steady-st ate analysis of the system characteristics. Various 
analysis and design methods were developed in 20's and 30's. Then came the modern theory 
based on state space methods since late 50's. The new state space framework (vs. frequency 
domain methods) provide more algebraic and computationally appealing tools, often based 
on optimal control problems. Such modern developments later culminated into a unification 
of frequency-domain and state-space methods through the modern Hm control theory, which 
is a more advanced min-max version of optimal control developed in 60's. 

This paper reviews the background for the modern Hm control theory, and then goes 
over how it led to the modern optimization theory such as those using LMIs (linear matrix 
inequalities) and BMIs (bilinear matrix inequalities). Starting from the simplest sensitivity 
minimization problem, we give solutions via the Nevalinna-Pick interpolation and the Nehari 
theorem. The latter leads a Riccati equation on which most of the Hm solutions are based. 
This in turn leads to the modern approach using mathematical programming such as LMIs 
and BMIs. Two types of global optimization algorithms to solve BMIs are introduced. 

The paper is organized as follows: Section 2 introduces some basic concepts and design 
problems in control engineering. Then, Section 3 reviews the modern Hm control theory. 
Section 4 introduces an LMI approach to the Hm control problem. Two types of global 
optimization algorithms to solve BMIs are provided in Section 5. 

2. Preliminaries 
As usual HP(C+) (p 2 l) denotes the Hardy p space on the right-half complex plane 
C+ = {sl Re S > 0). It consists of all functions f analytic on C+ such that 

m 
sup / 1 f (Q + j w )  lpdw < m. 
n>o -m 

When p = m, this condition is replaced by 

It is a Banach space with norm 

When p = m, this definition is accordingly modified in accordance with (2.2). 
The cases p = 2, m are particularly important. The space H2 is the Laplace transform of 

functions in L2 [0, m). Hm acts on H2 via multiplication. Via inverse Laplace transforma- 
tion, this corresponds to convolution operation, and elements in Hw gives a stable operator 
(see below). While H2 is a Hilbert space, Hm is not. See [44] for details. 
2. l .  Linear time-invariant systems 
Usually the systems we consider are linear and time-invariant whose relationship between 
input U and output y is described by 
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Figure l: Steady-State Response 

It is often convenient to represent this correspondence via Laplace transform as 

y(s) = G(s)&(s). (2.5) 

where G(s) = g(s) and A denotes the Laplace transform. G(s) is called the transfer function 
of the system. We now make the following standing assumption: 
Assumption l We assume that G(s) is a proper (i.e., the degree of the numerator is less 
than or equal to that of the denominator) rational function. 

Under this assumption, the following facts hold (e.g., [24]): 
Facts: 

e G(s) admits a "realization" in the state space model: 

d 
-x(t) = Ax(t)+Bu(t)  
dt 

y ( t)  = Cx(t) + Du(t) 

Under this notation? G(s) = D + C ( s I  - A)-'B. This can be ensured by taking the 
Laplace transforms of the both sides of (2.6) and (2.7) and comparing the results with 
(2.5). A realization is said to be minzmal if it assumes the smallest dimension in 
the state space among all realizations. In what follows, we basically assume that the 
realizations are minimal. Note that when a realization (A, B ?  C, D) is minimal, then 
the spectrum of A coincides with the poles of G(s). 

e The system is stable H o(A) C C- G(s) has no poles in c+ H G(s) E H* (C+), 
where C- and a+ denote the open left-half and the closed right-half complex planes, 
respectively. 

2.2. Steady-state and frequency response 
The asymptotic behavior of the system G(s) E Hm(C+) against sinusoidal inputs sin w t  (or 
ejwt) represents the system characteristic very well. The very fundamental fact is that in 
the steady state, a h e a r  time-znvariant system synchronzzes the znput, i.e., zt produces an 
output with the same frequency as that of the input. 

To see this? let ejwt be the input and expand G(s) around j w  to get 

G(s) = G(jw) + GI(s)(s - j w ) .  

Applying the (unilateral) Laplace transform l / ( s  - jw) of ejwt, we get 

The second term belongs to H2 and decays to zero in the time domain (it is stable). So the 
remaining steady-state term is 

l 

with inverse Laplace transform 
~ ( j w ) e j ~ ~ .  

This means that the asymptotic response against a sinusoid is the same sinusoid with 
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Controller Plant 

Figure 2: Unity Feedback System 

a gain change by lG(jw) 1 
e phase shift by ~G( jw) .  
The function: W I-+ G(jw) is called the frequency response and is a fundamental tool 

for control systems. The plot of this function against each frequency W (most often in 
logarithmic scale) is called the Bode plot. 
2.3. Design problems 
Now consider the unity feedback system Figure 2. The correspondence from r to e is 
described by the sensitivity function S(s) = (l + p(s)c(s))-I as 

Now one of the control objectives is to reduce this sensitivity (making the system low 
sensitive to plant, noise Buctuations). Unfortunately, it is known that it is not, possible to 
reduce the sensitivity over all frequency range (Bode's sensitivity integral theorem). We 
usually make the criterion freqgency selective, by introducing a suitable weighting function 
W(s) and reduce W(s)S(s) instead of S(s). A classical solution to this is given for the H2 
norm case: 

J = inf ~ ~ W ( S ) S ( S ) ~ ~ ~ .  
c(s~:stabilizing 

This is essentially a minimum distance problem in Hilbert space, and its solution reduces 
to the projection theorem. Beautiful connections with state space algorithms (Kalman 
filtering), Hamilton-Jacobi theory, Riccati equations, controllability/observability notions 
have been known. 

On the other hand, the above performance is only in the mean square sense, and is not 
quite suitable for elaborate design. It is certainly more desirable to solve a problem like 

A diEculty is, of course, that Hm is not a Hilbert space and the projection theorem 
cannot be used. This is a very rudimentary form of the more modern approach, so known 
as Hm control. 

3. .Hm control 
Around 1980, George Zames introduced this optimization problem to the modern control 
[45]. In a sense, the frame is surely more amenable to the classical control engineering, 
consisting of graphical shaping of Bode plots. On the other hand, no one at the time knew 
how it could be solved; moreover, it was not known whether it was solvable at all. Since 
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it does not allow a Hilbert space structure (and not quadratic structures), there was a fair 
amount of skepticism. 

However, around 1982-3, a general solution started to take shape. Zames and his co- 
workers (particularly Bruce Francis) found a connection with Sarason's generalized inter- 
polation f46, 101. Later the connection was tied together with Nevalinna-Pick theory and 
Nehari's approximation theorem. 

Let us restate our problem. We have to find 

For simplicity, let us assume p(s) to be stable, and introduce a new parameter q(s) = 
(l + p(s)c(s))-lc(s). Then 

a closed-loop stability <^> q(s) E Hm 
Â S(s) = l - p(s)q(s). 

In this case, we need not worry about the internal stability. We just have to take stable q. 
Note however that the correspondence q 

So the problem is reduced to finding 

inf 
qâ‚¬ 

Bring in the inner-outer factorization of 

<->Â c is nonlinear. 

W(S)P(S) = uo(s)vi(s)- 

Clearly the outer factor v0(s) can be absorbed into q, so we do not need this term. Writing 
m := ui(s), we see that (3.1) is rewritten as 

inf \\W -doe. 
q â ‚ ¬  (3.2) 

This is the sensitivity minimization problem. 

Remark 3.1 

More general problems have been solved. Of particular importance is the so-called 
mixed sensitivity problem which intends to minimize 

where T = 1 - S is the complementary sensitivity function. This problem appears in 
sensitivity minimization while maintaining robust stability against model uncertainties, 
plant fluctuations. 
Since the problem above attempts to minimize the H m  norm of a two block transfer 
function, it is often called a two block problem. In contrast, the sensitivity minimization 
problem (3.2) is referred to as the one block problem. 
When pis) is not stable, the Q parameterization q = (1 + p c ) ' c  does not work. This 
can be taken care of the so-called Youla parameterization that makes use of coprime 
factorization of p(s) over Hm. 
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Various solutions are available for our sensitivity minimization problem. In particular, 
a solution via two Ftkcati equations give a general solution to the four block problem, 
and is conveniently packaged into a CAD program (MATLAB and other commercial CAD 
programs). The design has successfully been applied to many advanced control problems, 
and has proven to be superior to more conventional LQ (H2) designs. 

We here indicate two different (but equivalent) solutions which played historical roles. 
One is via the Nevalinna-Pick interpolation problem and the other via Nehari's function 
approximation in P. 
3.1. Nevalinna-Pick solution 
Recall that we wish to find the minimum model-matching error 7opf among all 7 such that 

The following solution follows the treatment given in [4]. Fix 7 > 0 and consider 

If q is stable (i.e., in Hm) so is G, but not conversely. Certain interpolation conditions must 
be satisfied in order that q be stable. To see this, let {Q,. . . , sn} be the unstable zeros of 
m, i.e., Re si > 0. Clearly the interpolation conditions 

must be satisfied. Conversely, if G E Hm satisfies these conditions, then 

belongs to Ha because all the unstable poles S, arising from m 1  will be canceled by the 
numerator W - ̂G. Therefore, yopt is the minimum of 7 such that 

for some P function G. This is precisely the Nevalinna-Pick problem with interpolation 
data 

Therefore, 7 satisfies the conditions above if and only if the Pick matrix 

The minimum 7 can be found as the minimum of all such 7 .  
Remark 3.2 The optimal q is given by 

Note that q E P. 
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3.2. Nehari's theorem 
Another solution was given by Nehari's theorem. Let us review this solution following [g]. 
It goes as follows: Multiply m-(S)  = m 1  ( S )  in (3.2) to get 

where the norm is taken in ^(-h joo). Decompose m-W as 

where W 1  is stable and W2 is strictly proper and anti-stable (i.e., all poles in the open 
right-half complex plane). Nehari's theorem [31] tells us that 

where h is the Hankel operator associated with W2: 

and II- : L2 (-700, joo) --+ H 2  is the canonical projection and Mf : L2 (-m, joo) --+ 
fi (-joo, joo) is the multiplication operator with symbol f E Lm(- joo, W).  

To execute the computation, we should bring in the minimal realization (A, B ,  C )  of W2 
as ^ ( S )  = C(s I  - A ) l  B.  The inverse bilateral Laplace transform of W2(s )  is given by 

f ( t )  = -ceAtB, t < 0 

f ( t )  = 0, t > 0. 

Then in the time-domain the Hankel operator is represented as the correspondence from 
U E L2[0, m) to y e L2(-oo, 01: 

Define 
00 

QC : L ~ [ o ,  oo) -+ C" : Vcu := - f e - A T ~ u ( r ) d ~  

Ã ˆ o : C n - - + ~ 2 ( - o o , ~ ]  (Ãˆox)( t ) :=CeAtx , t<O 

Clearly If = ÃˆoÃˆ 

The norm of Ff is generally given as the maximal singular value, so one has to solve the 
eigenvalue equation 

q y * ^ o ^ c ~  = \U. (3.5) 

A nonzero eigenvalue A here is equal to that of 

It  is routine to see that 
00 

QcÃˆ = 1 eyAtBBTeATtdt 
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In contrast to (3.5), (3.6) is a finite-dimensional eigenvalue problem, and the pertinent 
matrices 

Lc :=^ ,  L 0 : = q P o  

are unique solutions of the Lyapunov equations: 

This completes our treatment of the Nehari-type solution. 
3.3. Relationship wit h Riccati equations 
Multiply X = L;' from both left and right in (3.7). Then we obtain 

This is a special case of the so-called Riccati equation 

(except the difference of the sign in the quadratic term). 
Q is often a free design parameter, and can be replaced by another Q. We can convert 

this equation to the matrix Linear Matrix Inequality 

because by the so-called Schur complement [3], 

is equivalent to 

The latter is the so-called Linear Matrix Inequality (LMI) and can be solved effectively via 
various convex optimization techniques. This will be discussed in more detail in the next 
section. 

Preceding to such developments was Boyd's contribution that a variety of control prob- 
lems can be reduced to convex optimization problems, via nonlinear variable changes. This 
may give the impression that such problems have relatively limited use, since convex prob- 
lems are known to be rare in some contexts. However, the crux here is the variable trans- 
formation. For example, the P norm bound problem 

is not convex with respect to c(s), but is convex with respect to the closed-loop transfer 
function S = (1 - c(s )p(s ) ) l .  Hence once a solution S is obtained, it can be converted back 
to that of c(s) by solving S(s) = (1 - c(s)p(s))-I for c(s). For some details, the reader is 
referred to [2]. 
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Figure 3: Internal Stability 

4. LMI Approach to Hm Control 
Let us now delve more into numerical optimization. In the past ten years, it has been shown 
that we can solve a wide variety of control problems by using solutions to LMIs [3, 20, 351. 
LMIs are solvable effectively based on the interior point method [32] with available softwares 
(e.g., [14]), and hence we can obtain solutions to many control problems. Among them, the 
following problems are hard to solve analytically, but solvable by solving corresponding 
LMIs numerically: multi-objective control [27, 381, robust stability analysis [29, 471, gain 
scheduling control [34], state-feedback scaled Hm control [36]. 

In this section, we will show how to cast the H* control problem into LMI framework 
[15, 221. 
4.1. Internal stability 
To formulate the problem, we need to define the notion of internal stability of feedback 
systems. 

Consider an FDLTI (finite dimensional linear time-invariant) system P :  

We say that P is internally stable if the solution x(t) of 

approaches to 0 when t goes to oo for any bounded initial state x(0). Generalizing this 
notion of stability, the internal stability of feedback systems is defined as follows: 
Definition 1 (Internal Stability) The feedback system in Figure 3 (a) composed of two 
systems Pi and P2 is internally stable if the map d I-+ e in Figure 3 (b) is L'-bounded, i.e., 
bounded when the input and output spaces are endowed with the L2 norm, where 

Remark 1 

Pi : 

Then the dynamics of the closed-loop system is given by 

We see that the map d I+ e in Figure 3 (b) is L2-bounded if and only if the state xci(t) 
approaches to 0 when t goes to oo for any bounded initial state ~ ~ ( 0 ) ~  assuming the stabi- 
lizabilities and the detectabilities of Pi and P2. 
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Figure 4: Hm Control Problem 

4.2. Problem formulation 
The general setup of the Hm control problem is depicted in Figure 4, where G(s)  is the 
transfer function of the generalized plant, and K(s )  denotes the transfer function of the 
controller to be designed. The problem is formulated as follows [5]: 
Problem 1 (Hm Control Problem) For given G(s) ,  find K(s )  satisfying the following 
two specifications: 

(i) The closed-loop system is internally stable. 
(ii) 1]T(s) 1 1  < 1, where T ( s )  is the transfer function from W to z: 

Here G(s)  is conformably partitioned to satisfy 

The following are typical examples of the HÂ¡ control problem: 
Example 1 (Sensitivity Minimization Problem) Consider the feedback system depicted 
in Figure 2. The sensitivity minimization problem stated in the previous section is to min- 
imize 7 such that the Hm control problem has a solution for 

Example 2 (Robust Stabilization Problem) Consider the feedback system depicted in 
Figure 2. Let P denote a set of transfer functions of the same size. We say that K ( s )  
robustly stabilizes the closed-loop system if the closed-loop system is internally stable for 
all P(s)  E P. The robust stabilization problem is to find K(s)  such that the closed-loop 
system is robustly stabilized for given P. 

Consider the case where P is defined by 

P = { P(s )  : P(s)  = PO(s) + A(s )W(s ) ;  IIA(s)II~ < l } .  (4.2) 

The robust stabilization problem for P in (4.2) is equivalent to the H00 control problem for 

under mild conditions. 
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4.3. Solution in terms of LMIs 
Suppose that a state-space realization of G(s) of order n is given by 

and a state-space realization of K(s) is also given by 

where the order of K(s) is n ~ .  We assume that (A, -62) and (A, C2) are stabilizable and 
detectable, respectively. 

The following is a version of the bounded real lemma (e.g., [3, 20]), which plays a key 
role in the LMI approach to the P control problem: 
Lemma 1 (Bounded Real Lemma) Let T (S) := Cct(sInd - Ad)-' Brf + D&. The fol- 
lowing statements are equivalent: 

(i) a{A) C C- and llT(s)llm < 1. 
(ii) There exists Xci = X; E SRnclxnce7 Xrf > 0 satisfying 

Remark 2 For a fixed controller K (S), the state-space data of T (S) are constant and hence 
(4.5) is an LMI in X&. Thus we can check the stability and the norm-bound condition of 
T(s) effectively by solving (4.5). 

Taking X& as 

Ad, B& C&, and D,-J are given by 

Lemma 1 implies that the following are equivalent: 
i )  There exists a solution to the Hm control problem K(s)  of order n ~ .  

(ii) There exists a pair of matrices (Xct, MK) that satisfies (4.5). 
The state-space data of T(s) affinely depend on MK as shown in (4.6), hence (4.5) is not 
an LMI in (MK, X&). We can however reduce (4.5) into a condition in terms of LMIs 
preserving the solvability [15, 221. 

Let us introduce the following notation: For a given matrix M ? Snxy M' is a matrix 
satisfying M  ̂ E SR(n-r)xn, M L M  = 0, and M Y M Y  > 0, where r := rank M.  Then we 
have the following theorem: 
Theorem 1 [15, 221 For given G(s) in (4.3), the following are equivalent: 

(i) There exists a solution to the Hm control problem K(s).  
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(ii) There exists a pair of matrices (X, Y) E SRn X SRn, X = XT > 0, Y = YT > 0 satisfying 

A ~ Y + Y A + C T C ~  Y B ~  [ ; [ l L [  BfY -I (4.8) 

and 

Proof: We assume that n~ = n without loss of generality, since there exists a solution 
K (S) of order n if there exists a solution [5]. In this case, we can take X& as 

without loss of generality [27, 381, where X E SRnxn, X = XT > 0, Z E !Rnxn, Z = ZT > 0, 
and 

X - Z > O .  

We will show that condition (ii) in Lemma 1 is equivalent to condition (ii) in Theorem 1. 
Substituting (4.6) and (4.10) into (4.5), we have 

where 

Inequality (4.11) has a solution MK i f  and only i f  the following conditions hold [15, 221: 

B ^ B ~  < 0. (4.12) 

(c"^)-'-~((Ca')')~ < 0. (4.13) 

Noting that 
I 0 0 0  

L = [ : ' 2 ] '  $0 O O O I  0 1 0 1 ,  

we see that inequality (4.12) becomes 

Invoking the Schur complement formula [3], (4.7) follows. 
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Similarly, we have 

and 
X z 

where Y E Bnxn is defined by 
Y := ( X  - 2 ) - I  > 0. 

Noting that  

we also see inequality (4.13) turns to 

Invoking the Schur complement formula again, we obtain (4.8). 
Finally, we can treat X and Y as independent variables by adding a condition 

which is equivalent to Z > 0. Again by the Schur complement formula, (4.9) follows. This 
completes the proof. 

Parameterizations of all %S satisfying (4.5) in terms of Xce are found in [27, 381. 

5. Bilinear Matrix Inequality 
In this section, we focus our attention on the BM1 (bilinear matrix inequality) which is 
considered as one of the most flexible frameworks for control system design [12, 13, 371. 

In the past five years, several researchers in the field of control engineering have tried to 
develop algorithms to solve BMIs [l, 11, 17, 18, 25, 26, 40, 421, and we currently have several 
types of local and global optimization algorithms to solve BMIs. However, the performance 
of global optimization algorithms are not satisfactory to be applied control system design 
of practical size. Hence, further improvement is still required. 

In what follows, two types of global optimization algorithms are introduced after stating 
motivations and the formulation of the problem. 
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5.1. Motivations 
To motivate the study of BMIs, consider the H* control problem again. 

We have seen analytical and numerical solutions to the P control problem. Here we 
consider the H* control problem with an additional constraint on the order of the solution, 
requiring a simpler structure of the controller: For given G(s)  of order n and n; < n, find 
K(s )  of order n; satisfying the specifications (i) and (ii) in Problem 1. This problem of 
low-order H* controller synthesis is so hard that no analytical solution is known to date. 

Based on (4.5), we can obtain a low-order H* controller if we can find a pair (XcÂ£ MK) 
for the case of n~ = n; numerically. We call (4.5) as a BM1 in (Xd, a), noting that Act, 
Bcti C&, and depend affinely on MK as shown in (4.6). In the previous section, we have 
seen that we can cast (4.5) into conditions in terms of LMIs for the case n~ = n. However, 
we cannot apply techniques in the proof of Theorem 1 to the case of n~ = nb and it is an 
open question whether we can cast (4.5) into LMI conditions for the case of n~ = n;. The 
study of BMIs intends to develop a numerical algorithm to solve (4.5) directly. 

The motivation for the study of BMIs is not restricted to  the low-order controller synthe- 
sis [39]. We can characterize a large number of problems that are considered to  be hard in 
the field of control engineering by BMIs. The following is a part of the list of such problems: 
robust performance synthesis 1471, multi-objective control synthesis [38], distributed control 
synthesis [19], simultaneous optimization of control and structure [33], just to name a few. 

Remark 3 Although (4.5) is in fact a BM1 in (Xcii M K ) ,  we can reformulate it as other 
types of optimization problems 1211: a rank minimization problem [30], a matrix product 
eigenvalue problem [43], etc. Several local and global optimization algorithms are available 
for them. 

5.2. BM1 problem formulation 
Now we formulate the BM1 problem concretely. 

Let X G Ãˆn y E Sm, and z E if be variable vectors. Let also A: Ãˆ X Ern X Ã̂ Ã S, 
and C: -+ Sq be affine maps, where p and q denote positive integers and Sp denotes a set 
of p X p real symmetric matrices. Let B: Ãˆ X Ãˆ Ã‘) Sq denote a bilinear map defined by 

where coefficient matrices are all symmetric: 

B ~ = B ~ ,  B~~ = B;, B~~ = B ~ .  2.7 

We also assume that 
m 

E I I B ~ ~ I I  + 0, 2 l l ~ k j l l  # 0 

for all i G {l, 2, . . . , n} and j G {l, 2, . . . , m}. Finally let X C Ãˆ and Y C W denote 
bounded hyper-rectangles: 

respectively, where 
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The original objective is to find a solution (X, y, z) E- X X Y X Re to a BMI: 

Instead of solving (5.3) directly, we will solve the following optimization problem: 
Problem 2 (OP) Compute J(X X Y) defined by 

subject to 

and find the minimizer (X*, y*, z*), where and Dy are defined by 

Note that BM1 (5.3) has a solution (X, y, z )  E X X Y X !Re if and only if the optimal value 
of (OP) is A < 0. 
Remark 4 Since B is a bilinear map, (OP) is a non-convex optimization problem. In fact, 
the problem of checking the solvability of a BM1 is MP-hard [41]. 

In the following subsections, two types of global algorithms for (OP) are provided. 
5.3. Branch and bound algorithm 
This subsection provides a version of the branch and bound algorithm for (OP). 
5.3.1. Semidefinite relaxation 
In order to solve (OP) with a type of the branch and bound algorithm, we need to derive 
lower and upper bounds of the objective function. 

To derive a lower bound of J ( X  X V), it would be natural to introduce a new variable 
E !Rnxm and linearize (5.4) by 

where R: Rn x Rm X %Pxm -+ SÃ is a linear map defined by 

Noting that 

{(X, y, X, A) : A I  + B(x, Y) + C(z) > 0) 
(X) y, 2, A) : A I  + R(x ,  y, xTy) + C(z) > 0) 

(X, y, 2, A) : ̂ W such that A I  + Â¥R{x y, W) + C(z) > O} , 
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(0.5, -0.5, -0.25) 

Figure 5: Relaxation of Bilinear Constraint 

we see that the minimization of A with a constraint (5.5) is a semidefinite relaxation of 

(OP). 
The following lemma is useful to derive a tight semidefinite relaxation: 

Lemma 2 Given X X Y in (5.2). One has 

where T is defined by 

Proof: The convex hull of the set 

is given by the interior of a tetrahedron determined by the following four vertices: 

Then (5.7) follows. 

Figure 5 is a demonstrative example of Lemma 2, where a bilinear constraint W = xy with 
X E [-0.5, 0.51, y E [-0.5, 0.51 is relaxed by a linear constraint related to the tetrahedron. 

Combination of the linearization (5.5) and Lemma 2 provides an improved semidefinite 
relaxation of (OP): 
Theorem 2 Define JL by 

JL(X x Y )  := min A 
X ,  Y, z ,  W )  

such that 

Then one has 
JL(X X Y) 5 J ( X  X V). 
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Let us define Ju (X X Y) to be the minimum eigenvalue of the following pencil: 

where (xL, y ~ ,  zL) are part of the lower bound minimizer, i.e., 

(xL, yL, ZL, := arg min JL(X X Y). 
X ,  Y, 2, W )  

Then we have the following lemma: 
Lemma 3 J u ( X  X Y) is an upper bound for J ( X  X Y), i.e., 

J ( X  X Y) < Ju (X  X Y). 

Furthermore, the gap between Ju (X  X Y) and JL (X X Y) is bounded above by the following 
inequality: 

Ju(X X Y )  - JL(X X Y) 5 (U,, - L,,) (U,, - L,,) 
2=1 j=1 

where p(-) denotes the spectral radius. 
The proof is essentially the same as that for Theorem 1 in [ll], hence it is omitted. 
5.3.2. Branch and bound algorit hrn and performance analysis 
Based on the proposed bounds of J ( X  X Y), the following algorithm solves (OP) with a 
given tolerance E > 0: 
Algorithm 1 Let E > 0 be a given tolerance. 

I. Initialization: 
k + 0 ,  S<- {X X Y}, AL +- JL(X X Y), Ac; +- J u ( X  X Y). 

11. repeat { 
Rl. branch: 

SL +- { Q :  Q E S,  h = Jt(Q)}. 
Q, + arg max Size(Q). 

QEST, 

S+-s\{0}. 
Split Q along its longest edge equally into fli and fla. 
S <- s u  {a, 0.1). 

R2. update upper bound: 
Au +- min J ~ ( Q ) .  

Qâ‚ 
R3. bound: 

S<-S\{&:  Ji.(Q)>^u}- 
R4. update lower bound: 

XL +- min JL(Q). 
QeS 

k+k- t -1 .  
} until Ay - AL < E 

where Size(-) denotes the length of the longest edge defined by 

Size(X X Y) := max { rngx{~,, 3 - L,,}, rn+x{~,, 3 - L,,}}. 
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Due to Lemma 3, we can prove that Algorithm 1 terminates in finite time: 
Theorem 3 Let E > 0 be a given tolerance. Algorithm 1 terminates, i.e., one obtains a 
suboptimal value A& satisfying 

and a sub-optimizer (X&, yg, X&) such that 

until the step k = K, where K is bounded above by 

and G'S and K,,~'S are minimum positive integers satisfying 

Proof: Lemma 3 guarantees that the gap related to a branch Q is less than E if 

Hence Algorithm 1 terminates when all the branches satisfy (5.9). 
If we split the edge of X X Y related to XI with equal spacing in 2Kx1 times, the lengths 

of all edges related to x1 of resultant branches are bounded by 

Similarly all the resultant branches satisfy (5.9) if we split all the edges related to xi's and 
yj7s 2^i and 2 n ~ j  times respectively. 

By the selection scheme of Q, the number of loops k required for the optimization with 
tolerance E > 0 is given by the product of 2Kxi's and 2^j 'S. This completes the proof. 
5.4. Primal-relaxed dual algorithm 
Basic ideas of primal-relaxed dual approaches date back to the generalized Benders decompo- 
sition method [16], which can solve only some special problems. Recently, these approaches 
have received significant attention in the area of global optimization since Floudas and 
Visweswaran [7] proposed a global optimization algorithm for a larger class of problems, 
i.e., mathematical programming problems whose objective and constraints are both bicon- 
vex. In this subsection, we present a global optimization algorithm for the BM1 problem 
based on the primal-relaxed dual method [42, l]. 
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5.4.1. Primal and relaxed dual problems 
Define the following problem as the primal problem: 

subject to 7{x, yk, z, A) > 0 

where k will denote the k-th iteration in the subsequent algorithm and yk G Y. Since this 
problem (P) is simply (OP) solved for fixed values of y = y*, it represents an upper bound 
on the optimal value of (OP). (P) is a semidefinite programming problem and therefore can 
be solved efficiently. 

We now introduce a Lagrangian associated with the problem (OP): 

where Q E Sp+q+2n+2m is the Lagrange multiplier corresponding to the LMI constraint of 
the primal problem (P). Since the problem (P) satisfies Slater's constraint qualification, the 
following dual relation holds for any y 

Hence the problem (OP) is equivalent 

rnin p 
Y^Y, At 

= rnin max L(x, y, z, 
x,z,A Q>Q 

= rnax rnin L(x, y, z, 
Q0 x,z,A 

to the following problem: 

v 
subject to p > rnin L(x, y, z, X,  G) ,  Q > 0. 

X, z, A 

This problem is difficult to solve since it contains an infinite number of constraints. By using 
the Lagrange multipliers, the relaxed dual problem with a finite number of constraints is 
obtained: 

(RD) rnin p 
yey, At 

subject to p > rnin L(x, y, z, A, p), "k = 1, . . . , K 
X, z ,  A 

where Q*- >_ 0 is the optimal Lagrange multipliers corresponding to the primal problem (P) 
for y = yk. The problem (RD) contains fewer constraints than (5.13), and hence provides a 
valid lower bound for the original problem (OP). 
5.4.2. Primal-relaxed dual algorithm for BM1 
In the following, we present a global optimization algorithm for the BM1 problem based on 
the primal-relaxed dual method. Roughly speaking, the algorithm consists of the following 
two procedures: 

(i) Solve the primal problem (P) for y = yk and update the upper bound. 
(ii) Solve the subproblems of the relaxed dual problem (RD) and update the lower bound. 

These two procedures are to be repeated until the difference between the upper and lower 
bounds becomes less than the prescribed tolerance e (> 0). 

We state the BM1 primal-relaxed dual algorithm [42] after some definitions. 
Definition 2 At the K-th iteration, 
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(1) define xEj (j = 1, . . . , 2") to be the vertices of X, and let Â be the set of all Ej. Also, 
define TK to be the set of i's for which V,, Â£(X y, z, A, SK) is a function of y, and let 
J(k, K )  be the set of j's such that 

(2) define P o r ( K ,  El) and yStor(K, El) to be the optimal solutions of the following sub- 
problem (SUBP) associated with (RD) 

' min p 
YEY, P 
subject to 

> L(xEj, y, z, A, Sk) P - 
Vx,L(x, y, z, A, 2 0, ifx? = Lx, } vi G } V,,L(x, y, z, A,  Q*) < 0, if xf' = U,, 

f o r j =  J ( k ,  K), k = l ,  2, - - - ,  K - 1  
tî  L(xE2, Y, z, A, SKI 

Vx,L(x, y, z, A, Q") 2 0, ifxf' =L,, 
, VxiL(x, y, z, A, Q") $ 0, ifxf' = U,, 

Algorithm 2 [BM1 Primal-Relaxed Dual Algorithm] 

S tep  0. Initialization of Parameters. 
Let PUB" and MLBD be a very large positive number and a very large negative number, 
respectively. Select a convergence tolerance parameter e (> 0). Set K = 1 and select 
an initial fixed value y1 G Y. 

S t ep  1. Primal Problem. 
Store the value of yK. Solve the primal problem (P) for y = yK. Store the optimal 
Lagrange multiplier QK. Update the upper bound so that 

P  ̂ = min (puBD, P^) 

where PK is the solution of the K-th primal problem. 

S t ep  2. Selection of Lagrangians from the Previous Iterations. 
For k = 1, 2, -, K - 1, select the Lagrangian corresponding to j = J{k, K). 

S tep  3. Relaxed Dual Problem. 
For all El E Â£ solve the subproblem (SUBP) and store the solutions pstor, yStor. 

S t ep  4. Selection of a New Lower Bound and yK+l. 
From the stored set pstor, select the minimum pEin, and set MLBD = pEin. Also, select 
the corresponding stored value of ystor as yK4'l. Delete pEin and yK^ from ustor and 
ystor , respectively. 

Step 5. Check for Convergence. 
Check if PUB" - MLBD < c. If yes, stop, else set K = K + 1, and return to Step 1. 
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Remark 5 In Step 3 of the algorithm, the relaxed dual problem (RD) is decomposed into 
the subproblems (SUBP) that are formulated as linear programming problems. By solving 
these subproblems, the lower bound on the original problem is obtained. It should be 
noted that the convergence and global optimality of the algorithm is proved in Floudas and 
Visweswaran [7]. 

Conclusion 
We have given a brief and partial review of the relationship between control and optimiza- 
tion. Emphasis is placed upon the modern Hm control and how it can be placed in a unified 
scope of semidefinite programming. For the benefit of the reader, we have given some mo- 
tivating discussions of the simplest sensitivity minimization problem. The solutions via the 
Nevalinna-Pick interpolation and the Nehari theorem have been discussed, which in turn 

approach to the P control problem leads to the study of BMIs by putting 
1 constraint on the order of the controller, which constitutes the forefront of 
ontrol issues. Finally, two types of global optimization algorithms for solving 
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