
Journal of the Operations Research 
Society of Japan 

Vol. 43, No. 1, March 2000 

RECENT DEVELOPMENTS IN MAXIMUM FLOW ALGORITHMS 

Takao Asano Yasuhito Asano 
Chuo University The  University of Tokyo 

(Received January 7, 1999; Revised September 1, 1999) 

Abstract Goldberg and Rao recently proposed the blocking flow method based on a binary length function 
to obtain a better algorithm for the maximum flow problem. The previous algorithms based on the blocking 
flow method proposed by Dinic use the unit length function: every residual edge is of length 1. In this 
paper, we survey properties of the distance function defined by a length function and give an overview on 
the representative maximum flow algorithms proposed so far in a systematic way by utilizing these properties. 
Among them are included two new algorithms: the Goldberg-Rao algorithm which finds a maximum flow 
on an integral capacity network N of n vertices and m edges in ~ ( m i n { m l / ~ ,  n2/3}7n log(n2/m) log U) time, 
where U is the maximum edge capacity of N ,  and the Karger-Levine algorithm which finds a maximum 
flow on an undirected network N with unit capacity and no parallel edges in 0 ( m  + nv3/2) time, where v 
is the value of a maximum flow of N .  

1. Introduction 
The maximum flow problem, finding a flow of maximum value on a network from a source 
to a sink, is one of the most fundamental problems with a wide variety of scientific and 
engineering applications and has been studied intensively. The problem was formulated 
by Dantzig [l41 and solved by Ford-Fulkerson [l91 based on the augmenting path method. 
Since then, a number of algorithms have been proposed and representative algorithms are 
listed in Table 1. Nice survey papers and books on this topic have also been published 
146, 13, 25, 1, 2, 31, 29,6]. The algorithm of Ford-Fulkerson [l91 assumes that input networks 
have integral or rational capacities and sometimes fails to correctly find a maximum flow 
or to halt for a network with irrational capacities. Sunaga-Iri [45] proposed a method to 
find a maximum flow and terminate even for a network with irrational capacities. Dinic 
[l51 and Edmonds-Karp [l71 independently showed that the Ford-Fulkerson algorithm runs 
in polynomial time (even for networks with irrational capacities) if flows are augmented 
along shortest augmenting paths. More specifically, Dinic introduced a shortest augmenting 
path network, called a level network here, and proposed a blocking flow algorithm to find 
a maximum flow on a network with n vertices and m edges in 0 (mn2)  time. Karzanov 
1371 improved this bound to 0 (n3 )  by introducing the concept of a preflow and obtaining a 
blocking flow in a level network in 0 ( n 2 )  time. Sleator-Tarjan 1441 proposed a dynamic tree 
data structure, a new data structure suitable for manipulating flows in the level network, 
and obtained an algorithm for finding a blocking flow in the level network in O(m1ogn) 
time. This lead to an O(mn1ogn) time algorithm which is considered to be a most efficient 
algorithm based on the level network. 

On the other hand, Goldberg-Tarjan 1261 proposed a new algorithm which was not based 
on the level network. Their algorithm was called the push-relabel method and uses a preflow 
introduced by Karzanov and a distance label for each vertex that is a lower bound on the 

© 2000 The Operations Research Society of Japan



Maximum Flo W Algorithms 3 

Table 1: Representative maximum flow algorithms f23). Years are based on the original 
publications while citations are based on the most complete publications. 

length of a shortest path to the sink. They obtained 0(n3) and O(mnlog(~~/m)}  time 
algorithms based on queues and dynamic trees respectively. The push-relabel method had 
a number of flexibilities and many variants have been proposed. Cheriyan-Hagerup [g] 
proposed a randomized algorithm based on a combinatorial game. Their algorithm always 
finds a maximum flow in O(mn +n2(log n)2) time with probability at least 1 - 2 f i  and in 
O(mn log n) time in the worst case. Alon [S] proposed a derandomization of the Cheriyan- 
Hagerup algorithm and obtained an 0 (mn + TO^ log n) time algorithm. King-Rao-Tarj an 
381 also considered a slightly different combinatorial game and obtained an O(mn + n2^} 
time algorithm for any positive constant e. After that, Phillips-Westbrook [42] obtained 
an O(mnlogm/n n + d ( l ~ g n ) ~ ' ^ )  time algorithm and King-Rao-Tarjan [39] obtained an 
0 ( lW4{n iog n) R) time algorithm (this assumes m > n log n and if m < TO log n then 
the time complexity of this algorithm becomes O(mn^g(n2/m))). This slightly improved 
the Phillips-Westbrook algorithm (for m = n log n log log n, the King-Rao-Tarjan algorithm 
runs a factor of O((1og n)^) faster than the Phillips-Westbrook algorithm). 

The shortest augmenting path method, the blocking flow method on the level network, 
and the push-relabel method described above used a concept of distance based on the unit 
length function: the length of an edge in a residual network was defined to be one. Goldberg- 
Rao [23] used a binary length function and obtained an efficient algorithm for networks with 
integral capacities. In practical applications, capacities of a network are often represented 
by approximate integers or rational numbers. Thus, integral capacity constraints make al- 
most no restriction on practical problems. For the maximum flow problem on networks 
with integral capacities, we assume that the maximum edge capacity of a network is de- 
noted by U and every edge capacity is an integer in the range [U, U\ = {U, l, . .., U}. To 
compare with polynomial and strongly polynomial time algorithms, the similarity assump- 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



T. Asano & Y. Asano 

Figure 1: Example of a network N with total path length fl(mn), where edges are directed 
from left to right, cap(e) is shown near edge e (cap(e) = 1 is omitted) and a = n and b = n2. 

tion log U = O(1ogn) introduced by Gabow [20] is often used. The ballpark bound denoted 
by 0 "  under the similarity assumption is also used (O*(f (n)) = ~ ( ( l o ~ n ) ~ * l )  f (n))). The 
bound fl(mn) is a natural barrier for maximum flow algorithms and all algorithms de- 
scribed above are dominated by this bound. In a path decomposition of a flow, the total 
path length is Q(mn) in the worst case (Figure 1). This implies an Cl(mn) lower bound on 
any algorithm which augments a flow along an augmenting path. This lower bound does not 
apply to algorithms that work preflows or use data structures like dynamic trees. In spite 
of numerous attempts, however, no algorithm described above achieves this lower bound in 
general. For dense graphs, Cheriyan-Hagerup-Mehlhorn [g] achieved the bound O(n3/ log n) 
beating the lower bound Wmn). On the other hand, Goldberg-Rao [23] proposed in 1997 an 
0(min\m112, n2I3}m log(n2/m) log U) time algorithm beating drastically this lower bound 
under the assumption of similarity. 

For networks with unit edge capacity, the total path decomposition length is 0 ( m )  and 
o(mn) bounds have been obtained by Karzanov [36] and Even-Tarjan [18], independently. 
Actually, Even-Tarjan have shown that the Dinic algorithm runs in ~ ( m i n { m ' ^ ~ ,  n2I3}m) 
time on networks with unit capacity and no parallel edges. The Goldberg-Rao algorithm 
[23] achieves this bound (the ballpark bound) for general networks. On the other hand, 
Goldberg-Rao [24] obtained an O(min{m, n312}m1^2) time algorithm on undirected networks 
with unit capacities and no parallel edges. Karger-Levine (351 proposed an O(m + nv3l2) 
time algorithm, where v is the value of a maximum flow on an undirected network with unit 
capacity and no parallel edges. They also proposed an algorithm with Ofnm2/3u1^) time 
and a randomized algorithm with O*(m + n11/9v) time. The latter algorithm suggests that 
the maximum flow problem of undirected networks with unit capacity seems easier than the 
maximum bipartite matching problem, since an O(n2.5) time algorithm [28] has long been 
fastest for the ipartite matching problem in spite of many efforts for nearly thirty years. 

This survey paper is organized as follows. We first give an overview of representative 
methods in maximum flow algorithms including the shortest augmenting path method, the 
blocking flow method on the level networks and the push-relabel method in Section 2. We 
also give fundamental properties of distance labelings defined by length functions and review 
the Dinic, Even-Tarjan, and Goldberg-Tarjan algorithms in a systematic way based on the 
distance labeling. Then in Section 3, we consider algorithms for integral capacity networks 
where scaling of edge capacities is widely used. We see how scaling techniques have been 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



Maximum Flo W Algorithms 5 

used in polynomial time algorithms. The central part of this survey is a description of the 
Goldberg-Rao algorithm where we try to give several comments on their original algorithm 
and present an  illustrative example. In Section 4, we consider algorithms for undirected 
unit capacity networks. Sparsification of a network proposed by Nagamochi-Ibaraki [41] is 
a most powerful tool in the algorithms recently proposed by Goldberg-Rao [24] and Karger- 
Levine [35]. We give a brief overview of these two algorithms based on the sparsification 
and the properties of the distance labelings. In Section 5 we give concluding remarks. 

2. Not at ion and Fundamental Algorithms 
A directed graph G = (V, E) having a nonnegative real-valued capacity cap(e) on each edge 
e E E and two distinct distinguished vertices, a source s and a sink t,  is called a network 
and denoted by N = (G, cap, S, t). Throughout this paper, n = IVI and rn = \E\. We 
also use U to denote the maximum edge capacity if all edges have integral capacities. Let 
&^(v) = {e = (v, W) E E} denote the set of edges in E out of v. Similarly, & ( v )  = {e = 
(U,  v) E E} denotes the set of edges in E into v. A flow f on a network N = (G, cap, S, t )  
is a real-valued function f on edge set E satisfying the following constraints: 

0 < f (e) < cap(e) for all e E E (capacity constraint); (2.1) 
\^ f (e) = \^ f (e)  for all v E V - {S, t} (conservation constraint). 

eeS+ (v) ee6- (v) 
(2.2) 

The value of a flow f ,  denoted by val(f\ is the net flow out of source S: 

By conservation constraint, val(f) is equal to the net flow into sink t. A maximum flow is a 
flow of maximum value. The maximum flow problem is the problem of finding a maximum 
flow on a given network. We can assume that all edge capacities are finite, since if some edge 
capacities are infinite but no path consisting of infinite-capacity edges from S to t exists, then 
each infinite capacity can be replaced by the sum of the finite capacities without affecting 
the problem. 

For a subset X of V with S E X and t E V - X ,  let ^(X) be the set of edges out 
of X (to V - X) .  Similarly, &-(X) is the set of edges out of V - X (to X ) .  &+(X) 
is called an S-t cut and its capacity is defined by cap(X) = x e e s + ( x )  cap(e). Note that 
x e e a + i x )  f (e) - xee6- ( x i  f (e) = val (f)  and the following famous maximum flow minimum 
cut theorem holds. 
Theorem 2.1 For any flow f and any S-t cut ^(X) of a network N = (G, cap, S, t), an 
inequality val(f) < cap(X) holds. Furthermore, for a maximum flow f * and an S-t cut 
S  ̂(X*) of minimum capacity, val (f *) = cap(X*) holds. 
2.1. Residual networks and augmenting paths 
The Ford-Fulkerson algorithm uses a residual network. For an edge e = (v, W) E E, let 
eR = (W, v) be an edge reversing the direction of e. If e = (v, W )  E E and (W, v) E, then 
we add the edge eR = (W, v) with cap(eR) = 0 . If edges e = (v, W) and e' = (w,v) are 
both in E then we consider eR = e' and e = em (cap(eR) = cap(el) and cap(etR) = cap(e)) . 
Thus, for simplicity, we assume throughout this paper that G is simple and symmetric (i.e., 
(v, W) E E if and only if (W,  v) 6 E). This implies E = E U ER (ER {eR 1 e 6 E}). For a 
flow f on a network N = (G, cap, S ,  t),  define 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



6 T. Asano & Y. Asano 

Then capf{e) is called a residual capacity of e = (U ,  W ) ,  since we can increase f (e) by 
cap(e) - f (e) along e = ( U ,  W )  and decrease f (eR) along eR = (W,  v) (and thus we can 
increase flow from v to  W by capf (e) in total). The residual network N ( f )  = (G( f )  = 
[V, E(f)), capf, S, t) with respect to f is defined to be 

Furthermore, if f (e) > 0 and f(eR) > 0 for some e ? E, then we can easily modify f without 
changing the flow value ual(f) and the residual capacities as follows: 

Thus, for simplicity, we assume that ,  whenever f (e)  is modified, we always perform (2.5) 
for e, eR E E immediately after that  and, thus, a flow f satisfies the following constraint 
throughout the paper: 

f (e )  = 0 or f(eR) = 0 for all e E E. (2.6) 

Note that Elf) = E - {e 6 E \ capf(e) = O} and if cap(e) = f ( e )  > 0 then capj(e) = 0 
since f (eR) = 0 by (2.6). A path P = P(s, t) in the residual network N ( f )  from s to t is 
called an augmenting path with respect to f .  Actually, define the residual path capacity of 
P = P ( s ,  t ) ,  denoted by A ( P ) ,  to  be the minimum value among the residual capacities of 
edges in P (thus A ( P )  > 0) and set 

Here, by f '  := f + A ( P ) ,  we mean that we first set 

and then perform (2.5) for each e E P (by substituting f1 for f ) .  Thus, the obtained f1 

satisfies flow constraints and (2.6) and f '  is a flow on N with ual( f') = ual( f )  + A ( P )  > 
val(f ). Note that,  before performing (2.5), some f l(e)  may be larger than cap(e), and 
that ,  after performing (2.5), some f ' (ef)  with e' E P may be zero. We have, however, 
capf~ (e) = cap (e) - A ( P )  and caprt (eR) = capf{eR) +/\{P) for each e E P unless P contains 
both e and eR, since the residual capacity of edge e E P is not changed by performing (2.5). 
(If P contains both e and eR, then capp (e) = capf(e) and capp (eR) = capf (eR) .) Thus, we 
can increase the value of a flow by sending a flow along an augmenting path. This implies 
that ,  if f is a maximum flow on N then there is no augmenting path with respect to f .  The 
converse is also true and the following theorem holds. 

eorem 2.2 For any flow f on N = (G, cap, s , t ) ,  f is a maximum flow if and only if 
there is no augmenting path with respect to f .  
Proof. Since the necessity is already described above, we consider the sufficiency. Suppose 
that  there is no path from s to  t in the residual network N( f ) .  Let X be the vertex set 
reachable from s in N (  f ) .  Then s E X and t E V - X and @(X)  is an S-t cut of N .  
By the definitions of X and N (  f ) ,  each edge e E (X) of N satisfies f (e) = cap(e), 
f (eR) = 0 (capf (e) = 0) and each edge e E 6 - ( X )  of N satisfies f (e) = 0, f (eR) = cap(eR) 
(capf (eR) = 0). Thus, 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



Maximum Flo W Algorithms 7 

Since, for any flow f and any s-t cut 6J^{X1) of N ,  an inequality ual(fl) <. cap(X1) holds, 
we have ual( f )  = cap(X) >_ ual( f l) and cap(X) = ual( f )  < cap(X1). Thus, f is a maximum 
flow and (X) is an s-t cut of minimum capacity in N. 0 

Based on the above observation, Ford-Fulkerson obtained the following algorithm. 

Ford-Fulkerson Algorithm 
1. Set f := 0 (i.e., f (e) := 0 for each edge e E E). 
2. Repeat finding an augmenting path' Pf with respect to f and augmenting the flow by 

f := f + A(Pf) until there is no augmenting path Pf with respect to f .  

If all edge capacities are integers, then one can easily obtain by induction that, at any 
time of the iterations, the edge capacities of N ( f )  and A(Pf)  are integers and a flow f is 
integral (i.e., f (e) is an integer for each e E E). Thus, we have the integrality theorem as 
follows. 

Theorem 2.3 -If all edge capacities are integers, then there is a maximum flow f such that 
f (e) is an integer for every e ? E. 

Since any flow f" on the residual network N( f )  can be decomposed into a set of paths 
P with fl'(e) = A(P) ,  we can use the notation 

extending (2.7) to augment f to f '  using /l1. Furthermore, if fl' is a maximum flow on 
N (  f ), then f := f + f" is a maximum flow of N. Such a maximum flow fl' is called a 
maximum residual flow of f .  
2.2. Blocking flows and level networks 
As mentioned in Introduction, the Ford-Fulkerson algorithm may have many augmentations 
if the network has large integral capacities and it sometimes fails to correctly find a maximum 
flow or to halt if the network has irrational capacities. Thus, we have to select augmenting 
paths carefully so that their method becomes efficient. Dinic and Edmonds-Karp indepen- 
dently showed that the Ford-Fulkerson algorithm runs in polynomial time (even for networks 
with irrational capacities) if augmentations are done along shortest augmenting paths. In 
this section, we give an overview of the Dinic algorithm. 

Figure 2: A blocking flow f" of value 1 on a level network NL ( f )  (f "{e)/capf (e)) 

Dinic used a blocking flow and a level network (Figure 2). A flow fl' is a blocking flow 
of the residual network N ( f )  = (G(/) = (V, E(f) ) ,capf ,s , t )  with respect to a flow f on 
N = (G, cap, S, t )  if any path from S to t has an edge e with fl'(e) = capf (e) > 0, that is, 
there is no path from s to  t in the network obtained from N ( f )  by deleting all edges e with 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



8 T. Asano & Y. Asano 

f"(e) = capf (e) > 0. A level network N d f )  = (Gi(f) = (V, EL( f ) ) ,  cap,, S, t)  of N ( f )  is 
the network obtained from N ( f )  by choosing all the edges in shortest paths in N ( f )  from s 
to t (a shortest path from s to t here is a path from s to t containing the minimum number 
of edges) and 

EL(f) C {(u,v) G E(f) 1 levei[u] = level[v] + l} 

where level[v] is the length (i.e., the number of edges) of a shortest path in N ( f )  from a 
vertex v to t. The levels level [v] of all vertices U can be computed in 0 ( m )  time by the 
breadth-first search for N ( f ) .  Now the Dinic algorithm can be written as follows. 

Dinic Algorithm 
1. Set f := 0 (i.e., f (e) := 0 for each edge e E E). 
2. Repeat finding a blocking flow f" on the level network NL( f )  of the residual network 

N ( f )  and augmenting f := f + f" until there is no path from s to t in N ( f ) .  

Let l e v e l ~ s }  denote level[s] in the k-th iteration of finding a blocking flow. Then it can 
be shown that l e ~ e l ~ + ~ [ s ]  > levelk[s] holds due to blocking flows (see Lemma 2.7 later). 
Thus there are at  most n - 1 iterations. In each iteration, a blocking flow can be computed 
in 0 ( m n )  time by the depth-first search for the level network NL(f).  Thus, the following 
theorem is obtained. 
Theorem 2.4 The Dime algorithm finds a maximum flow f on N in 0 (mn2)  time. 
2.3. Length functions and distance labelings 
Let N (  f )  = (G( f ), capf, S, t )  be the residual network with respect to f .  A length function C. 
is a function on E(f) to  nonnegative numbers. For a labeling function d on V with d(t) = 0 
and a length function l on E( f ) ,  a reduced length of edge e = ( U ,  U) E E (f)  is defined by 
&(e) = C.(e) + d(v) - d(u). The labeling function d is called a distance labeling if the reduced 
lengths of all edges are nonnegative. Such a distance labeling always exists here since there 
is no negative cycle in N (  f )  with respect to the length function C.. Let d,Av} be the length 
of a shortest path from v to t in N (  f )  with the length function C.. Then ds. is a distance 
labeling and the following inequality holds for any distance labeling d of N( f ) :  

d <: ds. (i.e., d(v) < dl(v) for any v ? V). 

Thus, dt can be called the maximum distance labeling. Note that, by the linear programming 
duality, the shortest path problem can be formulated as the dual problem for the problem 
of maximizing d with the constraint that d is a distance labeling. 

For a flow f and a length function C. of N (  f ) ,  an edge e = (U, v) G E( f )  satisfying 
de(u) = de(v) + C.(e) is called admissible in N ( f )  and the shortest residual network Nl(f) is 
the network obtained from N (  f )  by deleting the edges not contained in any shortest path 
from s to t. That is, the edge set E;( f )  of N f (  f )  is a subset of admissible edges of N (  f )  
and defined as follows. 

El(f) = {e c E(f) 1 e is contained in ashortest path from s t o t  in N(f)}  

Of course, the capacity of e G E&) = El(f) E(/) is kept the same. 
Let P be a path in N^f) from s to t and 0 < A' 5 A ( P )  (A(P)  is the residual path 

capacity of P). We try to augment the current flow f by pushing a flow of value A' along 
P and obtain a flow f ' := f + A' (by extending (2.7), f ' := f + A' means that we first set 

f (e) + A' (e E P) m := { f(,) (e ^ P ) )  

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



Maximum Flo W Algorithms 9 

and then perform (2.5) for each e E P (by substituting f' for f )). We also update the length 
function l to l using a nonnegative function P' as follows: 

Note that it is possible that capf- ( a )  # capf ( a )  in spite of / ' (a)  = f ( a )  since capf/(a)  = 
cap(a) - f ' ( a )  + f ' ( aR)  and cap ( a )  = cap(a) - f ( a )  + f (aR).  If capf- ( a )  = 0 < capf ( a ) ,  
then a is not in N ( f l )  and we assume that Â£"(a = oo holds implicitly. Then we have the 
following lemma. 

Lemma 2.5 dp is a distance labeling of N ( f l )  with respect to t?' defined by (2.10). 
Proof. The lengths are changed according to the residual capacities and the residual 
capacities are changed only for the edges a and aR with a in P. Therefore, it suffices 
to show that de satisfies the requirement of a distance labeling with respect to Â¥C only for 
such edges. 

If capf- ( a )  < capi(a) for an edge a = ( U ,  v ) ,  then a 6 P n E p ( f )  and we have dt(v)+l1(a) > 
d d v )  + i(d) = dp(u) by I1(a)  - l ( a )  = P ( a )  > 0. If capf- ( a )  > capf ( a )  for an edge 
a = ( u , v ) ,  then aR = ( v , u )  E P n E p ( f )  and d( (v )  = l ( a R )  + dp(u) > dp(u), and thus 
d d v )  + ('{a) >, &(v)  > dt(u) .  U 

Note that P can contain a cycle of length 0 although it does not go through the same 
edge twice or more. Thus, P may not be simple. By Lemma 2.5, the maximum distance 
labeling dy with respect l satisfies din > dp. We can generalize Lemma 2.5 as follows. If f " 
is a flow on the residual shortest network Np ( f )  of N ( f ) ,  then f " can be decomposed into a 
set of flows along shortest paths in Np( f ) .  Considering each such a flow in the decomposition 
independently and simultaneously, we have the following corollary. 

Corollary 2.6 If f" is a flow on the residual shortest network N p ( f )  of N ( f ) ,  then, for 
f := f + f " ,  dn is a distance labeling of N ( f l )  with respect to C1 defined in  (2.10) and thus 
dP > dp. 

Note that,  in the Dinic algorithm, each edge in N ( f )  has unit length and the level 
network exactly corresponds to the residual shortest network. The levelk[s] in the k-th 
iteration can be shown to satisfy l e ~ e l ~ + ~ [ s ]  > levelk[s] as a special case of the following 
lemma. 
Lemma 2.7 If fl' is a blocking flow on the residual shortest network N p ( f )  of N ( f )  and all 
edges lengths i n  t of N (  f )  and in  I" of N (  f ') with f ' := f + f" are positive, then d f { s )  > dp(s) 
(l' is defined in  (2.10)). 
Proof. Let ~ : ( f )  be the network obtained from Np( f )  by adding all edges eR with length 
0 for edges e in Np( f ) .  Note that dp(u) = dAv} + l ( e )  > d&) for an edge e = ( U ,  v )  of Np( f )  
and thus eR = ( v ,  U )  is a kind of backward edge directed from a vertex of less distance to a 
vertex of larger distance in N p ( f )  and thus eR is not in Npf f ) .  Furthermore, if eR = ( v ,  U )  

is of length more than dp(v) - dp(u) (di(v)  - d{(u)  < O) ,  then its addition to Ni( f )  makes 
no effect on the shortest paths in NAf) from s to t. 

Let N F ( ~ )  ( N ? ( f ) ,  resp.) be the network obtained from Np( f )  (N: ( f ) ,  resp.) by 
deleting all edges a with capf ( a )  = f " ( a ) .  Then there is no path in Ni( f )  (and in Nf{ f )  
of length at  most dp(s)) from s to t ,  since f" is a blocking flow of Np( f ) .  Let N W  be the 
network obtained from N: ( f )  by adding all edges e in N (  f )  but not in N: ( f ) .  Then, any 
path from s to t in the network N * ( f )  is of length greater than df{s) ,  since all edges a with 
capf ( a )  = f " ( a )  are deleted. 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



T. Asano & Y. Asano 

Figure 3: For threshold a, only edge (U, v) is of length 0 and all other edges are of length 1. 
Thus, dl(s) = 2. If we augment the current flow by using a blocking flow along a shortest 
path S, U, v, t of length 2 and increase the flow value by 1, then, in the residual network in 
the next time, the edge (v, U) satisfies P(v, U )  = 0 and thus dp (S) = 2. 

Note that  the edge set of N( f l )  is a subset of the edge set of N h ( f )  and the length Â£ 
is at  least the length of N k ( f )  and thus, any path from s to  t in the network N( f l )  is of 
length greater than de(s). 

By this lemma, we can estimate the number of iterations of finding a blocking flow in 
a maximum flow algorithm. If we use the unit length function C, of N ( f )  as in the Dinic 
algorithm, then the level network NL (f ) of N (f ) exactly corresponds to  the residual shortest 
network Ng( f )  of N (  f )  and the number of iterations is O(n) .  Goldberg-Rao introduced a 
concept of volume which can also be used to  estimate the number of iterations. Consider 
an edge e in N ( f )  as a pipe and the residual capacity capf (e) of e as an area of the cross 
section of pipe e. Then capf[e)Â£(e becomes the volume of pipe e and the total volume 
Volfe of the residual network N (  f )  is 

The difference of the value of a maximum flow f * and that of a current flow f ,  denoted by 
val(f *) - val( f}, can be estimated as follows by using this volume, since if we augment f by 
a flow of value 1 along an augmenting path in N ( f )  from S to t then the volume decreases 
by at  least dt(s) (note that VolM is nonnegative by the definition). 

Lemma 2.8 [23] For a maximum flow f *  and a current flow f on N and a length function 

By Lemmas 2.7 and 2.8, to decrease the number of iterations, the number of different 
values which dl(s) can take on and the value Volft  should be made small. This leads us 
t o  the following strategy: edges with large residual capacity should be of shorter length. 
More specifically, all edges with large residual capacities should be of length 0. However, 
if we allow a general length function, then analysis becomes harder. From these kinds of 
viewpoints, a binary length function Â with Â£(a = 0 or Â£(a = 1 for each a may be of help. 
Goldberg-Rao [23] considered a binary length function i such that  Â£(a = 0 if capf(a) >_ a 
and Â£(a = 1 if 0 < capf(a) < a for some threshold a. However, the existence of edges of 
length 0 makes Lemma 2.7 violated in some cases (Figure 3). In spite of these weak points, 
a binary length function C, has nice aspects described below. 

Using a maximum distance labeling de, let Sk = {v E V 1 d M  > k} (k = 1,2 ,  . . ., dl(s)) 
and define <^(S )  S-t cuts ^{Sk} of N ( f )  to  be canonical cuts of N ( f ) .  Canonical cuts 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



Maxim um Flo W Algorithms 11 

can be rewritten by S+(Sl,} = E(Vk, Vf-l) if we use Vk = {v E V \ di(v) = k} and 
E(Vk,Vk.l) {a = (u,v)  E E(/) 1 dt(u) = k, di(v) = k - l}. Let S be a set in 
5 = {Sl, Ss, . . . , Sd, such that capj (S) = mmsi, {cap (Sk)}. That is, &+ ( S )  is a canonical 
cut of minimum capacity. Then the value val( f 'I) = val( f *) - val( f )  of a maximum residual 
flow f" on N (  f )  (f * := f + f") can be bounded by capf(S) and the following lemma is 
obtained. 

Lemma 2.9 [23] Let i be any binary length function of N ( f )  and S+(S) be a canonical cut 
of N (  f )  of minimum capacity. Then 

where fl' is a maximum residual flow on N ( f )  (f * := f + f") and fi is the maximum residual 
capacity of edges of N ( f )  of length 1. 

Proof. Consider V&+l U V& (k = 0,1, ..., [%!$l - 1). If all such sets had more than 
& vertices, then the network N would have more than n vertices and a contradiction is 

obtained. Thus, there is a set V'&+l UVat with a t  most Ã‘ vertices. Then we have cap f(S) <: 
2 2 

f i \E(hk+l ,  Va}\ 5 /3 (&) since N is simple and lE(hk+l, Va)\ < lhk+l l l h k  l (&) - 
D 

By Lemmas 2.7, 2.8 and 2.9, we have the following lemma and theorem for unit capacity 
networks. 

Lemma 2.10 For a flow f in a unit capacity network N ,  let Er be the set of edges a with 
f (a) = 1. Then there is a flow f of value r such that \Ef \ <: 2nfi. 
Proof. Using the Ford-Fulkerson algorithm, we initially set f' := 0 and repeat augmenting 
f along a shortest path in N( f l )  from s to t (with the unit length function C) and increase 
the flow value by 1 until the value of flow f ' becomes r .  Let f be the flow f '  of value r 
obtained in this way. We rewrite N to be the unit capacity network with edge set Ef . Then 
N contains no directed cycle since we used shortest augmenting paths. Now try again to 
find the flow f of value r in N by the same method as above. Then, for a flow f of value 
r' in (r' + l)-st iteration, f - f ' is a maximum residual flow in the residual network N (  f ') 
and dl ( S )  satisfies dl ( S )  < -7Ã‘ by Lemma 2.9 and fi = 1. Thus, in (r' + l)-st iteration, the 
flow value is increased from r' to r' + l and at  most & edges are newly used to augment 
flow f l .  This implies 

Theorem 2.11 [36, 181 The Dinic algorithm finds a maximum flow on a unit capacity 
network N with no parallel edge in 0(min{m1I2, n2I3}m) time. 
Proof. Since the residual capacities are 1 or 2 in the residual network and each blocking 
flow can be obtained in 0 ( m )  time, we can assume that there are at  least min{m112, n2I3} 
iterations of finding a blocking flow (otherwise the theorem trivially holds). Thus, the 
maximum flow f *  is of value at  least min{m1I2, n2I3} and val(f*) <: n <: m since N has 
no parallel edge. We will show below that there are at  most 3 min{m112, n2I3} iterations of 
finding a blocking flow. Let i be the unit length function. 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



12 T. Asano & Y Asano 

We first consider the case when m1I2 < n2I3. After the m^-th blocking flow iteration, 
the flow f is of value a t  least m112 and dl(s) > m1I2 by Lemma 2.7. By Lemma 2.8, we have 

and there are a t  most 2m112 blocking flow iterations after the m^-th blocking flow iteration. 
Next we consider the case when m112 > n2I3. After the n2I3-th blocking flow iteration, 

the flow f is of value a t  least n2I3 and df(s) 2 n213 by Lemma 2.7. By Lemma 2.9, we have 

and there are at  most 2n2^ blocking flow iterations after the n213-th blocking flow iteration. 
D 

2.4. Preflows and push-relabel method 
A preflow f on a network N = (G = (V, E), cap, S, t )  is a real-valued function f on edge set 
E satisfying the following constraints [37]: 

0 < f (e) < cap(e) for all e E E (capacity constraint); (2.11) 

f (e) - f (e) 2 0 for all v E V - { S }  (preflow constraint). (2.12) 
eâ‚¬ ( v )  eâ‚¬d+( 

The value ex(v) E e c < - ( v )  f (e) - Eeg i t+(v )  f ( e) is called an excess of v and a vertex U E 
V - {S, t} is called active if ex(v) > 0. Clearly ex(s) < 0 by the preflow constraint. Note 
that  the only difference between flows and preflows is ex(v) = 0 in a flow but ex(u) > 0 
in a preflow for each vertex v E V - {S, t}. Thus, we use the same terms, notation and 
requirements (except preflow constraint) for preflows as for flow introduced before in this 
paper. An edge e E E is saturated if capf (e) = 0 and unsaturated otherwise. (The capacity 
constraint implies that  any unsaturated edge e has capf (e) > 0 and the residual network 
N( f )  of preflow f consists of the unsaturated edges.) 

We describe the Goldberg-Tarjan push-relabel method based on preflows [26] by bor- 
rowing the summary given by Ahuja-Orlin-Tarjan [4]. The preflow algorithm maintains a 
preflow f and moves flow from active vertices through edges in N (  f )  toward the sink t, along 
estimated shortest paths. Excess flow that cannot be moved to the sink t is returned to the 
source S, also along estimated shortest paths. Eventually the preflow becomes a maximum 
flow. 

As an estimate of path lengths, the algorithm uses the unit length function k' and a 
distance labeling d of N ( f )  such that  d(s) = n,  d(t) = 0 and d(v) < d(w) + !(e) for every 
edge e = (U, W )  of N (  f )  We) = 1). (Recall that ,  for a labeling function d on V with d(t) = 0 
and a nonnegative length function .l on E( f ) ,  if the reduced length &(e) = t(e) +d(w) - d(u) 
of each edge e = ( U ,  W) E E(/) is nonnegative, then d is called a distance labeling.) Let dg(u) 
be the length of a shortest path from U to t in N (  f )  with length function k' as before. Then 
df is the maximum distance labeling and the requirement for d to  be a distance labeling 
implies there is no path in N ( f )  from s to t since d 5 dl holds (i.e., d(u) 5 dt(u) for any 
U E V). Furthermore, a proof by induction shows that,  for any distance labeling d in the 
algorithm, d(u) < min{dl(u, S) + n ,  df (v, t)}, where de(u, W) is the length of a shortest path 
from v to  W in N( f ) .  An edge e = (U,  W )  of N(f)  is called eligible if d(u) = d(w) + 1. Note 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



Maxim um Flo W Algorithms 13 

that df,(v) = dl(v, t) and that the term eligible is defined by using a distance labeling d while 
the term admissible was defined by using the maximum distance labeling dt. 

More specifically, the algorithm initially sets 

f (e) := { ~ ( e )  if e E &+(S), 
if e E E - & + ( S ) ,  

d (v) := min{dl(v, S) + n, dt (v, t)}. 

Thus, initially, f is a preflow and d is a distance labeling. Note that d(s) = n and d(t) = 0 
since there is no edge in N ( f )  out of s and dl(s, t )  = oo. The algorithm consists of repeating 
the following two steps which maintain a preflow f and distance labeling d, in any order, 
until no vertex is active: 

Push(v, W). 
Applicability: Vertex v is active and edge e = (v, W) is eligible. 
Action: Increase f (e) by min{ex(v), capf(e)} 
(we mean that we first set 

f (e) := f (e) + min{ex(v), capf (e)} 
and then 

f(e)  := f (e) - min{f(e), f (eR)}; f (eR) := f (eR)  - min{f (e), f (eR)} 
as before). The push is saturating if e = (v, W) is saturated after the push and 
nonsaturating otherwise. 

Relabel(v). 
Applicability: Vertex v is active and no edge e E E(f) out of v is eligible. 
Action: Replace d(v) by min{d(w) + 1 1 e = (v, W) E E(f) out of v is unsaturated}. 
When the algorithm terminates, f is a maximum flow. Goldberg-Tarjan derived the 

following bounds on the number of steps required by the algorithm. 

Lemma 2.12 [26] Relabeling a vertex v strictly increases d(v) . No vertex label d(v) exceeds 
2n - 1, and the total number of relabelings is 0 (n2) .  

Lemma 2.13 [26] There are at most O(mn) saturating pushes and at most O(n2m) non- 
saturating pushes. 

Efficient implementations of the above algorithm require a mechanism for selecting push- 
ing and relabeling steps to perform. Goldberg-Tarjan proposed the following method: For 
each vertex, construct a (fixed) list A(v) of the edges out of v. Designate one of these edges, 
initially the first on the list, as the current edge out of v. To execute the algorithm, repeat 
the following step until there are no active vertices: 

Push/Relabel(v). 
Applicability: Vertex v is active. 
Action: If the current edge (V, W) of v is eligible, perform push(v, W). Otherwise, if 
(v, W) is not the last edge on A(v) , make the next edge after (v, W) the current one. 
Otherwise, perform relabel(v) and make the first edge on A(u) the current one. 
With this implementation, the algorithm runs in O(nm) time plus O(1) t '  ime per non- 

saturating push. This gives an O(n2m) time bound for any order of selecting vertices for 
push/relabel steps. Making the algorithm faster requires reducing the time spent on non- 
saturating pushes. The number of such pushes can be reduced by selecting vertices for 
pushlrelabel steps carefully. Goldberg-Tarjan [26] showed that first-in, first-out selection 
(first active, first selected) reduces the number of nonsaturating pushes to 0(n3) .  Cheriyan- 
Maheshwari [l01 showed that highest label selection (always pushing flow from a vertex with 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



14 T. Asano & Y. Asano 

highest label) reduces the number of nonsaturating pushes to 0 ( n 2 d 2 ) .  (The latter rule 
was first proposed by Goldberg [22], who gave an 0 (n3)  bound.) 

Figure 4: Example of a level network TVL(/") whose edges on the path from w2 to t are 
searched many times by the Dinic algorithm. 

2.5. Dynamic trees implementations 
The Dinic algorithm finds a blocking flow on a level network NL(f)  by doing the depth-first 
search from s in NL(f)  and saturating one edge at a time. But this wastes much time 
since edges are searched many times as shown in Figure 4. To reduce the time per edge 
saturation, we should keep track of the flow by using appropriate data structures. Galil- 
Namaad [21] and Shiloach [43] discovered a method of this kind that runs in 0(m(log n)2) 
time. Sleator-Tarjan [44] improved the bound to O(m log n) inventing the data structure 
of dynamic trees. Goldberg-Tarjan [26] obtained a O(mn log(n2/m)) time algorithm for 
finding a maximum flow on a network N based on the push-relabel method implemented 
by using dynamic trees. 

3. Maximum Flow Algorithms for Integral Capacity Networks 
As described in Theorem 2.11, Karzanov [36] and Even-Tarjan [l81 have shown indepen- 
dently that the Dinic algorithm runs in 0 ( m i n { d 2 ,  n2I3}m) time on networks with unit 
capacities and no parallel edges. For general integral capacity networks, Edmonds-Karp 
[l71 obtained an O(m210gU) time algorithm and Dinic [l61 and Gabow [20] improved 
this bound to O(mn\ogU) (note that U is the maximum edge capacity of a network). 
They used a scaling method. Ahuja-Orlin [3] combined this scaling method with the push- 
relabel method of Goldberg-Tarjan based on preflows [26] and obtained an 0 ( m n + n 2  log U) 
time algorithm. Ahuja-Orlin-Tarjan [4] explored possible improvements to Ahuja-Orlin 
algorithm and obtained an 0 ( m n  + n2(10g u)lI2) time algorithm and an O(mnlog(2 + 
(n/m) (log U) l/')) time algorithm. Goldberg-Rao [23] further improved these bounds and 
obtained an 0(min{m1I2, n2I3}m log(n2/m) log U) time algorithm beating drastically the 
lower bound O(mn) on the path decomposition method under the similarity assumption 
l o g  = Q(1og n) introduced by Gabow. 

In this section, we review the scaling method of Gabow [20] and the Ahuja-Orlin algo- 
rithm briefly and describe the Goldberg-Rao algorithm extensively. 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



Maxim urn Flo W Algorithms 

3.1. Scaling method 
Let N = (G, cap, S, t )  be a given network with integral capacities. Set No := N and recur- 
sively define Ni+l = (GG1, s, t)  to be the network obtained from Ni = (Gi, capi, s, t)  
by setting capi+' (e) := 1capi(e)/2\ for each edge e in N' (i = 0,1, . . ., [log U\ - 1). Since 
every edge is of capacity 0 or 1 in N1l0g '1, a maximum flow f llOgu-! can be obtained in 
O(mn) time. Assume that a maximum flow f '+l on Ni+l is already obtained and consider 
the residual network N^(2fi+') of N^ with respect to flow 2fi+'. Note that any path P in 
Ni(2 /'+l) from S to t has the residual path capacity A(P )  5 1, since otherwise P is a path 
in Ni+l(f^l) from S to t with residual path capacity A ( P )  > 1 and contradicts that /'+l 

is a maximum flow on Ni+l. Thus, for a maximum flow g' on Ni(2 f '+l), f := g' + 2 f '+l 

is a maximum flow on Ni and val(g1} = val (f 1} - val(2 /'+l) 5 m since g' = f i  - 2 fi+l 

can be decomposed into a set of paths in Ni(2 /'+l) each with the residual path capacity 1. 
This implies that we can find a maximum flow f i  on N' by at most m augmentations. Each 
augmentation can be done by finding a path from S to t in 0 ( m )  time and we can obtain f ̂  
on Ni in 0 (m2)  time. Thus, a maximum flow in N can be obtained in O(m2 1ogU) time. 
Gabow [20] improved this bound to 0 ( m n  log U). 
3.2. Ahuja-Orlin algorithm 
In this section we describe the Ahuja-Orlin scaling algorithm [3] by borrowing the summary 
given by Ahuja-Orlin-Tarjan [4]. This enables us to understand the Goldberg-Rao algorithm 
in the next subsection easily. The intuitive idea behind the Ahuja-Orlin algorithm is to move 
large amounts of flow when possible. One way to apply this idea to the preflow algorithm is 
to always push flow from a vertex of large excess to a vertex of small excess, or to the sink. 
The effect of this is to reduce the maximum excess at  a rapid rate. 

Making this method precise requires specifying when an excess is large and when it is 
small. For this purpose the Ahuja-Orlin algorithm uses an excess bound A and an integer 
scaling factor k > 2. A vertex U is said to have large excess if its excess exceeds A/k and 
small excess otherwise. As the algorithm proceeds, k remains fixed, but A periodically 
decreases. Initially, A is the smallest power of k such that A > U. The algorithm maintains 
the invariant that ex(v) <_ A for every vertex v. This requires changing the pushing step 
described in Section 2.4 to the following: 

Push(u, W). 
Applicability: Vertex v is active and edge e = (v, W) is eligible. 
Action: If W # t ,  increase f (e) by min{ex(v), capf(e), A - ex(w)}. Otherwise 
(W = t )  , increase f (e) by min{ex (v), cap (e) } . 
The algorithm consists of a number of scaling phases, during each of which A remains 

constant. A phase consists of repeating pushlrelabel steps, using the following selection 
rule, until no active vertex has large excess, and then replacing A by A/k. The algorithm 
terminates when there are no active vertices. 

Large excess, smallest label selection: Apply a push/relabel step to an active vertex 
v of large excess; among such vertices, choose one of smallest label. 

Since the edge capacities are integers, the algorithm terminates after at most llogk U\ + 1 
phases. After [logi. U\ + 1 phases, A < 1, which implies that f is a flow, since the algorithm 
maintains integrality of vertex excesses. Ahuja-Orlin derived a bound of O(kn2 logfl) 
on the total number of nonsaturating pushes. Choosing k to be a constant independent 
of n gives a total time bound of O(nm + n2 log U) for this algorithm, given an efficient 
implementation of vertex selection rule. One way to implement the rule is to maintain 
an array of sets indexed by vertex label, each set containing all large excess vertices with 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



16 T. Asano & Y. Asano 

corresponding label, and to maintain a pointer to the nonempty set of smallest index. The 
total time needed to maintain this structure is 0 ( n m  + n2 log U). 

Ahuja-Orlin-Tarjan [4] improved the Ahuja-Orlin algorithm and obtained an 0 ( m n  + 
n2 (log U) 'l2) time algorithm and an 0 (mn log(2 + (n/m) (log U) 'l2)) time algorithm. 

. Goldberg-Rao algorithm 
In this section, we give an overview of the Goldberg-Rao algorithm which drastically cleared 
the barrier ^(mn) of path decomposition methods under similarity assumption. Its ballpark 
complexity is 0* (min{m3I2, mn2I3 }) . 

Let f *  be a maximum flow and let f be a current flow on N. They tried to esti- 
mate the difference between the maximum flow value and the current flow value val( f *) - 
val(f) using some upper bound F. Since U is the maximum edge capacity and val(f*) <  ̂
x(<i,w)eii+(Ã§ cap($, W) < n u ,  they first set F := n u .  

In each phase of the Goldberg-Rao algorithm, the updates are repeated until val(f*) - 
val(f) is assured to be no more than F/2. Then a next phase starts setting F := F/2. If 
F < 1, then a maximum flow is obtained since each capacity is integer and we terminate. 
Thus the number of phases is at  most 1 + log(nU). 

At the beginning of each phase, we define A to be 

and find a flow f" of value A or a blocking flow f"  of value at  most A and augment 
f := f + f". In each phase, augmentations using a flow of value A occur at most 
min{m112, n213} times and augmentations using a blocking flow can also be shown to occur 
a t  most 0(mir{m1I2, n213}) times. Furthermore, such an augmentation using a flow f" of 
value A or a blocking flow f" of value at  most A can be obtained in 0(mlog(n2/m)) time 
based on the special structure of the treated network. Thus the time complexity of the 
Goldberg-Rao algorithm becomes ~ ( m i n { m l / ~ ,  n2I3}m 1og(n2/m) log(nU)). We can further 
improve log(nU) in the bound to log U. 

The key point in the Goldberg-Rao algorithm is a binary length function Â such that 
^(a) = 0 if capf(a) 2 a and Â£(a = l if 0 < capf (a) < a for some threshold a .  However, the 
existence of edges of length 0 makes Lemma 2.7 violated in some cases (Figure 3). To cope 
with these situations, they introduced a notion of special edges. 

Goldberg-Rao algorit hrn 
1. Initialize f := 0, F := n u ,  and A := f^n$2 , 1 , 7 1 1 )  - 
2. (Iterations of phase step) (we choose a = 5A - 4 and a~ = 2A - 1) 

(a) If F < 1 then terminate (f is a maximum flow). Otherwise, go to the following 
update step. 

(b) (Iterations of update step) 
i. Compute the residual network N (  f )  and define a length function Â£(a on 

a E E(f) as follows (Figure 5(a)): 

Â£(a = 0 (capf (a) 2 a )  
1 (0 < cap (a) < a). 

ii. Compute the maximum distance label de of N ( f )  for l. If de(s) = 0, then 
find a flow g of value a~ along a shortest path of N ( f )  from s to t ,  and go 
to X (2(b)x). Otherwise, proceed to the following. 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



. 
Maximum Flo W Algorithms 17 

Figure 5: A residual network N ( f )  with A = 3, a = 11 and OIL = 5. (a) Thick edges are 
of length 0 and the others are of length 1 in l .  (b) Thick broken edges are special edges. 
Thick edges are of length 0 and the others are of length 1 in t. 

iii. 
iv. 

V. 

vi. 

vii. 

. . . 
Vll l .  

ix. 

Find a canonical cut S'^'(S) of N( f )  of minimum capacity. 
F 1 and go to  If cap(S) 5 F/2 then set F := cap(S) and A := fmin~m1/2,n2/31 

2 (terminate the update step and go to  the next phase step). Otherwise, 
proceed t o  the following. 
Consider a = (U, v) E E( f )  satisfying a^ < capf (a) < a, de(u) = ddv) and 
capf (aR) > a to  be a special edge and modify the length function l above t o  
the following length function (Figure 5(b)): 

0 (if e is a special edge) 
Fie) = 

l(e) (otherwise). 

(Note that  de = dc, i.e., ddv) = dl(v) for each v E V). 
Compute the shortest residual network N,{f) of N(f) with respect to 
(Figure 6(a)). (Note that Nl(f) contains no cycle of positive length.) 
Compute the network Ns'[ f )  obtained from NE( f )  by contracting each strongly 
connected component (it consists of only edges of length 0) into a vertex 
(Figure 6(b)). (Note that N j (  f )  contains no directed cycle.) 
Find a flow f It of value A or a blocking flow f" of value a t  most A in N j (  f ) .  
Extend the flow f l' in N; ( f )  to  a flow g in Nl( f )  by extending each contracted 
vertex U of N'/{ f )  t o  the corresponding strongly connected component ST(u) 
of NZ(f) (Figure 7(a)) and properly distributing the flow going through v in 
ST(u) as follows if ST(v) has positive or negative excess vertices (for flow 
f" and escfl~ (U) = Eee6+(u) f"(e) - ze&i-(u) ft1(e), a vertex U E V - {S, t }  is 
called a positive excess vertex if exftl(u) > 0 and a negative excess vertex if 
exf11 (U) < 0). Choose a vertex rU in ST (v) as 

and construct two directed rooted trees IN(u)  and OUT(v) with the same 
root ru in ST(v) where I N ( v )  is an intree and OUT(v) is an out tree (Figure 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



T. Asano & Y. Asano 

Figure 6: (a) Maximum distance labeling dg of the residual network N ( f )  in Figure 5 with 
A = 3, a = 11 and = 5. A, B, C are strongly connected components and edges marked 
with X are deleted in NE(f). (b) NF(f) obtained from NZ( f )  by contracting the strongly 
connected components and a flow f" of value A in N!( f )  ( f1'(e)/capf (e)). 

7(b)) (there is a unique path from each vertex t o  r,, in I N ( v )  and there 
is a unique path from r,, to  each vertex in OUT(v)). Along a path from 
each positive excess vertex U to r,, in I N  (v) we distribute a flow of value 
exf11 (U) > 0. Then along a path from r,, to each negative excess vertex U in 
OUT{v) we distribute a flow of value -ex fii{u) > 0. The flow g in NZ(/) is 
obtained in this way (Figure 8). 

X. Update the flow f to f := f + g and go to (b). 

This algorithm uses a flow f"  of value a t  most A in the network N i ( f )  with no positive 
cycle and satisfies the following A- invariant: 

for each vertex v ,  the incoming flow value Seed-(,,) fl'(e) and the outgoing flow 
value Seed+(,,) f "(e) are both at  most A. 

Thus, fl'(a) < A for each edge a in N/(f) .  Furthermore, for each strongly connected 
component ST(v) corresponding to a contracted vertex U in N D ) ,  a flow of value exf11 (U) 

is augmented along a path from each positive excess vertex U to  r,, in I N ( v )  and a flow 
of value -exj11 ( U )  is augmented along a path from r,, to each negative excess vertex U in 
OUT(v). Thus, the total flow value through each vertex in I N ( v )  is at  most A - 1 if 
ST(v)  does not contain S, t since r,, is positive excess vertex. Similarly, the total flow value 
through each vertex in OUT (v) is at  most A. This implies that  g(a) 5 2A - 1 for each 
edge a in a strongly connected component ST(v) without S ,  t for the extended flow g of 
f". If ru = t then there is no negative excess vertex in ST(v)  since N'/(f) has no directed 
cycle and g(a) < A for each edge a in ST(u).  Similarly, if r,, = s then there is no positive 
excess vertex in ST(v) and g(a) < A for each edge a in ST(v) (note that if ST(v)  3 s then 
ST (v) 3 t ,  since otherwise dl(s) = 0 and iii to ix (2(b)iii to 2(b)ix) are skipped). 

Note that  we have chosen a = 5A - 4 and m = 2A - 1. Thus, an edge in a strongly 
connected component of Nc(f) is of length 0 and its residual capacity is large enough to 
augment the flow since a = 5A - 4 > = 2A - 1 if A > 2. Otherwise (A = l), 
a = 5A - 4 = 1 and every edge is of length 0. In this case, a flow of value A = 1 is a 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



Maximum Flow Algorithms 

Figure 7: (a) Flow f" on N,(f). (b) Flow g on IN(B)  and OUT(B) of the strongly 
connected component ST (B). 

Figure 8: Flow g on Ni( f )  (g(e) = 0 is omitted). 

path from s to t and each g(a)  in ST(v] is at  most 1 and thus, each strongly connected 
component ST(v) corresponding to a contracted vertex v has at  most one positive excess 
vertex and at  most one negative excess vertex. Similarly, If di(s} = 0 in 2(b)ii, then a 
shortest path P from s to t is of length 0, and the residual capacities of edges in P are all 
at  least a and sufficient enough to update the flow. Thus, we have the following lemma. 

Lemma 3.1 In each update step of the algorithm, g(a) = 0 for an edge a in N ( f l  but not 
in N, ( f ) ,  g(a) < A for an edge a with l[a) = 1 and g(a) < 2A - 1 for an edge a with 
^(a) = 0.  Thus, each update step can be done correctly. 

For each update step, let /, g and 2 denote the flows and the length function just 
before X (2(b)x) and let f' and l' denote the flow and the length function in the next 
iteration of update step (before considering special edges). Since we consider special edges 
and thus the lengths of some edges may become longer even if their residual capacities are 
increased, we need proofs to say that Lemmas 2.5 and 2.7 still hold. The lemmas below 
hold in the Goldberg-Rao algorithm and give an answer to this question. Recall there 
that edge e = (U ,  v )  E ( j )  was called admissible in 2 before if &(U)  = &(v) + fle), and 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



20 T. Asano & Y Asano 

this coincides with the following: edge e = ( U ,  v )  E E (  f )  is admissible in I if (de(u)  = 
de(v)  + 1)  or (de(u)  = de(v)  and v )  = 0 ) .  Thus, NE( f )  is a subnetwork of the network 
consisting of all admissible edges. 
Lemma 3.2 If capfi(a) > capf ( a ) ,  then g(aR)  > 0.  Furthermore, i f  g (a)  = 0,  then 
c a p f ( a )  > capi(a) i f  and only i f  g(aR) > 0.  (We assume g(e)  = 0 i f  e  E is not an 
edge of & ( f )  and, thus, g(e)  > 0 for each edge e  E E . )  
Proof. Since capf'{a) = cap(a) - f 1 ( a )  -I- f ' ( a R )  and capf ( a )  = cap(a) - f ( a )  + f ( a R ) ,  
capf l(a)  > capf (a)  if and only if / ' (aR)  - / ' ( a )  > / ( a R )  - f ( a ) .  Let /? = min{f ( a )  + 

J f a ^  + g(aR)} .  Then 

Thus, / ' (aR)  - / ' ( a )  = f ( aR) +g(aR)  - ( f ( a )  + g ( a ) )  and capfl(a) > capf (a)  (i.e., / ' (aR)  - 
f ' ( a )  > f ( aR)  - / ( a ) )  if and only if g(aR)  > g(a)  2 0. 
Lemma 3.3 de is a  distance labeling with respect to length function C' and del > de. 
Proof. Suppose that  there were an edge a = ( U ,  v )  E E(  f ') with de(u)  > de(v)  + !'(a). 

If a = ( U ,  V )  E E ( f )  then de(v)  + ̂ (a)  > de(u)  > de(v)  + !'(a) since de = dÃ is a distance 
labeling with respect t o  length functions t and t and de(u)  < de(v)  + @a).  Thus, we have 
( a )  = 1 (capfia) < a)  and ! ' ( a )  = 0 (capf'{a) > a)  and the residual capacity of a is 
increased. Similarly, if a = ( U ,  v )  E ( f )  then capf (a )  = 0 and the residual capacity of a is 
increased in this case since a = ( U ,  v )  E E ( f 1 )  ( c a p f i )  > 0 ) .  

Thus, in either case, the residual capacity of a is increased and g(aR)  > 0 by Lemma 3.2. 
This implies that  a^ = ( v ,  U )  is not only in E ( / )  but also in the shortest residual network 
N,( f )  with respect to  l. Thus, aR = ( v ,  U )  is an admissible edge and de ( v )  = de ( U )  + ̂ (aR) > 
de(u ) .  This, however, contradicts de(u)  > de(v)  + !'(a) 2 de(v) .  Thus, we have shown that  
there is no edge a = ( U ,  v }  E E(f ' )  satisfying de(u)  > & ( v )  + !'(a). 
Lemma 3.4 Let a = 5A - 4 and (XL = 2A - 1. If f f '  is a  blocking flow on N ! ( f ) ,  then g 
is a  blocking flow on the shortest residual network NZ( f )  of N (  f ) .  Furthermore, i f  A 2 2 
then del ( S )  > de( s ) .  
Proof. Since f" is a blocking flow on N!( f ) ,  there is no path from s  to  t in the network 
obtained from N f ( f )  by deleting all edges a with f"(a)  = capf{a).  Thus, for an extended 
flow g obtained from f" by extending each contracted vertex of N f ( f )  to  the corresponding 
strongly connected component in N/i{ f ), there is no path from s  t o  t in the network N ( f )  
obtained from h(/) by deleting all edges a with g(a)  = capf ( a ) .  Thus, g is also a blocking 
flow on N e ( f ) .  

We will show below that del ( S )  > de(s)  if A 2 2. Let P = ( S  = vt,, v ^ ,  . .., vk = t )  be 
a shortest path from s  to t in the residual network N ( f l )  with respect to length Â£ and 
f' := f + g .  Of course, if such a path P does not exist, then del ( S )  = cc and the lemma 
holds. Thus, we assume here such a path P exists. If the length d y ( s )  of P is at  least 
de(s)  + 1 then the lemma also holds. Thus, we will assume P is of length deI(s) = de(s)  and 
derive a contradiction. Let ai = (U^  ^ + I ) .  Then the length del ( S )  of P can be written by 

since de( t )  = 0. By Lemma 3.3, ^"(ai) + d e ( ~ ~ + ~ )  - de(vi) 2 0 since de is a distance labeling 
with respect to  l' and thus, del ( S )  = de(s)  if and only if !'(ai) + d e ( ~ i + l )  = de(vi) for 

,..., k - l .  

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



Maximum Flo W Algorithms 

Now suppose that dyis) = de(s). Then, by the argument above, 

{'(a.) + d t ( ~ i + ~ )  = de(vi) for all i = O , 1 ,  ..., k - 1. (3-1) 

Since g is a blocking flow of Nz(f), there is an edge a in P which is not contained in 
N,l f ) .  We choose a, = (vi, as the first such edge in P (that is, all a, = (vj, 
with j = 0,1, ..., i - 1 are in NZ( f )  and a, = (vi, is not in NJ( f )). Since each a j  with 
j = 0,1, . .., i - 1 is in NZ( f ) ,  we have <(aj) + d t ( ~ j + ~ )  = de(vj). Thus, <'(aj) = ((a,) for each 
a, with j = 0,1, ..., i - 1. If a, is an edge in N(f) and d ( ( ~ ~ + ~ )  + Etai) = de(vi), then, by 
(3. l), <(ai) = l' (ai) and the path joining the subpath Pis, v,) of P from s to v,, which is a 
path in Nj( f ) ,  and edge a, = (vi, vi+1) in N (  f )  and a path Q(V,+~,  t )  of length d;(vi+1) from 
%+l to t in N,(f) becomes a path of N( f )  of length dl(s) from s to t .  Thus, a, is in Nz(f),  
a contradiction. Thus, we have: 

(a) a, is an edge in N (f ) and dl + <(ai) > de (vi) ; or 
(b) ai is not an edge in N (  f ) .  

If (a) occurs, then, by (3.1), <(ai) = 1 (capf (a,) < a) and !'{ai) = 0 (capf/(ai) 2 a ) .  If 
(b) occurs, then capf (ai) = 0 but capf1(ai) > 0 since a, is in N(fl) .  Thus, in either case, 
we have capp (ai) > capf(ai). Then g(af) > 0 by Lemma 3.2 and of = v,) is an 
edge in NE( f ) .  Thus, dt(vi+l) = <(a?) + dl(vi) and dt (vi) = ll(ai) + dt > dt(vi+l) = 
<(a3 + ddt{vi) 2 dt(v.} by (3.1) and we have ?(ai) = ? ( a 3  = 0 and dt(vi) = d < ( ~ ~ + ~ ) .  
Then, by the definition of P, capfl(ai) > a .  On the other hand, since a, is not in NZ(/), 
we have g(ai) = 0 and capf I (ai) - capf (a,) = g(af) by the proof of Lemma 3.2. Thus, 

, capf(ai) = capft(ai) - g(af) > a - (2A - 1) > a^ > 0 (note that g(af) 5 2A - 1 by 
Lemma 3.1) and only (a) can occur ((b) cannot occur). Then, however, a, is a special edge 
or capf (ai) > a ,  and we have ^(ai) = 0, a contradiction. Thus, we have a contradiction in 
any case when we assume that dp ( S )  = dds).  D 

Next we estimate the number of iterations of update step and that of phase step. We 
first consider the number of iterations of update step in each phase. 

Since A = \dhS2,n2,311, the number of updates of using a flow f" of value A is a t  

most min{m1^2, n2I3}. The number of updates of using a blocking flow f" of value at  most 
A is analyzed as follows. We first consider the case when A > 2. Let M < a - 1 = 5(A - 1) 
be the maximum residual capacity of edges of length 1 in each phase. Then, by Lemmas 
2.8 and 2.9, we have Volf,t 5 mM, capf(S) <: mM/de(s) and capf(S) < (-&)'̂ M. From 
this and Lemma 3.4, we can show that the number of updates of using a blocking flow fl1 in 
each phase is ~ ( m i n { m l / ~ ,  n2I3}) as follows: If A = [---&-l (m1I2 = min{m1I2, n2I3}), then, 
after the 10ml/~- th  update of using a blocking flow, we have de(s) 2 10m112 and 

If A = \-^-l n2/3  (n213 = min{m1I2, n2^}), then, after the 4n2I3-th update of using a blocking 
flow, we have dt(s) > 4n2I3 and 

We next consider the case when A = 1 (F < min{m112, n2I3}). In this phase, each 
update of using a blocking flow f" increases the flow value by 1 and the number of updates 
using a blocking flow f" is at  most min{m112, n2I3}. 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



22 T. Asano & Y. Asano 

The number of phases is at  most log(nU) + 1 as mentioned before. Each update step 
can be done by finding a blocking flow on an acyclic network (i.e., network with no directed 
cycle). If a blocking flow is of value greater than A then we decrease the blocking flow 
until it becomes a flow of value A by post-processing. This post-processing can be done in 
0 ( m )  time. Finding the strongly connected components and computing a canonical cut of 
minimum capacity also require only 0 ( m )  time. The shortest path problem is also solved 

(m) time since the length function i takes on only values 0 and 1 (de can also be 
computed in 0 ( m )  time). Adjusting a flow in strongly connected components ST ( W )  using 
intree IN@) and out tree OUT(v) also requires 0 ( m )  time in total. Thus, dominating 
part in the algorithm is to find a blocking flow on an acyclic network. This can be done in 
0 ( m  1og(n2/m)) time by the Goldberg-Tarjan algorithm [27]. 

bus, we have the following lemma. 

A maximum flow of an integral capacity network N = (G, cap, s , t )  can be 
found in 0 ( m  m i n W 2 ,  n2I3} log(n2/m) log(nU)) time by the Goldberg-Rao algorithm (U 
is the maximum capacity of edges in N). 

We can reduce log(nU) to O(1og U) in the above time complexity. The number of phases 
between the phase of A < U and the phase of A = 1 is at  most logU + 1 and the total 
time in these phases is 0 (m min{m112, n2I3} log(n2/m) log U). The total time in the phase 
of A = 1 is also (m m q m 1 I 2  n2I3}) as described above. 

Now we consider the phases bf A > U. These phases occur first and we assume there are 
k such phases. During these k phases, all edge are of length 1 in the residual network N(f)  
and the shortest residual network &( f )  has no directed cycle. Thus, there is no strongly 
connected component with two or more vertices and no contracted vertex is generated. This 
implies that  q(f) = &(f) which coincides with the level network wf) of Dinic. Let 
F l , F 2 , - - - , F l c + i  an AI ,  A2, a - be the values F and A in the corresponding first 
1 ,2 ,  ..., (k + l)-st ases, respectively. Then Fl 2 2F2 > - >. 2*'-'Ft 2 2kF,k+l and 

fi 1 (i = 1 , 2  ,... ,k+ l) and A, > U (i = 1 , 2  ,..., k) and 5 U. The Ai = Li,(ml/2,n213~ 

maximum residual capacity M of edges of length 1 is a t  most 2U < 2(Ak - 1) during these 
first k phases. Thus, if At  = [-^/l (i.e., m1I2 = min{m112, d3}), then, after 4m1I2 times 
of updates of using a blocking flow, we have de(s) 2 4rn1I2 and 

Moreover? we have M 5 3 5 217- F- < . . * 5 2k.-i^/z by Ai = [*] (^ 1'2,  - 7  ^ 
4rn1/' Thus, the number of updates using a blocking flow is a t  most in the i-th phase since 

4m1/2 after F times of updates of using a blocking flow7 and the total number of updates using 
a blocking flow in these k phases is a t  most 8m112. 

Similarly we can obtain that the total number of updates using a blocking flow in these 
k phases is a t  most 4n2I3 in the case when At = [&l (n2I3 = min{m1I2, n2I3}). Thus, 
total time required during the phases of A > U is 0(rnmin{m1/27 n2I3} log(n2/m)). 

By the argument above we have the following theorem. 
Theorem 3.6 [23] A maximum flow of an integral capacity network N = (G, cap, S, t )  can 
be found in 0(mmin{m1I2, n213} log(n2/m) log U) time by the Goldberg-Rao algorithm. 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



Maxim um Flo W Algorithms 

4. Maximum Flow Algorithms for Undirected Unit Capacity Networks 
In this section, we consider maximum flow algorithms for undirected unit capacity networks 
N = (G = ( V 3  , cap, S, t )  (cap(e) = 1 for each e E E )  with no parallel edges. We call 
such a network a simple undirected graph. Karzanov [36] and Even-Tarjan [l81 have shown 
independently that the Dinic blocking flow algorithm runs in 0(min{m1I2, n2I3}m) time on 
simple undirected graphs (Theorem 2.11). Until recently, this is the fastest algorithm. On 
the other hand, based on the sparsification technique by Nagamochi-Ibaraki [41], Goldberg- 
Rao [24] obtained an O(min{m, n3I2}m1l2) time algorithm. They used the Nagamochi- 
Ibaraki sparsification technique in the context of residual graphs (networks) of flows in 
undirected graphs, which are not symmetric (the original Nagamochi-Ibaraki sparsification 
technique applies to undirected (e.g., symmetric) graphs). Karger-Levine [35] also used this 
technique and proposed an 0(m+nv3I2) time algorithm, where v is the value of a maximum 
flow on a simple undirected graph. They also proposed an algorithm with 0(nm2I3v1^} time 
and a randomized algorithm with 0 * ( m  + nl1l9v) time. The latter algorithm suggests that 
the maximum flow problem on simple undirected graphs seems easier than the maximum 
bipartite matching problem. 

In this section, we give a brief overview of these two algorithms on simple undirected 
graphs proposed by Goldberg-Rao and Karger-Levine based on the properties of distance 
labelings and the Nagamochi-Ibaraki sparsification. The feature of their method is as follows: 

(i) The number of edges used in a flow of value r is bounded above by 3nfi ;  
(ii) The number of edges in the residual network is bounded by O(nv). 

We first explain these two points. We begin with (i). Since we treat each edge e = (U, v) of an 
undirected graph as two directed edges eB = {e' = ( U ,  v), el' = (v,  U)} of the corresponding 
directed graph, we consider, for a flow f ,  the directed edge set Ef = {e E E \ f (e) = l} (f 
can be represented by val(f) edge-disjoint paths from s to t and the direction of an edge 
e E Ef coincides with the direction of the path from s to t containing e) and undirected edge 
set E0 = E - E, = {e E E \ f (e) = O} with no flow. Thus, the residual network N ( f )  of 
flow f consists of the edge set Ef of reverse edges eR with residual capacity 2 corresponding 
to directed edges e in Ef and of the edge set E: of two edge sets eB each with capacity 1 
corresponding to undirected edges e in E. (i.e., E( f )  = Ef U Et).  For the directed edge 
set Ef , we have the following lemma similar to Lemma 2.10. 

Lemma 4.1 In an undirected simple graph (undirected simple unit capacity network) N, 
there is a flow f of value r satisfying \Ef 1 <  ̂ 3nfi.  Actually, if Ef contains no directed 
cycle then \E,\ <  ̂ 3nfi .  
Proof. Let f be a flow of value r such that Er contains no directed cycle. Then the network 
Ef contains the unique maximum flow f .  Actually, if f' is a maximum flow of value r in 
E,, then f" = f - f is a flow of value 0 in E,. If Eft! = {e E Ef 1 fl'(e) = l} were not an 
empty set, then each connected component of EY C Et would be a directed eulerian graph 
and Ef would contain a directed cycle. This is a contradiction. The remaining parts can 
be shown by the argument as in Proof of Lemma 2.10 (note that all edges in the residual 
network have length 1, i.e., C. is a unit length function). Only one point to consider is that 
the maximum edge capacity /3 is equal to 2. 

Now we tried to find the unique maximum flow f in Ef by first setting f := 0 and 
augment the current flow f ' along a shortest path from s to t in the residual network Ef (f ') 
of f '  (finally obtained f ' is f ) .  In the residual network Ef (f ') of a flow f ' of value r', a 
maximum residual flow f - f is of value r - r' = val(f) - val(fl) <  ̂ 2(yÃ‘)2  Thus, the 

- 
length dc(s) of a shortest path satisfies dt(s) 5 *. r - r  This implies that the number of the 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



24 T. Asano & Y. Asano 

newly used edges in the r'-th update step of increasing flow value r' to r' + 1 is at  most 
and we have \E,\ 5 x s O  a 5 2 f i n f i  < 3nfi .  i/rÃ‘r D 

We do not have to use all undirected edges of N ( f )  to search an augmenting path. 
Actually, if we use a maximal spanning forest Tl in G - By = (V, Eo), then we have the 
following: N( f )  has an augmenting path if and only if the subnetwork Ef U Tf of N (f)  
has an augmenting path. If we use the result of Nagamochi-Ibaraki [41], this can be further 
generalized. Let Tl , Ta, . . . , Tm be defined recursively as follows. Tl is a maximal spanning 
forest of G1 = G - Er and Tk+1 is a maximal spanning forest of Gk+l = Gk - Tk = 
G - (E, U Tl U U Tk) for each k = 1,2, . . . ,m - 1. Tl U U Tm is called a sparse 
connectivity certificate of G - Ef and Tl U . - U Tk is called a sparse k-certificate of G - E{. 
Then we have the following lemma. 

For each i <, k, Nk  = Ef U Tf U - U T: has i augmenting paths 
ow of value i) if and only if N (  f )  has i augmenting paths simultaneously 

Proof. If Â  has i augmenting paths simultaneously then N(f} has z augmenting paths 
simultaneously since N k  is a subnetwork of N (  f ). We consider the converse. Suppose that 

augmenting paths but N does not have i augmenting paths. Then, by the 
ow, minimum-cut theorem, there is an S-t cut @(S) (S G S, t E V - S) such 

that its capacity is a t  most i - 1 in Nk and at  least i in N( f ) .  Thus, there is an edge 
a = ( U ,  v) (U E 5, v E V - S) such that a is in N [ f )  but not in Nk.  Of course, a @ E;. 
Thus, a is an undirected edge with a G E0 = E -  Ef .  Since there are at  most i- 1 undirected 
edges in Â  - Ef joining S a V - S, one of Ti, Ta, ..., Tk, say q, has no such edge joining 
S and V- - S .  Thus, Tj U { is a spanning forest by a <?? Tl U - - U Tk. This, however, 
contradicts that Tj is a maximal spanning forest in G1 = Gj-l - Tj-1. Thus, if N (  f )  has Â¥ 

augmenting paths then Nk has 2 augmenting paths. 13 

Before going to the Goldberg-Rao and Karger-Levine algorithms, we briefly describe the 
Nagamochi-Ibaraki algorithm [41] which computes a sparse connectivity certificate of an 
undirected connected graph G = (V, E) in 0(m) time based on a kind of the breadth-first 
search with some priority. 

i-Ibaraki algorithm for finding a sparse connectivity certificate 
edges e E E are initialized to be unscanned. 

Set r [v ]  := 0 for each v E V and insert v into priority queue Q as key r[v]. 
s not empty do 
deletemax (Delete vertex v of maximum r[v] from Q). 
ach unscanned edge e = (v, U )  incident to v do (e becomes scanned). 

Set t[e] := r[u\ + 1; r[u] := r[u] + 1 (increasekey of U by one in Q). 
{comment: If r[v] < r\u} (i.e., r[u] = r[v] + 1) then set r[v] := r\u}} 

The example of this algorithm is shown in Figure 9. Since r[v] takes an integer in [O, n] 
for a simple graph (and [Q, m] for a multigraph), the priority queue Q can be implemented 
to manipulate each operation (insert, deletemax, increasekey by one (r[u] := r[u] + 1)) in 
0(1) time, and thus the algorithm runs in 0{m) time. In the algorithm, t[e] indicates that 
e is in the maximal spanning forest TMA . At any time of the algorithm, for any U ,  W E Q 
and for any positive integer j < min{r[u], r[w]}, there is a path between u and W consisting 
of only scanned edges e of t[e] = j. Furthermore, U E Q is not incident to a scanned edge e 
with t[e] > r[u]. The comment in 2(b) will make it easier to show these properties. Thus, 
the algorithm correctly computes a sparse connectivity certificate Tl U - - UTm of G = (V, E )  
in 0{m) time. For details, see [41]. 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



Maximum Flo W Algorithms 

Figure 9: A simple graph G = (V, E) and a connectivity certificate of G (t[e] indicates that 
A 

edge e is in TÃˆd) 

Now we are ready to describe the Goldberg-Rao and Karger-Levine algorithms. 
4.1. Goldberg-Rao algorithm for simple undirected graphs 
The Goldberg-Rao algorithm is quite simple and only repeats the SparsifyAndBlock step. 
Initially HO := N, f := 0 and H'1 := HO. For convenience, we consider Hi is a directed 
graph and HIi is an undirected graph ( i  = 0,1,2,  ...). The SparsifyAndBlock step consists 
of the sparse connectivity certificate computation step and the blocking flow computation 
step. The step first applies the procedure Sparsify(Hi, f ,  k) (i = 1,2,  ..., k = ( 2 n / d < ( ~ ) ) ~  
and C. is a unit length function of HIi) to obtain a sparse k-certificate Tl, T2, ..., Tk of H^ - Ef 
and sets Hi := Ef U Tf U ~f U U Tf (Sparsify step). Then the step augments f to 
f := f + f" using a blocking flow f" on the level network H\ of Hi based on the method of 
Dinic and sets H'* := HV) and f := f (Block step). Note that if we neglect the sparse 
connectivity certificate computation step in the SparsifyAndBlock step, then the algorithm 
coincides with the Dinic algorithm. 

Since obtaining Hw from Hi in the Block step takes O(mi + n) time and obtaining 
Hi+' from HIw in the Sparsify step also takes O(m'.,l + n) time and = O(mi), we can 
consider the dominating step of the algorithm is the Block step (m, is the number of edges 
in H^ and m^ is the number of edges in H?. Thus, we have only to consider the Block step 
in the analysis of the efficiency of algorithm below. 

Theorem 4.3 [S41 The algorithm runs in time O(min{m, n3I2}m1ft). 
Proof. If m 5 n5I3, then n2I3m <: n3I2m1l2 and min{m1I2, n2I3}m 5 min{m, n3/2}m1/2. 
Thus, by Theorem 2.11, the running time of the algorithm is 0(min{m1I2, n2I3}m), which 
is 0(min{m, n312}m112). For the rest of the proof, we assume m = ̂ l{n5I3). 

During the initial iterations of the algorithm, when n ( 2 n / d [ ( ~ ) ) ~  > m, the sparsification 
has no effect and each iteration takes 0 ( m )  time. During these iterations, de(s) < 2n3/2/m1/2 
where C. is a unit length function. Since de(s) increases at  each iteration, these iterations 
take a total of 0(n3I2m1l2) time. 

During (the i-th iteration of) the final iterations of the algorithm, when n ( 2 n / d < ( ~ ) ) ~  < 
4n3I2 (dt{s) 2 n3I4), we have m, 5 4n3I2 + 3n3I2 = 0(n3I2) since Sparsify(Hi, f ,  k) with 
k = ( 2 n / d [ ( ~ ) ) ~  produces at most nk edges and \Ef \ <: 3n312 by Lemma 4.1. Thus, by 
Lemma 2.9 and the argument above, these iterations take 0 (n2)  time. This is 0(n3I2m1l2) 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



26 T. Asano & Y. Asano 

for m > n. 
Finally we account for the remaining iterations (2n3/2/m1/2 < dds) < n3I4). Each z-th 

iteration takes O(m4 time. If dl(s) = j during the z-th iteration, then j > z by Lemma 2.7 
and 

since ~ ~ a r s i f ~ ( f l " ,  f ,  ( 2 n / ~ ' ) ~ )  produces at  most n ( 2 n / ~ ' ) ~  edges and \E,\ <  ̂ 3n3l2 by Lemma 
4.1. Let Do = 2n3/2/m1/2. Then the total work during these iterations is at  most 

Thus, we have that the total work is ~ ( n ~ / ~ r n l ^ ~ ) ,  which is O(min{m, n3/2}m1/2) for m = 

0 (n5l3) . D 

4.2. Karger-Levine a lgor i thm for simple undirected graphs  
In this section we describe the Karger-Levine algorithms for finding a maximum flow of an 
undirected simple graph. They find a maximum flow in 0 ( m  + nv3l2) and ~ ( n m ~ / ~ v ' / ~ )  
time (v is the value of maximum flow) [35]. The key point is that they devised a method 
to find an augmenting path in O(n^/^) time in an amortized sense. Now we are ready to 
describe the Karger-Levine algorithms. 

The first algorithm initially sets f := 0 and then calls SparseAugment2(N, f )  below. 
Using sparse k-certificates, it finds a flow of value r <_ v in 0 ( m  + r(n<v + 6)) time if 
we stop just after a flow of value r is obtained. Note that the flow obtained may contain 
a directed cycle since they augment a flow not using a shortest path. Thus, Karger-Levine 
included a step of deleting such cycles. This step can be done by a kind of depth-first search 
and finds a flow of the same value with no directed cycle in time proportional to the number 

ges in the old flow. 

SparseAugment2(N, f )  
1. Set /c := [Jm/n 1 .  
2. Repeat the following steps as many as possible. 

(a) Delete a cycle in Er (we use the same notation Ef after this step). 
(b) Find a sparse k-certificate Tl U - - . U Tk of G - Er. 
(c) Set Nk  := Ef uTf U - . - u T f .  
(cl) Find a set of k augmenting paths in or a set of as many augmenting paths 

as possible if k augmenting paths are not in Nk ,  and set it f ff  and update f to 
f-= f +y. 

(e) If /If does not contain k augmenting paths, return f and terminate. 

The time complexity of this algorithm is O(m+r(n^/v+^/mn)) if we stop just after a flow 
of value at  least r is obtained. Actually, deleting cycles and finding a sparse k-certificate can 
be done in 0(m) time [41]. The time required to find k augmenting paths is O(mfk) where 
m' is the number of edges in TV^. By the definition of a sparse k-certificate and by Lemmas 
4.1 and 4.2, we have m' < nk + 3nf i .  Since the number of iterations is fr /kl  to find a flow 
of value at  least r ,  the time complexity is 0 ( ( m  + m'k) \r /kl)  = O(m + r (n& + 6)) 
(m\r /k l  = O ( r 6 ) ) .  Thus, if nu > m (i.e., n-Jv > 6) then this algorithm finds an 
augmenting path in O(n-v/^) time in an amortized sense. If we can find v (or an approximate 
value v' of v with <  ̂ v' < 2v) efficiently (about in 0*{m + nv) time) [7], then even if 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



Maximum Flo W Algorithms 27 

nv <_ m this algorithm can be modified to find an augmenting path in O(n\/v) time in an 
amortized sense. Such a method is described below. Here, NW is the set of first W forests 
of a sparse connectivity certificate of G - Ef. Thus, NW is a sparse W-certificate of G - Ef. 
N W  denotes the number of edges in NW. The algorithm initially sets f := 0 and then calls 
SparseAugment3(N, f )  below. 
SparseAugrnent 3 (N, f )  

1. Find a sparse connectivity certificate of G - Ef of N. 
2. Set W := val(f). 
3. Repeat the following steps until val( f )  < W. 

(a) Find the minimum number W' satisfying 1 NW/ 1 > 2 1 NW 1. If such W' exists then set 
W := W'. Otherwise, set NW := G - Ef. 

(b) Perform SparseAugrnent2(Nw U Ef , f ) .  
4. Return f and terminate. 

The time complexity of this algorithm is 0 (m+rn^/v) if we stop just after a flow of value 
a t  least r is obtained. Actually, the first step can be done in 0 ( m )  time. We denote by k 
the number of iterations. The time required in the i-th iteration is O(mi + ri (n&+ ,/G)) 
where mi is the number of edges in N W  ( N W  denote NW in the i-th iteration) and ri is the 
number of augmenting paths found in the i-th iteration. In this time complexity, the first 
term m, is set to be more than twice in each iteration (i.e., 2mi < mi+l 2mi + n for each 
i = 1,2, ...,A; - 2 and m^ <_ 2rnk-' + n) and thus its total sum is O(m). For the next term, 
wk-1 < v since the (k - l)-st iteration is not the last iteration. Thus, m k - ~  nu and we 
have mk < 2nv + n = O(nv}. The total sum of ri is r .  Thus, the total sum of second term 
is 0 ( rnf i )  and the time complexity of the algorithm is 0 (m + mm. This implies that 
this algorithm finds an augmenting path in O(n-Jv} time in an amortized sense. If we set 
r = v then the time complexity of this algorithm is O(m + nv312) (if v = Q(n) then it is 
0 (n5I2)). 

The algorithm below assumes that an approximate value v' of v with <_ v' <_ 2v is 
computed before in O* (m + nu) time. 
BlockThenAugrnent (N, k) 

1. Set f := 0. 
2. Repeat finding a blocking flow f t l  in the shortest residual network Nl(f) of N( f )  and 

augmenting the current flow f to f := f + f" until dl(s) > k (dt(s) denotes the number 
of edges in a shortest path from S to t of N(f) ) .  

3. Return SparseAugrnent3(N, f ) .  
The time complexity of this algorithm is ~ ( n r n ~ / ~ v l / ~ )  (0(n2-5) in the worst case) if 

we set k to be n ~ " / ~ / m ' / ~  = ~ ( n v ' / ~ / m l / ~ ) .  Actually, finding a blocking flow on Ne(f) 
can be done in 0 ( m )  time and it suffices to find at most k blocking flows by Lemma 2.7, 
which we can do it in 0 (mk)  = ~ ( n r n ~ ^ v ~ ^ ~ )  time. At this point we have de(s) > k 
and thus the residual flow is of value 0((n/k)2)  by Lemma 2.9. Note that the time 
complexity analyses for SparseAugment2(N, f )  and SparseAugment3(N, f )  can be mod- 
ified to hold even when we augment a flow f of value ro to a flow f of value r' with 
r = r' - ro. Thus, SparseAugment3(N, f )  requires O(n3^/v/k2) = O(nrn2l3v1/') time and 
BlockThenAugment (N, k) also requires 0 (n3 i/v/k2) = 0 (nm2I3 v1I6) time. 

We will not present the randomized algorithm of Karger-Levine finding a maximum flow 
of a simple undirected graph in O* (m + n1'^9v) time [35] here, since it is rather complicated. 
We give only a remark on it: it is not applied to finding a maximum matching of a bipartite 
graph (see Figure 10). 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



T. Asano & Y. Asano 

Figure 10: A network N with a maximum flow of value 3 and the bipartite graph obtained 
by deleting s and t which has a maximum matching of size 2. 

5. Concluding Remarks 
We have surveyed useful techniques for designing efficient algorithms for the maximum flow 
problem and presented representative maximum flow algorithms based on these techniques 
in a systematic way. We have given a focus on recently proposed algorithms by present- 
ing detailed comments especially on the Goldberg-Rao algorithm since their original paper 
contains minor mistakes in the analysis [23], and described traditional algorithms including 
algorithms based on the preflow push-relabel method rather briefly. This is because nice 
survey papers are already published on these traditional algorithms not only in English but 
also in Japanese [46, 13, 25, 1, 2, 31, 29, 61. 

The algorithms described in this survey are, however, mainly concerned with the theoret- 
ical efficiency in the worst case. Practical efficiencies of their algorithms were not thoroughly 
analyzed so far and implementations of representative algorithms have long been required. 
From this point of view, Ahuja-Magnanti-Orlin gave a nice survey on the practical efficien- 
cies and implementations of representative algorithms. Imai [30] implemented representative 
algorithms proposed by 1980 including the Dinic algorithm, Karzanov algorithm, Malhotra- 
Kumar-Maheshwari algorithm [40], Galil-Naamad algorithm [21], and concluded that the 
Dinic algorithm was the fastest among the tested algorithms. Recent implementations of 
variants of push-relabel method based on heuristics and the Dinic algorithm by Cherkassky- 
Goldberg [l21 showed that the push-relabel method based on the highest-label selection 
combined with both global and gap relabeling heuristics is the fastest among the algorithms 
described above. Goldberg told that he has implemented the Goldberg-Rao maximum flow 
algorithm based on the binary length function, but it is not as fast as the push-relabel 
method based on the highest-label selection combined with both global and gap relabeling 
heuristics. Further implementations of various maximum flow algorithms and the practical 
efficiencies evaluations on real world problem data are keenly desired. 

The maximum flow problem has a wide variety of scientific and engineering applications 
as mentioned in Introduction. Actually, Ahuja-Magnanti-Orlin gave a detailed description 
on applications of maximum flow problem [l, 21. We believe that a lot of interesting re- 
searches are developing in the maximum flow problem and network optimization not only 
from the theoretical point of view but also from practical applications. 

Acknowledgment S 

The first author was supported in part by Grant in Aid for Scientific Research of the 
Ministry of Education, Science, Sports and Culture of Japan and The Institute of Science 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



Maximum Flo W Algorithms 29 

and Engineering of Chuo University. The authors would like to thank anonymous editor 
and referees for their valuable comments improving the presentation. 

References 
[l] R. K. Ahuja, T.  L. Magnanti and J. B. Orlin: Network flows. In G. L. Nemhauser 

et al. (eds.): Handbooks of Operations Research and Management Science, Vol. 1, 
Optimization (North-Holland, Amsterdam, 1989), 21 1-369. 

[2] R. K. Ahuja, T. L. Magnanti and J. B. Orlin: Network Flows: Theory, Algorithms, 
and Applications (Prentice-Hall, NJ, 1993). 

[3] R. K. Ahuja and J .  B. Orlin: A fast and simple algorithm for the maximum flow 
problem. Operations Research, 37 (1989) 748-759. 

[4] R. K. Ahuja, J .  B. Orlin and R. E. Tarjan: Improved time bounds for the maximum 
flow problem, SIAM Journal on Computing, 18 (1989) 939-954. 

[5] N. Alon: Generating pseudo-random permutations and maximum flow algorithms. 
Information Processing Letters, 35 (1990) 201-204. 

[6] T.  Asano: Jouhou no Kouzou (Information Structures) (Nihon Hyouron Sha, Tokyo, 
1994 (in Japanese)). 

7 A. A. Benczur and D. R. Karger: Approximate S-t min-cuts in 0(n2)  time. Proc. 
28th ACM Symposium on Theory of Computing, (1996) 47-55. 

[8] J .  Cheriyan and T. Hagerup: A randomized maximum-flow algoithm. Proc. 30th 
IEEE Symposium on Foundations of Computer Science, (1989) 118-123, and SIAM 
Journal on Computing, 24 (1995) 203-226. 

[g] J .  Cheriyan, T. Hagerup and K. Mehlhorn: Can a maximum flow be computed in 
o(nm) time? Proc. 17th International Colloquium on Automata, Languages and 
Programming (1990) (Lecture Notes in Computer Science 443, Springer-Verlag), 235- 
248. 

[l01 J .  Cheriyan and S. N. Maheshwari: Analysis of preflow push algorithms for the 
maximum network flow. SIAM Journal on Computing, 18 (1989) 1057-1086. 

[l11 B. V. Cherkassky: Algorithm for construction of maximal flows in networks with 
complexity of 0(v2'/E1) operations. Mathematical Methods of Solution of Economical 
Problems, 7 (1977) 112-125. 

[l21 B. V. Cherkassky and A. V. Goldberg: On implementing the push-relabel method for 
the maximum flow problem. Algorithmica, 19 (1997) 390-410. 

[l31 T. H. Cormen, C. E. Leiserson and R. L. Rivest: Introduction to Algorithms (MIT 
Press, Cambridge, 1990). 

[l41 G. B. Dantzig: Application of the simplex method to a transportation problem. In 
T. C. Koopman (ed.): Activity Analysis and Production and Allocation (Wiley, New 
York, 1951), 359-373. 

[l51 E. A. Dinic: Algorithm for solution of a problem of maximum flow in networks with 
power estimation. Soviet Math. Doklady, 11 (1970) 1277-1280. 

[l61 E. A. Dinic: Metod porazryadnogo sokrashcheniya nevyazok i transportnye zadachi 
(Excess scaling and transportation problems). In Issledovaniya po ~ i sk r e tno i  Matem- 
atike (Nauka, Moskva,1973). 

[l71 J .  Edmonds and R. M. Karp: Theoretical improvements in algorithmic efficiency for 
network flow problems. Journal of the ACM, 19 (1972) 248-264. 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



30 T. Asano & Y. Asano 

[l81 S. Even and R. E. Tarjan: Network flow and testing graph connectivity, SIAM Journal 
on Computing, 4 (1975) 507-518. 

[l91 L. R. Ford, Jr. and D. R. Fulkerson: Maximal flow through a network. Canad. J. 
ath., 8 (1956) 399-404. 

f20] H. N. Gabow: Scaling algorithms for network problems. Journal of Computer and 
System Sciences, 31 (1985) 148-168. 

. Galil and A. Naamad: An O(lE1lVI log2 \V\) algorithm for the maximum flow 
. Journal of Computer and System Sciences, 21 (1980) 203-217. 
oldberg: A new max-flow algorithm. Technical Report MIT/LCS/TM-291, 

Laboratory/or Computer Science (MIT, Cambridge, 1985). 
[23] A. V. Goldberg and S. Rao: Beyond the flow decomposition barrier. Proc. 38th IEEE 

Symposium Foundations of Computer Science, (1997) 2-11, and Journal of the ACM, 
45 (1998) 783-797. 

oldberg and S. Rao, Flows in undirected unit capacity networks, Proc. 38th 
IEEE Symposium on Foundations of Computer Science, (1997) 32-34, and SIAM 
Journal on Discrete Mathematics, 12 (1999) 1-5. 

251 A. V. Goldberg, E. Tardos and R. E. Tarjan: Network flow algorithms. In B. Korte et 
al. (eds.): Paths, Flows, and VLSI-Layout (Springer-Verlag, Berlin, 1990), 101-164. 

[26] A. V. Goldberg and R. E. Tarjan: A new approach to the maximum flow problem. 
Journal of the ACM, 35 (1988) 921-940. 

[27] A. V. Goldberg and R.E. Tarjan: Finding a minimum-cost circulations by successive 
approximation. Math. of Oper. Res., 15 (1990) 430-466. 

281 J. E. Hopcroft and R. M. Karp: An n2.5 algorithm for maximum matching in bipartite 
graphs. SIAM Journal on Computing, 2 (1973) 225-231. 

[29] T.  Ibaraki: Risan Saitekikahou to Arugorizumu (Discrete Optimization and Algo- 
rithms) (Iwanami Shoten, 1992 (in Japanese)). 

[30] H. Imai: On the practical effiency of various maximum flow algorithms. J. Oper. 
Res. Soc. Japan, 26 (1983) 61-83. 

[31] K. Iwano: Recent developments in the network flow problem. In S. Fujishige (ed.): 
Discrete Structures and Algorithms (Risan Kouzou to Arugorizumu), Vol. 2 (Kindai 
Kagaku Sha, 1993 (in Japanese)), 79-153. 

[32] D. R. Karger: Minimum cuts in near-linear time. Proc. 28th ACM Symposium on 
Theory o f  Computing, (1996) 56-63. 

[33] D. R. Karger: Using random sampling to find maximum flows in uncapacitated 
undirected graphs. Proc. 29th ACM Symposium on Theory of Computing, (1997) 
240-249. 

[34] D. R. Karger: Better random sampling algorithm for flows in undirected graphs. Proc. 
9th Annual ACM-SIAM Symposium on Discrete Algorithms, (1998) 490-499. 

[35] D. R. Karger and M. S. Levine: Maximum flows in undirected graphs seems easier 
than bipartite matching. Proc. 30th ACM Symposium on Theory of Computing, 
(1998) 69-78. 

[36] A. V. Karzanov: 0 nakhozhdenii maksimal'nogo potoka v setyakh spetsial'nogo vida i 
nekotorykh prilozheniyakh (On finding maximum flows in network with special struc- 
ture and some applications). In Mathematicheskie Voprosy Upravleniya Proizvod- 
stvom, Vol, 5 (Moscow State University Press, Moscow, 1973). 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



Maxim urn Flo W Algorithms 31 

[37] A. V. Karzanov: Determining the maximal flow in a network by the method of 
preflows. Soviet Math. Doklady, 15 (1974) 434-437. 

[38] V. King, S. Rao and R. E. Tarjan: A faster deterministic maximum flow algorithm. 
Proc. the 3rd Annual ACM-SIAM Symposium on Discrete Algorithms, (1992) 157- 
163. 

[39] V. King, S. Rao and R. E. Tarjan: A faster deterministic maximum flow algorithm. 
Journal of Algorithms, 17 (1994) 447-474. 

[40] V. Malhotra, P. Kumar and S. Maheshwari: An O(lV13) algorithm for finding maxi- 
mum flows in network. Information Processing Letters, 7 (1978) 277-278. 

[41] H. Nagamochi and T. Ibaraki: A linear time algorithm for finding a sparse k-connected 
spanning subgraph of a k-connected graph. Algorithmica, 7 (1992) 583-596. 

[42] S. Phillips and J .  Westbrook: Online load balancing and network flow. Proc. 25th 
ACM Symposium on Theory of Computing, (1993) 402-411, and Algorithmica, 21 
(1998) 245-261. 

[43] Y. Shiloach: An 0 (n I log2 I) Maximum-Flow Algorithm. Technical Report STAN- 
CS- '78-802 (Computer Science Department, Stanford University, CA, 1978). 

[44] D. D. Sleator and R. E. Tarjan: A data structure for dynamic trees. Journal of 
Computer and System Sciences, 16 (1983) 362-391. 

[45] T.  Sunaga and M. Iri: Theory of communication and transportation networks. RAAG 
Memories, 2 (1958) 444-468. 

[46] R. E. Tarjan: Data Structures and Network Algorithms (SIAM, Philadelphia, 1983). 

Takao Asano 
Department of Information and System Engineering 
Chuo University 
Kasuga 1-13-27, Bunkyo-ku, Tokyo 112-8551, Japan 
Email: asano@ise . chuo-U. ac . jp 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.




