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Abstract This paper considers an extended cumulative damage model with two kinds of shocks: One is 
failure shock at which a system fails and the other is damage shock at which it suffers only damage. Shocks 
occur at a nonhomogeneous Poisson process. A system fails when a failure shock occurs or the total damage 
has exceeded a threshold level K. A system is also replaced before failure at scheduled time T. Reliability 
measures of this model are derived, using the theory of cumulative processes. Further, this is applied to 
the backup of files in a database system. Optimal replacement times which minimize the expected cost are 
discussed and numerically computed for several cases. 

1. Introduction 
Shocks occur at a random point and each shock causes an amount of damage to a system. 
These damages accumulate additively and a system fails when the total amount of damage 
has exceeded a threshold level K. Such a stochastic model generates a cumulative process 
131. Some aspects of damage models from reliability viewpoints were discussed by Esary, 
Marshal1 and Proschan 151. 

It is of great interest that a system is replaced before failure as preventive maintenance. 
The replacement policies where a system is replaced before failure at time T [17], at shock N 
[10], or at damage Z [6, 91 were considered. Nakagawa and Kijima [l11 applied the periodic 
replacement with minimal repair [l] at failure to a cumulative damage model and obtained 
optimal values T *  N* and Z* which minimize the expected cost. 

This paper considers a cumulative damage model with two kinds of shocks described in 
Figure 1 and Figure 2: A system suffers two kinds of shocks which occur at  a nonhomoge- 
neous Poisson process. We call that one is failure shock at which a system fails and the other 
is damage shock at which it suffers only damage. These damages accumulate additively and 
a system also fails when the total damage has exceeded a threshold level K. A system is 
replaced at failure (see Figure 1). However, to lessen a replacement cost after failure, a 
system is also replaced before failure at scheduled time T as preventive maintenance (see 
Figure 2). 

In this paper, we apply this cumulative damage model to the backup of files in a database 
system [16]. We suggest a stochastic backup model of files, by putting damage by dumped 
files, damage shock by update and failure shock by database failure. We obtain the expected 
cost rate C(T), and discuss an optimal full backup time T* which minimizes C(T) ,  when a 
database is updated at a Poisson process. It is shown that an optimal T* is determined by 
a unique solution of an equation. 

Further, Yeh [l91 has considered the replacement model where the failure times of a 
system after repairs form a geometric process. We obtain the expected cost of the backup 
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Figure 1: Replacement of cumulative damage model 

model where each dumped file due to updates has a different distribution, and explain 
why these files increase in a geometric ratio. Finally, numerical examples are given for the 
backup of files in a database system when the dumped files at each update have identical 
exponential and different exponential distributions. 

2. Damage Model 
Suppose that shocks occur at a nonhomogeneous Poisson process with an intensity function 
~ ( t )  and a mean-value function r ( t ) ,  i.e., r ( t )  = f'i(u)du. Further, it is assumed that the 
probability that the damage shock occurs is p (Q < p < 1) and the probability that failure 
shock occurs is 1 -p.  It is noted that failure shocks occur at a nonhomogeneous Poisson 
process with an intensity function (l -p) y (t) , and damage shocks occur at a nonhomogeneous 
Poisson process with an intensity function A(t) = p^(t) and a mean-value function R(t) 
p r ( t )  [12]. Then, the probability that the j-th damage shock occurs exactly during (0, t] is 

where R(0) = 0. 
Further, an amount Y,  of damage due to the j-th damage shock has a probability dis- 

tribution Gj(x) Pr{Y, < X} ( j  = 1,2, S )  with finite mean. Then, the total damage 
2, xLi to the j-th damage shock where Z0 0 has a distribution 

where the asterisk mark represents the Stieltjes convolution, i. e., a * b(t) = f b(t - u)da(u) 
for any functions a(t) and b(t). 

Let F i t )  l - e - ( ' - ~ ) ~ ( ~ ) ,  which is the distribution of failure time due to failure shock, 
and .F'(t) 1 - Fit). Then, the probability that a system is replaced before failure at 
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Figure 2: Preventive maintenance of cumulative damage model 
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scheduled time T is 

l 

the probability that a system is replaced when the total damage has exceeded K is 

l l 
l l 

l l l 
l l l 

l l l l 
l l l l 

and the probability that a system is replaced at failure shock is 

It is evident that (2.3)+(2.4)+(2.5)=1. 
The mean time E ( T )  to replacement is 

E (T )  Y\GW ( K )  - G('+') ( K ) ]  IT tF(t )  H j  (t)\(t)dt 
j=o 0 

Further, the expected number of shocks until replacement is 

E ( j  + l )  [G^ ( K )  - G(j+l) ( K ) ]  \' F(t)  H, ( t )  \(t)dt 
j=o 0 

= Y, G^ ( K )  /-' H j  ( t )  \ ( t )F(t)dt  . 
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Backup Policy 
In recent years, the database in computer systems has become very important in the highly 
information-oriented society. In particular, the reliable database is the most indispensable 
instrument in on-line transaction processing systems such as real-time systems used for 

ank. The data in a computer system are frequently updated by adding or 
deleting them, and are stored in floppy disks or other secondary media. However, data files 
in secondary media are sometimes broken by several errors due to noises, human errors and 
hardware faults. In this case, we have to reconstruct the same files from the beginning. 
The most simple and dependable method to ensure the safety of data would be always to 
make the backup copies of all files in other places, and to take out them if files in the 
original secondary media are broken. But, this method would take hours and costs, when 
files become large. To make the backup copies efficiently, we might dump only files which 
have changed since the last backup. This would reduce significantly both duration time and 

chniques for database failures [2,13], the backup policies for hard disks 
oint intervals [4, 7, 8, 201 were studied in many papers . In this paper, 

ive damage model to the backup of files for database media failures, by 
putting damage shock by update, failure shock by database failure and damage by dumped 
files : A database is updated at a nonhomogeneous Poisson process with an intensity func- 
tion X(t) = p7(t) and only files, which have changed or are new since the last backup, are 

, which is called incremental backup. Further, the full backup is done at a spec- 
ified day, and all files are dumped, e.g., on the weekend, because it needs both enlarged 
time and size of backup. Suppose that a database system fails according to a distribution 
F i t )  = 1 - e-C-~'lW 

To ensure the safety of data and to save hours, we make the following backup policy: 
If the total dumped files do not exceed a threshold level K ,  we perform the incremental 
backup where only new files since the previous full backup are dumped. Conversely, we 
perform the full backup at periodic time T, when the total files have exceeded K, or when 
the database fails, whichever occurs first. It is assumed that the database system returns 
to an initial state by the full backup. 

Let introduce the following costs: A cost cl is suffered for the incremental backup, a cost 
c2 + @(X) is suffered for the full backup at time T when the total files are X (0 < X < K), a 
cost c3 + @ ( K )  is suffered for the full backup when the total files have exceeded a threshold 
level K .  and a cost 04 + @(X) is suffered for the recovery when the database fails, where 
cl 5 c2 < c3 < c4 and ~ ( 0 )  EE 0 . Then, from (U), (2.4), (2.5) and (2.7), the expected cost 
to full backup is 

+ 

+ 

Therefore, 

[c3 + Q (K)] Z[G(" (K) - G('+') (K)] J * Hj(t)\(t)F'(t)dt 
j=o 0 

from (2.6) and (3. l), the expected cost per 

C(T) = A(T)/E(T), 

unit of time is 
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where E (T) is given in (2.6), and 

4. Optimal Policy 
Suppose that @(X) = CQX, i.e., the proportional cost of full backup is a linear function of 
dumped files, because the full backup cost would increase in proportion to quantities of 
floppy disks or other storage files, and usage times spent for dumped files. In this case, the 
numerator A(T) in (3.3) is rewritten as 

00 T 

A(T) = [cl + (c4 - c:;) ( l  - p) /p] X GU) (K) ,/ Hj (t) \{t)F(t)dt 
j=o 0 

Thus, if M{K) (K) < CO, then, C(0) l i m ~ + ~  C(T) = CO, and hence, there 
exists a positive T* (0 < T* < CO) which minimizes C(T). 

A necessary condition that a finite T* minimizes C(T) is given by differentiating C(T) 
with respect to T and setting it equal to zero. Hence, from (3.2) and (4.1), we have 

where 
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Letting L(T) be the left-hand side of (4.21, 

L(0) - lim L(T) = 0, 
T+O 

L(w) lim L(T) 
T-Kx) 

= U (00) E (W) - [ q p  + (c4 - ~ 2 )  (l - p)] G^ (K) 

where E ( m )  == limT E(T) and U(m) l i m ~  U(T). 
If U'{T) > 0 and Â£(m > c2, then L(T) is a strictly increasing function from 0 to L(~o) ,  

and hence, there exists a finite and unique T* (0 < T* < 00) which satisfies (4.2), and the 
resulting cost is 

Conversely, if U'(T) > 0 and L(oo) < Â£ or U1(T) < 0 then T* = 00. 

In particular, note that L(m) = oo when the database is updated at a nonhomogeneous 
Poisson process with a mean-value function R(t) p\tm (m > 1) [B] .  

5. Numerical Examples 
Suppose that the database is updated at a Poisson process with rate p\, i.e., \(t) = p\, 
R(t) = p\t, Hj(t) = e-P" ( j  = 0,1,2, - S )  and F(t)  = 1 - e-('-p)". 
5.1. Exponential case 
We compute the optimal policy numerically when Gj(x) = 1 - e p x ,  i.e., G^(x) = 1 - 
~ ~ [ ( / ^ ' / t ! ] e - ~  ( j  = 1,2,--S) and M(K)  = pK. In this case, when c3 - c2 - cm/u # 0, 
equation (4.2) is 

where 

Note that G ( ~ + ~ ) ( K ) / G ( ~ ) ( K )  is strictly decreasing in j when Gj(x) = 1 - e->". Thus, 
V(T) is strictly increasing in T [15], and V(m) limT400 V(T) = 1. Letting Q(T) be the 
left-hand side of (5.1), it is evident that 

Q (0) E= lim Q(T) = 0, 
T-+0 
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Thus, if p < 1, then we have the following optimal policy: 
(i) If c3 - c2 - co/p  > 0 and &(l - e-(l-p)^) > c 3 - c ~ c o l Ã  then there exists a finite and 

unique T* (0  < T* < oo) which satisfies (5.1), and the resulting cost is 

PCO CO C(T*) = pcl + ( 1  - p)(c4 - c2) + - + p(c3 - c2 - - ) V ( T * ) .  
A P P (5.4) 

(ii) Ifc3 - c2 - @ / p  S 0 or &(l - e-(l-p)^ ) < - c3-c2:co,p then T* = oo, and the resulting 
cost is 

C(oo)  P@ ~ ( 1  - P )  (c3 - -) CO 
A = PC1 + ( 1  - p)c4 + - + ̂ _p)Ã£  - p  

P P 
(5.5) 

It is easily seen that Q ( T )  is strictly increasing in p since V ( T )  is also strictly increasing 
in p. Hence, optimal T* in case(i) is a decreasing function of p. 

In particular, when p = 1, the optimal policy is rewritten as: 
(iii) If c3 - c2 - % / p  > 0 and p K  > c - c ~ o l Ã  then there exists a finite and unique T* 

which satisfies (5.1), and the resulting cost is 

(iv) If c3 - ca - co/p <. 0 or pK c 3 _ c ~ c o l Ã  then T* = oo, and the resulting cost is 

Table 1 Optimal full backup time X* and the resulting costs C(T*) / (Ac2)  
when cl/c2 = 0.5, c3/c2 = 4, c4/c2 = 25 and c o / ( d  = 0.1 

P 
1.00 0.98 0.96 

C(T*)/(Ac2) AT* C(T*) / (Ac2)  AT* C(T*) / (Ac2)  
5.365 0.908 5.566 1.377 5.784 1.447 

Table 1 gives the optimal full backup times AT* and the resulting costs C(T*) / (Ac2)  for 
p = 1.00,0.98,0.96 and p K  = 8,101 12,14,16,18 when ci/c2 = 0.5, c3/c2 = 4, c4/c2 = 25 
and cn/(c2y) = 0.1. Note that all costs are relative to cost c2 and all times are relative 
to I /A .  Similarly, Table 2 gives the optimal full backup times AT* and the resulting costs 
C(T*)/(Ac2) for ~ 3 1 ~ 2  = 3,6,12,24 and co/(c2ft) = 0.01,0.10,1.00 when c1/c2 = 0.5, c4/c2 = 
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Table 2 Optimal full backup time XT' and the resulting costs C(T*)/(Ac2) 
when 01/02 = 0.5, 04/02 = 25, p K  = 12 and p = 0.98 

25, p = 0.98 and p K  = 12. In this case, from optimal policy ( i )  , finite AT* exist uniquely 
if c3/c2 - q/(c2p) > 1 + (1 - 0.98)/[0.98(1 - e(1-0-98)x12)] w 1.096. These show that the 
optimal XT' are increasing with both q/(c2p) and pK,  and conversely, are decreasing when 
e3/c2 is increasing, and the costs C(T*)/(\C2) are increasing with both @/(c2p) and c3/c2, 
and conversely, are decreasing when p K  is increasing. Further, both optimal times AT* and 
resulting costs C{T*) / (AQ)  become small as p becomes large, because the mean time l/(pA) 
of update becomes small. 

For example, when c3/c2 = 4, q/(c2p) = 0.1, p K  = 14 and p = 0.98, the optimal full 
backup time XT* is about 9.2. That is, when the mean time of update is 1/(pA) = 1 day, 
the optimal full backup time T* is about 9.2p w 9 days. Taking another point of view, 

03 /c2 - ,  - 

3 

we can intuitively see that a preventive full backup should be approximately made when 
the total dumped files have exceeded (0.98 X 9.2)/14 w 65% of a threshold level K ,  since 

C Q / ( C ~ ^ )  

0.01 0.10 1.00 . - 

C(T*)/(\c2) AT* C(T*)/(Ac2) AT* C(T*)/(\d) 
9.086 1.154 9.225 1.239 12.015 2.093 

,L& = 14 represents the expected number of updates until the total dumped files exceed 
K. Moreover, the expected number p K  becomes large as 1/p is small, and in this case, the 
optimal times T* also become large, and conversely, the resulting costs C(T*}/(\c2) become 
small. 

.2. Different exponential case 

Next, suppose that the amount K of newly dumped files at the j-th update has different 
exponential distributions, i. e., Gj (X) = 1 - e ^ j x  ( j  = 1,2, - . -) . We show that an amount 
Y y  of files which is dumped at the j-th update increases in a geometric ratio. Suppose that 
an amount of files at some update is Y, the total volume of files is M and the total files 
which have been already dumped is A (0 < A < M). Then, we assume that an amount of 
newly dumped files is proportional to the vacant space, i.e., Y X ( M  - A)/M. From the 
above assumption, we have, 

Solving this equation, 

V-, = Y X (I - Y/M)'-l ( j  = 1,2, . m ) .  (5.9) 

We define that Y/M = 1 - a which is an amount ratio of dumped files at the first 
update. Then, Y./M = Ct'-l(l - a )  ( j  = 1,2, .  . .) which is a geometric distribution with 
mean l/(lÃ a).  This shows that an amount of newly dumped files forms a geometric process 
with Yi/aiF1 ( j  = 1,2,  . -) where I / a  = a in [19]. 

In particular, when V-, increases in a geometric ratio, i.e., V, = a j l Y  and l / p j  
(0 < a < 1). Then, the distribution of total files until the j-th update is easily 
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given by 

Then, using the relation from Appendix A7 

equation (4.2) is 

and equation (4.5) is 

where 

Table 3 gives the optimal full backup times AT* and the resulting costs C ( T ) / ( A c 2 )  
for .c3/c2 = 107 20 and a = 1.00) 0.95, 0.907 0.85,0.80,0.75 when p = 0.98? c1/c2 = 0.5, 
c4/c2 = 25, q / ( c 2 p )  = 0.1 and pK = 12. This shows that the optimal times AT* are 
increasing when c3/c2 and a are decreasing? and conversely7 the costs C(T*) / (Ac2)  are 
decreasing with both c3/c2 and a. However7 they are almost unchanged for a. 

Table 3 Optimal full backup time AT* and the resulting costs C ( T * ) /  (Ac2) 
when p K  = 12? p = 0.9g7 c1/c2 = 0.5, c4/c2 = 25> and %/(c2,2) = 0.1 

6. Conclusions 

1-00 
0.95 
0.90 
0.85 
0.80 
0.75 

We have proposed the extended cumulative damage model with two kinds 01 shocks where 
a system fails or suffers only damage, and is replaced at scheduled time T .  Using the theory 
of cumulative processes7 we derive the expected cost and discuss the optimal replacement 
policy which minimizes it. 

Further? we have shown that this would be applied to the backup of secondary storage 
files in the database system. Thus, by estimating the costs of backups and the amount of 

AT* C ( T * ) / ( A C ~ )  AT* C(T*)/Ac2) AT* C(T*) / (Ac2)  
7.179 1.276 5.594 1.326 4.522 1.382 
7.186 1.268 5.609 1.318 4.541 1.374 
7.244 1.259 5.650 1.309 4.569 1.366 
7.314 1.249 5.691 1.302 4.594 1.359 
7.352 1.242 5.717 1.294 4.613 1.353 
7.363 1.235 5.732 1.288 4.625 1.347 
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dumped files from actual data and by modifying some suppositions, we could practically 
determine a scheduled time of full backup. These formulations and results would be applied 
to other management policies for computer systems [15]. 

Acknowledgment This form a part of research results by the Hori Information Science 
Promotion Foundation* 

Appendix A 
Derivation of equation (5. l l) 

Let gj(s) denotes the Laplace-Stiltjes (LS) transform of Cdf Gj(x) z. e., 

for S > 0, and g(j)(s) denotes the Laplace-Stiltjes (LS) transform of Cdf G(~)(x) .  Then, we 
easily have 

g(i) (S) = ( s ) ~ ~  ( S )  ( A 4  

and 
Pj 

= G7 

when Gj(x) = l - e-pj ( j  = O7 l? 2, - - S ) .  Thus, 

Inverting the L S  transforms of (A.4) we have 

References 

R.E. Barlow and F'. Proschan: Mathematzcal Theory of Relzabilzty (John Wiley & Sons? 
New York, 1965). 
K. M. Chandy, J. C. Browne, C. W. Dissly and W. R. Uhrig: Analytic models for rollback 
and recovery strategies in data base systems. IEEE %ns. Sofiware Engineering? SE- 
l(1975) 100-110. 
D.R. Cox: Renewal Theory (Methuen? London? 1962). 
T. Dohi? T. Aoki, N. Kaio and S. Osaki: Computational aspects of optimal checkpoint 
strategy in fault-tolerant database management. IEICE Transactzons on Fundamentals 
of Electronzcs, Communzcatzons and Computer Sczences7 E80-A(l997)2006-2015. 
J.D. Esary, A. W. Marshal1 and F. Proschan: Shock models and wear processes. Annals 
of Probabzlity, l(1973) 627-649. 
R. M. Feldman: Optimal replacement wit h semi-Markov shock models. Journal of Ap- 
plzed Probability, 13(1976) 108-117. 
S. Fukumoto, N. Kaio and S. Osaki: A study of checkpoint generations for a database 
recovery mechanism. Computers & Mathematics wzth Applications7 1(1992)63-68. 
E- Gelenbe: On the optimum checkpoint interval. Journal of ACM, 26(1979)259-270. 
T. Nakagawa: On a replacement problem of a cumulative damage model. Operatzonal 
Research Quarterly7 27(1976) 895-900. 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



Damage Model and Backup Policy 51 1 

[l01 T. Nakagawa: A summary of discrete replacement policies. European Journal of Oper- 
ational Research, 17(1984) 382-392. 

[ll] T. Nakagawa and M. Kijima: Replacement policies for a cumulative damage model 
with minimal repair at failure. IEEE Trans. Reliability7 13(1989) 581-584. 

[l21 S. Osaki: Applied Stochastic System Modeling (Springer Verlag, Berlin, 1992). 
[l31 A. Reuter : Performance analysis of recovery techniques. A CM Runs.  Database Sys- 

tems, 4(1984)526-559. 
[l41 H. Sandoh? N. Kaio and H. Kawai: On backup policies for computer disks. Reliability 

Engineering & System Safety? 37(1992) 29-32. 
[l51 T. Satowl K. Yasui and T. Nakagawa: Optimal garbage collection policies for a database 

in a computer system. RAIRO-Operations Research? 30 (1996)359-372. 
[l61 K. Suzuki and K. Nakajima: Storage management software. Fujitsu, 48 (1993) 389-397. 
[l 71 H. M. Taylor : Optimal replacement under additive damage and other failure models. 

Naval Research Logistics Quarterly7 22(1975) 1-18. 
[l81 S. Yamada: Soflware Reliability Models-Foundation and Application (JUSE Press Ltd, 

Tokyo? 1994) 82-84. 
[l91 Lam Yeh: Optimal geometric process eplacement model. Acta Mathematicae Applicatae 

Sinica, 8(1992)73-81. 
[20] J. W. Young: A first order approximation to the optimum checkpoint interval. Com- 

munications of A CM, 17(1974) 530-531. 

Toshio Nakagawa 
Department of Indus trial Engineering 
Aichi Institute of Technology 
1247 Yachigusa, Yagusa-cho 
Toyota 470-0392 JAPAN 
E-mail: nakagawa@ie . a i tech .  ac . JP  

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.




