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Abstract Fujimoto et al., have proved that the tail of the joint queue length distribution in a two-stage 
tandem queueing system has the geometric decay property. We continue to investigate the properties of 
stationary distributions in this tandem queueing system. Under the same conditions proposed by them, it 
is further shown that the stationary probability of the saturated states in the P H / P H / c 1  Ã‘ / P H / c 2  queue 
has a linear combination of product-forms. The method of linear combination of product-forms is presented 
in a QBD process with a countable number of phases in each level. We show that each component of these 
products can be expressed in terms of roots of the associated characteristic polynomials which involve only 
the Laplace-Stieltjes transforms of the interarrival and service time distributions. 

1. Introduction 
Fujimoto et al. [7] studied the asymptotic properties of the joint queue length di~t~ribution 
in a two-stage tandem queueing system where both interarrival times and service times are 
of phase type. The system is constructed with an infinite buffer and multiple servers in each 
stage and is denoted by PH/PH/c l  --+ /PH/c2. They proved that its stationary distribution 
has a geometric tail, i.e., the asymptotic probability distribution of the number of customers, 
either t,hat in the first queue or in the second queue goes to infinity, has a geometric decay 
property. Here, we provide a different approach to solve the same problem. In specific, 
we not only investigate the tail stationary probability but also discuss the property of the 
stationary distribution for saturated states (to be defined later). We prove that they can 
be written as a linear combination of product-forms. The method of linear combination 
of product-forms is presented in a quasi-birth-and-death (QBD) process with a countable 
number of phases in each level. To our knowledge, the result has never been reported so far 
in the literature. 

Bertsimas [4] studied a Ck/Cr/c queue. He showed that the equilibrium probabilities 
for saturated states are geometric in the number of waiting customers by using a generating 
function technique. In [3], he showed that the waiting time distribution under first-come- 
first-served (FCFS) discipline for the Ck/Cr/c system can be expressed as a mixture of 
exponential distributions. Adan et al. [l] showed that in the Ek/Er/c queues the equilibrium 
probabilities for saturated states can be expressed as a linear combination of terms t,hat are 
geometric in each of the state variables. Neuts and Takahashi [l11 showed t8he stationary 
di~t~ribution of the queue length at arrivals has an exact geometric tail of rate between 0 
and 1 in the GI /PH/c  queue with heterogeneous servers. It was further shown that the 
stationary waiting time distribution at arrivals has an exact exp~nent~ial tail of a positive 
decay parameter. For a tandem queueing syst,em PH/PH/1 + / pH/ \ ,  Fujimoto and 
Takahashi [6] tested various types of models with various traffic intensities at  stage 1 and 2. 
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They conjectured from all observed results that the joint queue-length probability p(nl ,  nJ2) 
may be approximated by Gq^rfi2 as 721,722 -+ oo, where the coefficient G and the decay 
rates 771, 772 are depending on n-\, n2. Similar models and results were investigated by Ganesh 
and Anant haram for G I / W  -+ /M/ l  in [5]. 

In the present paper, we show that the stationary distribution of the number of customers 
in the system when all servers are busy is a linear combination of product-forms. The 
solution technique is based on a novel approach that was taken to solve a PH/PH/l system 
by Le Boudec [10]. He showed that all the eigenvectors used in the expression of the 
stationary probability of the PH/PH/l system are Kronecker products and gave a simple 
formula for computing the stationary probability of the number of customers in the system. 
The essential idea of his approach is to avoid the integration of equations of saturated and 
unsaturated states. Because the solution of PH/PH/1 can be expressed in terms of roots 
of the associated characteristic polynomial, we may reduce the state balance equations to 
a vector difference equation with constant coefficients for a basis of separable solution of 
the equation of saturated states. We use this basis to construct a linear combination that 
also satisfies t,he conditions at boundaries of the state space. We solve a PH/'PH/c\ -+ 

/PH/c2 queueing system by showing the Matrix-geometric form solution of a QBD with a 
countable number of phases in each level. The result yields a new expression of the stationary 
distribution and may be used to compute other performance measures, such as the delay 
probability, the moments of the queue size distribution and the waiting distribution. 

The remainder of the paper is organized as follows. In Section 2, we review some re- 
lated work to this problem, especially, results in [7]. The theorems for a single-server 
PH/PH/l -+ /PHI1 system are presented in Section 3 and Section 4. In both sections, we 
construct the basis solutions that satisfy the state balance equations for two different cases 
which correspond to the traffic intensities at both stages. In Section 5, we give an outline 
of t,he proof for the multi-server PH/PH/c l  -+ /PH/c2 system. All technique lemmas are 
proved in appendices. Finally, The paper is summarized and concluded in Section 6. 

2. Model Formulation and Preliminary Results  
In this section, we describe the standard form of the phase representation for queueing 
systems. Our goal is to outline the method in preparation for modification to be considered 
in the following sections. Several important theoretical results will be stated without proof. 
We employ notations that are consistent with [7] where there is only a few very minor 
exceptions. 

Consider a two-stage PH/PH/cl  -+ /PH/c2 system. Each stage has c^ servers and 
a buffer of infinite capacity, k = 1,2. Service times of each server j, j = 1,2,  . , c ^ ,  are 
independent and identically distributed (i.i.d.) random variables subjecting to an irreducible 
phase-t>ype distribution PH (,B ,̂ S^-) with J(y phases and service rate phj. Interarrival 
times of customers are also 1.i.d. random variables subjecting to an irreducible phase-type 
distribution PH(a, T) with Jo phases and arrival rate A.  Assume the service times and 
interarrival times are mutually independent. The service discipline is FCFS and to randomly 
choose any idle server according to state-dependent probabilities. We denote the traffic 
intensity at the stage k by pk = A//^, where / ~ k  = = l  b p  Assume p^, k = 1,2,  are 
less than 1 so that the chain is stable and has stationary state probabilities. The state of 
the system is repre~ent~ed by a vector (nI , n2; in, . - , zici ; i21, - - , i 2 4 ,  where n^ is the 
number of cust,omers (including those in service) in the k-th stage, zo is the phase of the 
arrival process, and is the phase of the service process a t  tjhe j-th server of the A'-th &age, 
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j=l, 2, - , c k ,  k = l, 2. The index I& is interpreted to be zero if the corresponding server 
is idle. Under the stability condition of the system, the stationary state probabilities may 

. . be obtained and denoted by 7r(n1, n2; Z O ,  $11, . , ; i21, - , hc2). Sometimes for a concise 
representation, it is written as TT^, in its simple expression. The saturated stationary 
probability is defined for n l  > cl and 77,2 > ~ 9 .  Otherwise, it is called a unsaturated 
stationary probability. 

Denote by I the identity matrix and e' the column vector of all entries equal to 1. The 
order of them may be any positive integer according to its suffix which is defined by t,he 
corresponding T or S/,-,. Let 

A A -yo = -Te' and - y k .  = -SkjeLj 
1 

Denote by T*(s) and S^{s) the Laplace-Stieltjes Transforms (LST) of the interarrival and 
service ttime distributions respectively. It is known that 

To solve a two-stage PH/PH/cl  -+ /PH/c2 queueing system, we need to discuss the 
following two cases according to their intensities, pi and p2, 
Case I: If p1 > p2, we consider the system of equations (2.1) and (2.2). 

Suppose one of solutions for the system of equations (2.1) is (h, SO, sll, ..., slcl)=(771 ,0~,011 ,. . ., 
0 1 ~ ) .  It was proved by Fujimoto et al. [7] that 0 < 71 < 1, 00 > 0 and 01, < 0. Using 
defined above we consider another system of equations for h,, SO, s11, .. . , sic,, s a l ,  . . . , s2c2, 

Suppose one of the solut,ion is (h, so, 511, ..., slcl, ~ 2 1 ,  ..., S2c2) = (772, wO, w11, . .., wlcl, w21, ..., ~ 2 ~ ~ ) .  
Notice that WO = 00. Based on the solution, we construct a solution basis for the station- 
ary probabilities of saturated st,ates when 772 < 1. All of these solution techniques will be 
discussed in Section 3. 
Case 11: On the other hand, if pi < pal we consider the equations (2.3) and (2.4). 

Suppose one of solutions for the system of equations (2.3) is (h,, SO, , .. ., s2c2 )= (~a0 ,@21 , . .  . , 
?fac2). It was proved by Fujimoto et al. [7] that 0 < 772 < 1, CO > 0 and < 0. Using 772 

defined above we consider another system of equations for (h, SO, ~ 1 1 ,  . . . , sic1, ~ 2 1 ,  .. . , ~ 2 ~ ~ 1 ,  
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Suppose one of the solution is (h, s o ,  ~ 1 1 ,  .. . , slc1, ~ 2 1 ,  . .., ~ 2 ~ ~ )  = (v1, Go,G11, . . ., Glcl, G21, .. . , 
~ 2 ~ ~ ) .  Notice t,hat G&, = 52,. Again, we may construct a solution basis for the stationary 
probabilities of saturated states when fjl < 1. All these solution techniques will be discussed 
in Section 4. 

In order to discuss the solution t,eclinique of solving the PH/PH/cl  -+ PH/c2 queueing 
system clearly, without been confused by massive notations, we begin by solving P H I  P H I  1 

PHI1 first. 
Thus, we shall consider case I with c\ = c2 = 1 in Section 3 and case I1 with c\ = c2 = 1 

in Section 4. It will also be discussed in both sections that how stationary probabilities 
are obtained. This includes the existence of a solution basis for saturated states and how 
an algorithmic procedure of obtaining the stationary probabilities for unsaturated states. 
We also show extensions of the present approach to more complicated distributions are 
possible although the results are correspondingly more complex. This is shown in Section 5 
by applying this method to solve the PH/PH/cl  -+ PH/c2 queueing system. 

3. P H / P H / l  -+ /PH/1  Model: Case I 
In this section, we consider the PH/ p H /  1 -+ / p H /  1 system wit h p1 >. p2. The state of the 
system is represented by a vector (nI, n2; io, 21, i2), where nk is the number of customers 
(including the one in service) in stage k = 1,2, ZQ is the phase of the arrival process, and 
is the phase of the service process at  stage k, k = 1,2. To what it follows, we will show the 
stationary probabilities for nl > 0 and n2 > 0 has a product-form. At first, we will write 
out all t,he system balance equations and check if it satisfies these equations. 
3.1. Balance equations 

We arrange the states (nI,  712, zO, z l ,  22) in lexicographic order and partition of t,he state 
space according to nl , i.e. , 

Define TT the stationary vector partitioned according to as: 

Let be the state space which is arranged according to n~ and 712, i.e. , 

Thus connecting the probabilities between Cm and Cmn for any fixed m may be denoted as 

'̂m (^'m~, "m17 ' ' ' ) i  

where 71-00 is a row vector of size Jo, nW of Jo Jl , of J0 J2, and -7^n2 of Jo Ji J2 , if 
HI ,  77.2 > 0. We denote by Q the transition rate matrix of the chain corresponding to the 
arrangement of G. Then Q is of the block-tridiagonal form and written as 

B0 A0 
Cl B A 

C B A  

c B - * .  
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where the submatrices A, B, C, An, Bo, and Cl are given below 

and 

With these notations, the balance equations write 

Specifically, expanding (3.3) according to with respect to n > 1, n = 1 
writjten as follows. 

and n = 0 is 
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For n > 1, it is written as 

For n = 0, it is written as 

Expanding (3.2) according to ,Cmn with respect to n > 1, n = 1 and n = 0 is written as 
follows. We have 
for n > 1, 

for n = 1, 

and for n = 0 
q o ( T  e3 Sl)  = 
ro,o(Te;a â‚ Pi) + m,l(Io â‚ 11 â‚ S2eL). (3.9) 

Expanding (3.1) according to C,mn with respect tto n > 1, n = 1 and n = 0 is written as 
follows. We have 
for n > 1, 

and for n = 0 
r0,oT = ~ 0 1  ( I0  â‚ 8 2 6 2 )  

The symbols @ and â‚ are algebra operators performed as a Kronecker sum and a Kronecker 
product respectively. They were defined in Bellman [2] and were used to simplify the rep- 
resentation of the system of balance equations for queues by many researchers, for example 
[10], [l l] and [7]. 
3.2. Product-form solutions 
To solve the P H / P H / I  - P H I 1  queueing system, we begin by solving (2.1) for h, SO and 
sl . It was proved by Le Boudec [g] that SQ has Jl sol~t~ions with positive real parts, namely 
zi , - - - , ZJ^ . Then, we shall solve the system of equations (2.2) for h, so, s1 and 52. This is 
stated in the following lemma. 
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Lemma 3.1 T h x  polyn,om,ial equation if pi 2 p̂  and n\ < 1 

h,as J2 complex  solution,^ wzth negative real parts: z l  , . - , z J ~ .  

The proof of tJiis lemma is provided in Appendix A. 
Now, we look for a solution w ~ , , ~  of (3.4) which has the form, i.e., 

m n 
Wm,,n = 771 ,772 ("0 @ ui 0 0 2 )  

whereuo E C ~ O , U ~  E cJ1,u2 E ~ ~ ~ , 0 < ~ ~  < 1 and 0 < q 2  < 1. 

We shall require that U Q ,  u l  and u g  satisfy the normalization condition: 

uoeb = ulei = u2e; = 1. 

Suppose one of the solutions for (2.1) and (2.2) is 

where 
W O  

0, = - b1 = 
W1771 W2772 

7 b2 - , for 772 7%- 
771 - 1) 772 - 771 1 - 772 

Thus, we have 

UQT = ace + wouo, u l S 1  = b 1 / 3 ~  + W U I  ~ 2 8 2  = b 2 / 3 2  + ~ 2 ~ 2 .  (3.16) 

and 

Now we check (3.4) for m > 1 and n > 1. Insertion of (3.14) in (3.4) and then dividing 
by m yields 

Left hand side of (3.18) becomes 

u0T @ u l @  u 2  + U Q  0 u i S 1  0 u 2  + uo 0 U i  0 u 2 S 2  

Right hand side of (3.18) becomes 

Applying (3.16) in left hand side and (3.17) in right hand side will balances (3.4). 
We have obt,ained Jl solut,ions of W O  in (2.1) and J2 solut,ions of w 2  in (3.13) which we 

denote wit,h indices 7, and 3, respectively. Define 

Now any linear combination of wrnn (2, 3) obviously satisfies the state balance equations for 
m > l a n d n > l .  
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Lemma 3.2 wmln i s  a complex solution of general equations (3.4) i f  

Since (3.19) satisfies (3.4) and Jl, J2 are finite, the proof is immediately clear by adopting 
the stability assumption of this system. 
3.3. Algorithm for t h e  unsaturated probabilities 
In order to show the existence of a linear combination of w m n  (z, f)i we return to the assumed 
form of the probabilities w ~ , , ~ ( ? - ,  j), m > 0, n > 0, 1 < - 2 < J1 and 1 < J 5 J2. We observe 
that the most general solution under the condition that the roots s o  and 32  are distinct must 
be 

Jl J2 

E [(?l, .i)wmln ( 7 1 , ~ ) -  
z=17=1 

The coefficient f(z,j) may be found by solving a system of linear equations in which the 
number of equations is greater than that of unknowns. This will be explained in following. 

Observe that (3.8), (3. g), (3.11) and (3.12) has J0 J1 J2 + Jo Ji + J0 J2 + JO equations 
with unknowns ~ 1 1 ,  ~ 0 1 ,  W ,  Q ,  ~ 1 0 ,  7ro2 and TOO. Since ~ 1 1  and 7rl2 are functions of 
!(z, j) and 7 ~ 2 0  may be written in terms of and ~ 2 1  which is also a function of l(%, j), the 
totJal number of unknowns are 2 Jo J2 + JoJi + JO. Because this forms a linear homogeneous 
equations, one of them is necessarily substituted by tlhe normalization equation (3.20) as 
written 

This equation must sum up all stationary probabilities of possible states in the system to 
an unity. However, there are infinitely many of Tmln for m = 0 or n = 0 in (3.20). It is 
not possible to take all of them in (3.20) computationally. One way to resolve this problem 
is to resort to  the stability assumption of this system. Suppose there exists m* > 0 and 
n* > 0 such that r m o  -  ̂0 and ~ i - 0 ~  -+ 0 for all m > m,* and n > n*. Thus, we shall only 
consider T^O for 2 < m < m,* and T o n  for 2 < n < n* in (3.20). In addition, x m 0  and T o n  
shall sattisfy (3.6) and (3.10). We will first rewrite (3.5) and (3.6) such that Â ¥ 7 ~ ~ + 1 ~ 0  m > 1, 
is expressed by Tm,l, Tm-lll and x m 2  as described in (3.21) where (T @ S 1 ) l  exists since 
the inverses of both T and Sl exist. 

Similarly, z o l n ,  n > l, can be rewritten by rearranging (3.8) and (3.9) as described in (3.22) 
where (T @ S2)-l exists. 

In (3.21) and (3.22), we observe that T m , o  and noln are functions of l ( z ,  j) as well as TTmln. 
For each fixed m and n, there are 2 Jo Jl Jl equations but J0 J1 and Jo J2 unknowns with 
respective to z m , o  and Toln  given [(z, 2). Hence, considering (3.8), (3.9), (3. ll), (3.12), (3.20), 
(3.21) and (3.22) together for fixed m* and n*, we have a system of linear nonhomogeneous 
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equations where the number of equations is much greater than that of unknowns. Thus the 
solution of this problem may not be unique. The uniqueness property is guaranteed only 
when the steady state probability of this system exists. For the present model, there maybe 
involves a more complicated procedure needed to select the appropriate basis solutions from 
the class of available solutions. 

There are greatly many literature concerning the solution strategies of this type of prob- 
lems. Since its topic is not centered to our purpose, we shall only suggest this system of 
equations is possible t,o be solved by some popular numerical methods, e.g., the least square 
a lg~r i t~hm (see [g]). What we want to show is that trhe solution of such a system of equations 
does exist since tjhe system is stable. Therefore, a linear combination of product,-forms exist,s 
if and only if Â£(z j) is determined by a system of linear equations. We present our main 
result in the following. 

There exists coefficients f(z,J} such that 

The proof is given in Appendix B. Note that a real TT is not guaranteed since (3.13) may 
have no real solution. 

We will write the algorithm for adjusting the coefficients [ ( X ,  J) as follows: 
Step 1  Write %,Q and in terms of f(z, j) by (3.21) and (3.22). 
Step 2 Set a linear nonhomogeneous system consisting of equations (3.8), (3.9), (3.11), 

(3.12), (3.20), (3.21) and (3.22). 
Step 3 Solve it by the least square method and obtain f(z, 3 )  and the unsaturated proba- 

bilities. 
The cost of computing TT is briefly discussed here. By presented previously, the cost of 

computing TT involves solving two different systems of equations: one is nonlinear for roots 
of the as~ociat~ed ~haract~eristic polynomials in (3.13); the other is linear for unsaturated 
probabilities and J )  in Step 2. 

In general, to solve (2.1) for c1 > 1 one may first write su in terms of so for each j ,  in 
(3.23). 

T * ( S ~ ) S ~ ~ ( S ~ ~ )  = l, j = l, 2, m ,  cl. (3.23) 

Afterwards, SO can be obtained by applying any method of nonlinear equations, e.g., New- 
ton's method, to solve (3.24). 

So + S11 + - . - + Sic, = 0. (3.24) 

After SQ is solved, SI., UQ, UI ,  us, and wV, in (3.19) can be calculated directly. The 
computational cost of attaining product-forms wwn depends on the method we adopt tJo 
solve the nonlinear equation (3.24). The other part is to solve a linear nonhomogeneous 
system in Step 2. Compared with (3. l) ,  (3.2) and (3.3), its size has been greatly reduced. 
Moreover, if Newton's method is used to solve the nonlinear equation, its convergent rate is 
quadratic, which speeds up the solution procedure. 

4. P H / P H / l  -+ / P H / l  Model: Case I1 
Consider the P H / P H / l  -  ̂ /PH/1 system with p1 < pa. We will follow almost the same 
line of arguments in Section 3 tJo discuss the existence of a linear ~ombinat~ion of product,- 
forms for saturated probabilities in this case. The state of the system is represented by a 
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vector (nl , n 2 ;  io , il , i2) , where nk is the number of customers (including the one in service) 
in stage k = 1 ,2 ,  io is the phase of the arrival process, and i,+ is the phase of the service 
process at stage k ,  k = 1,2.  
4.1. Balance equations 
We rearrange the states (ni, n2) io^ i l ,  i-^} and partition the state space according to n 2 ,  i.e., 

Define TT the stationary vector partitioned according to L ' s  as: 

Thus connecting the probabilities between Cm and Lmn for any fixed m may be denoted as 

where TToO is a row vector of size Jol FniO of JOJ2, FOn2 of JOJ1, and %71102 of JOJ1 J2, if 
nl , nJ2 > 0. We denote by Q the transition rat,e matrix of tthe chain corresponding to the 
arrangement of Cm. Then Q is of the block-t,ridiagonal form and written as 

where the submatrices A, B, C are given below 

A= 

0 
10 @ 71 @ I2 0 

I0 @ 7lPi @ I2 0 
I0 @7lPl@ I2 0 

- 
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B. = 

and 

With these notations, the state balance equations write 

Specifically, for m > 1 wit,h respect to n > 1, n = 1 and n = 0 it is written as follows. 
For n > 1, it is 

For n = 0. it is 
- 
r m , o ( T  CE S 2 )  = 
- 
G-l,l ( I 0  ^ s1e; 0 1 2 )  + *m+l ,o( Io  0 S 2 e L P 2 ) .  

For m, = 1 with respect to n > 1, n = 1 and n = 0 it is written as follows. 
For 77 > 1, it becomes 

q n ( T  e S1 @ S 2 )  = 

% , % + l  (10 @ Sie;/31 0 P,) + * i , n - i ( T e ; I a  0 Ii 8 1 2 )  + f f2 ,n ( I0  0 11 @ S 2 e a )  

For n = 1, it becomes 

**,l (T 69 S 1  CB S 2 )  = 

*o,2 (10 81 s1e;/31 @ P,) + -l,o(Te;,ff 81 p1 0 1 2 )  + W 1 0  69 11 0 S 2 e p 2 ) ,  

For 72 = 0, it becomes 

* 1 , o ( T  e S 2 )  = 

*o,1(Io B s1e; @ / 3 2 )  + S-2,o(Io 0 S 2 e L P 2 ) .  

For m = 0 with respect to n > 1, n = 1 and n = 0 it is written as follows. 
For n > 1, it becomes 

7 ~ 0 , ~  (T @ Si) = *l,n (10 @ I; 81 + Â ¥ ~ ' o , ~ - l ( T e o ~  81 I;) 

For I /  = 1, it becomes 

*o,i (T e Sl) = %,l ( I 0  0 11 0 S 2 4 )  + S-o,o(Te;)a 8 P;) 
For n = 0, it becomes 

* o , o T  = 7i-l,0(10 8 
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4.2. Product-form solutions 

To solve the P H / P H / l  - PHI1 qneneing system with p1 < p2, we begin by considering 
P H I  P V .  First, we shall show 771 < 772 where 771 and 772 are solutions with respective to 
(2.1) and (2.3). Consider T* (-x)S* (X) = 1 in which S* (X) denotes the LST of a service 
time distribution with service rate /L. Notice x is a function of p. It is easy to check that x 
increases as p decreases. When 01 and fi are solutions defined by (2.1) and (2.3) for p1 > p2 
respectively, we have 0-1 < 0-2, which implies -01 > -52. Hence, T* (-gi) < T* (-c2), that 
is 771 < 772. Given 772 obtained by (2.3), we solve the system of equations (2.4) which results 
in (h, SO, s1) = (vi, Go, L&). Then we have the following lemma. 
Lemma 4.1 Th,e polynom,ial equation if pi < p2 anld 771 < q2 < 1, 

has Jl com,plex solutions with negative real parts: zl, - , Z J  . 
The proof of this lemma is provided in Appendix C. 

Now, we look for a solution wmn which has the form, i.e., 

We shall require that UQ, u1 and u2 satisfy the normalization condition: 

Suppose one of the solutions of (2.3) and (2.4) as described before is 

(??l, 112,^0,^1,^ 

Let, 

where 
UJo at = - 61% , 6 2 %  

61 = _ and b2 = - q2 - 1) ill - v 2  1 ql 7 for 112 # q1. 
Thus, we have 

and 

Now we check (4.14) inserted in (4.4) for m > 1 and n > 1. Like that has been done in 
Section 3, we have 
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Left hand side of (4.17) becomes 

and right hand side of (4.17) becomes 

They are equivalent after a little algebra on applying (4.15) to the left hand side and (4.16) 
to the right hand side. 

We have obtained Jg solutions of G2 in (2.3) and Ji solutions of G1 in (4.13) which we 
denote with indices and 7, respectively. Define for each z and 7, 

Now any linear combination of wrnln(z, j) obviously satisfies the balance equations for m > 1 
and n > 1. 
Lemma 4.2 Wm,n i s  a complex solution of general  equation,^ (4.4) if 

The proof is omitted for the same reason in Lemma 3.2. 
4.3. Algorithm for the unsaturated probabilities 
Returning to the assumed form of the probabilities wmIn(z,j),  m > 0, n > 0, 1 <, z <  ̂ J2 and 
1 <, 7 <, J1. We observe that the most general solution under the condition that the roots 
5 2  and sl are distinct must be 

Adjusting the coefficients @,A are according to the following two system of equations 
(4.20) and (4.2 1) plus the normalization equation (3.20). 

Thus we may present the second result as the following theorem. 
Theorem 4.1 There exist coefficients t (7 , ,  7) such that 

The proof is omitted here. 
We will write the algorithm for adjusting the coefficients !(z, l} as follows: 
Step 1 Write Ã‡ml and 7to,n in terms of Â£(X i }  by (4.20) and (4.21). 
Step 2 Set a linear nonhomogeneous system consisting of equations (3.20), (4.8)) (4.9)) 

(4.11), (4.12), (4.20) and (4.21). 
Step 3 Solve it by the least square method and obtain G, J )  and the unsaturated proba- 

bilities. 
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5 .  P H / P H / c I  -̂  / P H / c 2  M o d e l  
Since the methodology described in Section 3 and 4 can be applied explicitly to the P H / P H / c l  
+ / P H / c 2  system. We shall only give an outline of proofs to the following theorem. 
Theorem 5.1 Th,ere exists coefficients l(i, j )  such that for m > 0 ,  n > 0 ,  

where J~ = n i ~ ~  J ~ ~ ,  J~ = nFLi J ~ ~ ,  W ~ , ~ ( & J )  is a product-form solution in terms of distri- 
butions at each phase, and l(i,j) i s  the coefficient determined by its state balance equations. 

Depending on p1 and p2, there are two cases to discuss for this theorem just like that 
in Sections 3 and 4. Since these proofs will be derived in the similar manner, we omit the 
proof for Case 11. 

Consider the system P H / P H / c l  -+ / P H / c 2  for Case I where p1 > pi^. In order to 
compare the derivation of this section with that in Section 3,  we do not change some 
notations which were used for cl = 0 9  = 1. We believe it shall be self-evident as described 
in equations. The state of the system is represented by a vector (n l ,  n2;io, i i ,  i2 ) ,  where ik 
is a vector which is equal to (ikl,  ..., ikck), where ikg is the phase of the service process at 
server q in stage k ,  q = 1,2 ,  ..., and k = 1,2.  
5.1. Balance  e q u a t i o n s  
We arrange the states (nl ,  n2, IQ, i l ,  i2)  in lexicographic order and partition the state space 
according to nl, i.e. , 

Define TT the stationary vector partit,ioned according to /^'S as: 

Let Lmn be the state space which is arranged according to 721 and 722, i.e. , 

Lmn = { (n l ,n2 , io , i l , i2 ) ln - i  = m,n2 = n } ,  m,n = 0 , 1 , 2 , - - -  

In this case, A, B are C in Section 3 are of the form: 

where 
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where 

All these matrices are defined in [7] as well. We do not bother to write out Ao,  B. and Cl 
since we know they are only matrices regulating those unsaturated probabilities. According 
to observations in Section 3.3, all unsaturated probabilities may be expressed in term of 
l ( i ,  j) and they can be obtained as well as l (<  j) by the least square method. In the subse- 
quent section, we shall concentrate on the product-form solution of the saturated stationary 
probabilities. 
5.2. Product- form solutions 
To solve the PH/PH/c l  -+ PH/c2 queueing system, we begin by considering the system of 
equations (2.1) for h, SO, sn, - - -,slcl. For each service distribution Sl,, j = 1,2,  . . ,cl ,  there 
are Jl, complex solutions with positive real parts. This proof is straightforward from [g]. 
Then (2.2) shall be brought into consider with the solutions of (2.1). Like Lemma 3.1, we 
shall prove the following lemma as we solve (2.2). 
L e m m a  5.1 For each j and k ,  j = l, 2, .., cl, k = 1,2 ,  .., 02, if p1 > p2 and q < 1, t he  
polynom,ial equation 

S;,(-u0 - s)S'̂ s) = 

h,as J 2 k  com,plex solutionis with n,egative real parts: z\̂  . - , Z J ~ ~ .  

The proof of this lemma is omitted here. 
Suppose s = 772 < 1 is attained after solving (5.1). Now, we look for a solution 

which has the form, namely, 

where ul  = (un  O - 8 ulc1) 
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U2 = ( ~ 2 1  @ @ ~ 2 ~ ~ )  

uo ? ? ~ ~ ~ \ u ~ ~  cJ2',0 < < 1,and 0 < ifc < 1. 

We shall require that UQ, ulj and ~ 2 j  satisfy the normalization condition: 

/ uoeb = uljelj = u 2 A  = 1, for all j. 

Suppose one of the solutions of (2.1) and (2.2) is 

where 
W0 a=- UJljIll by = 

^2^2 , and b2j = - 
^l - l 7  1 - ^ 2  

72 # 71- 
%-W 

Thus, we have 

and 

Let 
S1 = S11 C C SICi, 82 = S21 e3 ... C szc2; 

S1 = Sl1e'nPll C . C Slcle;cl~lcl 8 2  = ~ ~ ~ e a 6 ~  C - - - @ SaC2e f̂l2 ;̂ 

I1 = 111 @ - . .  @I,,, 1 2  = 1 2 1  @ - . -  @ 12c2. 

Now we check (5.2) inserted in the state balance for m > 1 and n > 1. It results in 

%(U0 @ U1 @ u2) (I0 @ 11 63 S 2 )  + '^(U0 @ U1 @ u2) (I0 c3 S1 <Sli) - 
^2 

From left hand side of (5.8), we have 

uoT @ U 1  @ U 2  + u 0 o u l s l  ou2 + U Q ~ U ~  ou2S2.  

From right hand side of (5.8), we have 

After a little algebra from applying (5.5) and (5.6) to both sides respectively we have the 
equivalence. 

We have obtained Ji solutions of WO in (2.1) and J a  solutions of w2 in (5.1) which we 
denote with indices z and 2, respectively. Define 

where = (jll, . . . , .?lcl), 3 = (321, . . . , j2c2) and j.. are indices associated with solutions WO and 
w2 corresponding to (2.1) and (2.2) respectively. Now any linear combination of wm,^(z, J )  

obviously satisfies the balance equations for m > 1 and n > 1. 
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Lemma 5.2 wmn is  a com,plex solution of general state balance equations for m > 0 and 
n > O < f  

The proof is immediate from Lemma 3.2. 
We observe that the most general solution under the condition that the roots so and S% 

are distinct must be 

The algorithm for attaining unsaturated probabilities and l(%, 3) is not discussed here since 
it is not our focus in this paper. 

6. Summary and Conclusions 
The method of linear combination of product-forms has been used to solve the P H / P H / c l  --+ 

/ P H / q  stationary system. The computational complexity for solving (3 .  l), (3.2) and (3 .3)  
is apparently reduced since all the stationary probabilities for saturated states are expressed 
in t,erms of tjhe productl-forms and are only the functions of l ( z , y }  whose dimension is JiJa. 
Writing the stationary state pr~babilit~y in matrix geometric form we find that each com- 
ponent of these products can be expressed in terms of roots of the associated characteristic 
polynomials which involve only the Laplace-Stieltjes transforms of the interarrival and ser- 
vice time distributions. 

As proved in [13],  these roots are Perron-Frobenius eigenvalues of some non-negative 
matrices that solve (3 .3) .  Although Fujimoto et al. [7] have not examined the property of the 
probability of saturated states, it is apparent that the vectors with a~sociat~ed those Perron- 
Frobenius eigenvalues form the solution basis for determining all stationary probabilities in 
tjhe system as shown in this paper. We, thus, conjecture that some non-negative matrices 
can be also determined by the Perron-Frobenius eigenvalues as well as their eigenvectors 
so that the computational complexity of the algorithm for unsaturated probabilities can be 
even reduced. These results are easily exploited to develop an efficient and stable numerical 
algorithm, which is expected to work well for relatively large systems with high traffic 
intensities. 

The expression for the stationary probabilities leads to similar expressions for measures 
of system performance such as the moments of the queue and the waiting time. A1t)hough 
the analysis has been worked out for the main results which can easily be extended to more 
st,ages, tlhe problem of ext,ending them to an arbitrary number of queues in tandem remains 
open. This is because a more complicated procedure is needed to select the appropriate 
basis solut,ions from the even larger class of available solutions. It would also be of interest 
to extend the result to more general service distributions. 

Appendix A 
The polynomial equation 

S'(-̂ - s ) S ! ( s )  = 

has Ja complex solutions with negative real parts: sl, - - - , S A .  Clearly, one root of this 
equat,ion occurs at s = 0. In order to find the remaining roots, we make use of Rouche's 
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theorem. Let T* be denominator of T* with its denominant coefficient equal to 1, T* the 
corresponding numerator. S* and S* are defined in the same manner for S*. Let 

g(s) = -S(-wo - s)S;(s) 

We now choose D-cr t,o be the contour that runs up the imaginary axis and then forms 
a r-radius semicircle moving counterclockwise and surrounding the left half of S-plane as 
shown in Figure 1. Consider this contour since we are concerned about all the poles and 
zeroes in Re(s) < 0 so that we may properly include them in (2.2). We now show that 
\ f (S) - g (S) \ < \g (S) \ for a suitable choice of D-cr. Not,e that 

for all S such that g(s) # 0. Since p1 2 p^, i.e., A < p,-[ < h D-cr is decided by (2.1), (A.1) 
and (A.2) such that for Re(s) < 0, 

Thus, we have 

= 1 S+d0 - X) S W \ .  

Let h(x) = S^(Ã‘w - x}S; (X) .  Note that h,(x) is convex as shown in [7]. Since S; (X) is 
monotone decreasing of X, if 72 < 1 then w2 < 0. Moreover, we know h(0) = r,71' and 
h(w2) = 7c1. Thus, we have hl(0) > 0, namely, 

This may be checked by the assumption /;.l < p2 as follows. Because of S,*'(O) = -^c1, 
S;'(0) = -/l.al, S$(-WO) > 0, S,*(x) is convex and decreasing, we have 

Therefore for c > 0 small enough such that and -r 

\S^-wo - x ) S W  

which implies 

ls;(-wo - s)S,(s)I 

Now for Re(s) < 0 and for large enough values of r 

< X < -c, we have 

< 7.l 

< qyl. 

we have S = r and 

It is t,hus proven that f and g have the same number of negative real parts. Since $(S) = 

det(s12 - S')}, i.e., the characteristic polynomial of S2, and all eigenvalues of S2 have a 
negative real part (see Seneta [12]), g(s) has J2 complex solut,ions with negative real parts 
which is the number of eigenvalues of S2. That ends the proof. 
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Figure 1: 

For each choice of the coefficients Â£(7, j )  the sequence 7rmn given by (3.19) satisfies the 
equations (3.4). The remaining equations (3.5)-(3.12) are the equations for states m = 0 
or n = 0. Consider equations (3.8), (3.9), (3.11) and (3.12). These equations form a linear 
homogeneous system for the unknowns Â£(z ,}} and the unknown quantities 7rolo, 7r l1o,  %l, 

and 71-0,2. The number of equations is equal to JoJi+JoJ2+Jo+JoJl J2 but the number of 
unknowns is equal to Jo+JoJl+2JoJ2+JlJ2. Since J2 2 2 and Jl 2 2, we have J0J1+J0J2 5 
Jo Jl J2. Here, by first omitting Jo Jfi  - 1) - Jl J2 equations in (3.8), the reduced system of 
equations including (3.8), (3.9), (3.11) and (3.12) with Jo+JoJl+2JoJ2+Jl J 2  equations and 
unknowns has a nonnull solution. If all these quantities are null, then at least one of the 
coefficient $ , J )  must be nonnull since the Markov process is ergodic and TQ,O is nonnull. 
It implies that 7 r l lo ,  7ro1, 7r02, 7r12 and 7ra1 are nonnnll solutions. Then starting with ~ 2 1 ,  

T ~ , J  and 7r2,2, we can find 7rm,0, m 2 2, by (3.21). Similarly, starting with 7 r l ,~ ,  7 r 2 , l  

and r13, we can find n 2 3, by (3.22). From Lemma 3.2, we know the sum of 7rmln over 
all states converges absolutely which implies summing over these equations and changing 
summations is allowed. Thus, by dropping one of the equations in the linear homogeneous 
system formed (8), (g), (11) and (12) and using the normalization equation (20), we find 
a linear nonhomogeneous system. Since is an absolutely convergent solution of all 
equilibrium equations, tJhe coefficients C(?,, l} can be determined by tJhese equat,ions. 

Appendix C 
The polynomial equation 

T* - S) 5': (S) = 772 

has Ji complex solutions with negative real parts: SI ,  - - ,  SJ,. Clearly, one root of this 
equation occurs at S = 0. In order to find the remaining roots, we make use of Rouche's 
theorem again, following t,he same arguments in Appendix A. Let 

We now choose D-~,-.~ to be the contour that runs up the imaginary axis and then forms a r- 
radius semicircle moving counterclockwise and surrounding the left half of S-plane. Consider 
this contour since we are concerned about all the poles and zeroes in Re(s) < 0 so that we 
may properly include them in (2.4). We now show that 1 f ( S )  - g (S) \ < \g  (S) \ for a suitable 
choice of D-cr. Note that 
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- 
for all S such that g(s) 0. Since p1 < pz, i.e., A < p2 < ;;.l, D_cr is decided by (2.3), (C.1) 
and (C.2) such that for Re(s) < 0, 

Thus, we have 

= IT*(-^ - X)S?(X)I. 

Let h(x) = T* (--G2 - x)S\{x). Note that h(x) is logarithmic-convex. Since S'[ (x) is mono- 
tone decreasing of X, if fjl < 772 < 1 then Gi < 0. Moreover, we know h(0) = 772 and 
h(u~i)  = 772. Thus, we have h'(0) > 0, namely, 

Therefore for c > 0 small enough such that and -r < X < -c, we have 

which implies 
- s)SW\ < G. 

Now for Re(s) < 0 and for large enough values of r, we have Is1 = r and 

IT* (-G2 - s)Si*(s) 1 < q2 

It is thus proven that f and g have the same number of negative real parts. Since (S) = 
det(sIl - Sl) ,  i.e., the characteristic polynomial of Si, and all eigenvalues of Sl have a 
negative real part (see Seneta [12]), g(s) has J1 complex solutions with negative real parts 
which is the number of eigenvalues of Sl.  That ends the proof. 
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