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Abstract We will propose a branch and bound algorithm for solving a portfolio optimization model under
nonconvex transaction costs. It is well known that the unit transaction cost is larger when the amount of
transaction is small while it remains stable up to a certain point and then increases due to illiquidity effects.
Therefore, the transaction cost function is typically nonconvex. The existence of nonconvex transaction costs
very much affects the optimal portfolio particularly when the amount of fund is small. However, the portfolio
optimization problem under nonconvex transaction cost are largely set aside due to its computational
difficulty. In fact, there are only a few studies which treated nonconvex costs in a rigorous manner. In
this paper, we will propose a branch and bound algorithm for solving a mean-absolute deviation portfqlio
optimization model assuming that the cost function is concave. We will use a linear underestimating function
for a concave cost function to calculate a good bound, and demonstrate that a fairly large scale problem
can be solved in an efficient manner using the real stock data and transaction cost table in the Tokyo Stock
Exchange. Finally, extension of our algorithm to rebalancing will be briefly touched upon.

1. Introduction

Practitioners are very much concerned about transaction costs since it has significant ef-
fects on the investment strategy. In particular, when the amount of fund is relatively small,
diversification of fund may incur an unacceptably large transaction costs. Unfortunately,
however transaction costs are often ignored or treated in an ad-hoc manner because the
precise treatment of transaction costs leads to a nonconvex minimization problem for which
there exists no efficient method for calculating its exact optimal solution, at least until re-
cently. As a result, there are very few serious works in this field . The only exception, to the
authors knowledge, are the works by A. Perold [13] and J. Mulvey [10] in which transaction
cost function is approximated by a piecewise linear convex function. However, this approach
is not valid for the more important nonconvex transaction cost function.

The primary purpose of this paper is to develop a computational scheme which can gen-
erate an optimal solution of a mean- absolute deviation model under concave transaction
costs. We will propose a branch and bound method by exploiting the special structure,
namely the low rank nonconvex structure of this problem and show that this approach can
calculate a globally optimal solution in an efficient manner.

Figure 1 shows a tvpical form of the transaction cost ¢(x) as a function of the amount of
transaction . As shown in this figure, the unit transaction cost is larger when r is small.
while it gradually decreases as x increases. Therefore, the cost function ¢(x) is concave up
to certain point, say point A. When 2 passes this point. the unit transaction cost becomes
constant and hence ¢(z) increases linearly up to some point, sav B. When the amount of
transaction x passes this point, the unit price of stock increases due to illiquidity. namely
due to the shortage of supply. Thercfore, the function ¢(x) becomes convex bevond point

B.
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Unfortunately, however we do not know in advance where the point B is located. Only
a small amount of purchase may increase the unit cost significantly if many investors want
to purchase the same stock. Also, the effect of a large amount of purchase may be canceled
by a large amount of sale of some other investors so that the unit price may remain stable.

Cost 4

¢ ()

Amount of purchase

Figure 1: Transaction Cost Function

Therefore, we restrict our discussion to the situation where the amount of fund is within
the range where we can calculate the cost function exactly, i.e., within the range where the
cost is concave.

In the next section, we will formulate the problem as a convex maximization problem.
We assume that the risk function is given by the absolute deviation of the rate of return
instead of the standard deviation (or variance).

The mean-absolute deviation (MAD) approach is proposed by one of the authors in [5]
now widely used by practitioners to solve a large scale portfolio optimization problem with
more than 1000 assets because it can be reduced to a linear programming problem, instead
of a quadratic programming problem in the case of mean-variance (MV) model [9]. In
section 3, we will propose a branch and bound algorithm for solving a linearly constrained
convex maximization problem by adapting the algorithm proposed by Phong et al [14]. We
will show that the subproblem to be solved in the branch and bound method becomes a
linear programming problem which can be solved very fast. Section 4 will be devoted to
the results of numerical experiments of the algorithm proposed in Section 3 using real stock
data and real transaction cost data in the Tokyo Stock Exchange. We will show that our
algorithm can in fact generate a (nearly) optimal solution in a very efficient manner. In
Section 5, we will extend this algorithm to a more complicated rebalancing problem.

2. Mean-Absolute Deviation Model with Transaction Costs

Let there be n assets S; (j = 1,---,n) in the market and let R; be the random variable
representing the rate of return of S; without transaction cost . We will assume that the
vector of random variables (Ry,---, R,) is distributed over a finitelv manv set of points

{(r1t,--+,rn), t =1.-+-.T } and that the probability

ft - P,-{(Rl:"',Rn) == (Tlt:"'ﬂrnt)}: t = ]_T (21)
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is known. Then the expected rate of return r; without transaction cost of S; is given by

T
’f'j = Z ft Tjt- . (22)
t=1
Let z; be the proportion of fund to be allocated to S;. Then the expected rate of return of
the portfolio z=(xy,- -+, x,) is given by Z r;jz;. The actual expected rate of return under
j=1 |

transaction costs is therefore, given by
n
r(z) = _{rjz; —¢(z;)}, (2.3)
=1 .

where ¢;(+) is a concave transaction cost associated with stock S;. As in [5], we will employ
the absolute deviation

Wizl = E[|R(z) - ElR()|[]
= ;ftlgl(sz—rj)mj[, (2.4)

as the measure of risk. The mean-absolute deviation (MAD) efficient frontier under trans-
action cost can be calculated by solving a following convex maximization problem.

maximize f(x) = i {rjz; —c;j(z;)}

T n
subject to Z ftl Z(Tjt —1;),] < w,
t=1 7=1 (25)
n
> =1,
J=1
OSTJSOZJ, jzlv"'7n'

The MAD model (without transaction cost) was first proposed by one of the authors as
an alternative to the standard mean-variance (MV) model [9]. It has been demonstrated
in [5] that MAD model can generate an optimal portfolio much faster than the MV model
since it can be reduced to a linear programming problem instead of quadratic programming
problem. Also, it is shown in Konno et al.[6] that MAD model shares the same properties
as the MV model including well known CAPM type relations. Further, it is proved by
Ogrvezak and Ruszezynski [12] that those portfolios on the MAD efficient frontier corre-
sponds to efficient portfolios in terms of the second degree stochastic dominance.

Let us now introduce an alternative representation of the problem (2.5) which is more
suitable to construet a branch and bonnd algorithm. Firvst let us introduce a set of nonneg-
ative variables y;, z;, t = 1,-- -, T satisfving the following conditions.

n

yi— 2=y (rp—rj).  t=1,-T,

J=1
yze =00y, > 002 >0, t=1.---.T

Then we have the following representation

o3}
~—

n
if, Z('/'], - l’j).lfﬂ =Y + 2, t=1,---.T. (2.
=
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Therefore, the problem (2.5) can be rewritten as follows.

maximize f(x Z {rjz; — c;(z;)}
T
subject to Y (v +2z) < w
t=1
yt—ztzftJZ:l(Tjt_Tj)mjv t=1,---,T, (2.7)
Z/tZt:()a t:1,"',T,
n
Z.’L’j = 1,
j:
ye >0, 2z >0, t=1,---,T,
Theorem 2.1 : The complimentarity constraint y;2; =0, ¢t = 1,---,T can be eliminated
from (2.7).
Proof : Let (z},---,2%, yi, -+, ¥ 27,--+,25) be an optimal solution of equation (2.7)

without complementarity condition and let us assume that y; z; > 0,t € I C {1,---,T}.
For t € 1, let

l/ At y;( - Z:
= ity > >0,
\ Ct 0
A 0
Yt
= . . if zf>yr>0.
P 2y — Yt ’ ’
t

Then (zf,-- -, 2}, U1, Yr, Z1.- -, Zr) satisfies all the constraints of (2.7). Also it has the

same objective values as (x3, -+, &%, Y5, Y, 25, -, 25).
In view of the relation

T n
Zyt_zt = tht—m

- 107>

t=1 j=1
T
= Z ft - 07 :
7=1 t=1
we can eliminate (2, -, zr) from (2.7) to obtain an alternative representation.
n
maximize f(x) = Z {rjz; — ci(z;)}
T :
subject to Zyt <w/2,
=1 .
Yt = > ftZ(Tjt—Tj)xjt t=1 '7T7 (28)
j=1
in = 1.,
=1
Yi 2 0! t=1 s T:
OS;I'J'SQJ, j~—1, PN
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3. A Branch and Bound Algorithm

Let us describe a branch and bound algorithm for solving a linearly constrained convex
maximization problem (2.8). Let @ = (z1, -+, %), ¥ = (y1, -, yr) and let

T n
F = {(z0)| Y w<w/2, y— fr ) (rjy—r15)z; >0,
t=1 Jj=1 (31)

Ijzla yr > 0, t:177T}

NE

1

<.
il

The problem (2.8) can be denoted as follows

n

maximize f(z) =>_ {rjz; —c;(x;)}
P, J=1 3.2
(Fo) subject to (x,y) € F, (3:2)
0<z <.

where o = (ay, -, a,). Let (z*, y*) be an optimal solution of (3.2) and let f* = (z*).
Let us replace ¢;(x;) by a linear underestimating function §;(z;)

Cost

(04 i X i

Figure 2: A Linear Underestimating Function

and denote

n

golx) = Z(Tj —d5)xj, (3.3)
j=1
and define a linear programming problem
maximize go(x) =Y (r; — 6;)z;

G J=1 3.4
(Co) subject to (x,y) € F, (34)
0<zx<a
Let us note that
go(z) > f(x), 0<z<a. (3.5)

Let 2 be an optimal solution of (3.4). If

~ . o\ o N
1(:j(.1:2) — 5]-.1:‘;1 < g, (3.6)
=
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then (x°,9°) is an approximate optimal solution of (F,) with error less than s

Theorem 3.1:
go(a®) > f* > f(=P). (3.7)
Proof: It follows from (3.5) that
9(z%) = max {g(z) |(z,y) e F, 0<z<a}

> max {f(z) |[(x,y) € F, 0<zx<a} = [~

The relation f* > f(x°) follows from the fact that 20 is a feasible solution of (3.4).
Let us consider the case when (3.6) does not hold. Let

s (29) — 6,20 = max{ey(s) — 4,20 § =1, m}, (35)

and let
Xi = {zl|0<z,<a,/2, 0<2; <aj, j#s}, (3.9)
Xy = {r|ay/2 <z,<0, 0<2;<0y; j# s}, (3.10)

and define two subproblems

maximize f(x)

(P,) | subject to (x,y) € F, | (3.11)
T C Xl.
maximize f(x)
(P,) | subject to (x,y) € F. (3.12)
€Z E 1Y2.

Let ', x* be, respectively an optimal solution of (P;) and (Pz). Then either «*, or x? is
an optimal solution of (Fy). Corresponding to the subproblem (P,), let us define a linear
function ¢;(x) underestimating f(x) as shown in Figure 3.

gi(@) = ‘;(w =)yt (rems — ca(24)) (3.13)

Cost

Figure 3: Bisection Scheme
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and define a relaxed linear programming problem

maximize g¢;(x)
(Q1) | subject to (xz,y) € F, (3.14)
x e X .

If (@) is infeasible, then (Q;) can be fathomed. Otherwise, let &' be an optimal solution
of (Q)). If

91(&") - f(&")] <, (3.15)

then the problem has been solved with an approximate optimal solution z'.
Since g1(x) > f(x ), V x€ X, we have

(&) > f(a') > f(&"). (3.16)
Therefore, if

QI(i’I) S f(m[)),
then (P;) can be fathomed since f(z') < f(z°).

Algorithm (Branch and Bound Method)
1° P={(R)}, f=-00, k=0,
=0, =0a Xo={z|B°<z<a’}
2° If P = {¢}, then goto 9°; Otherwise goto 3°.
3° Choose a problem (Py) € P :

maximize f(x) = Z {rjz; —c¢;(x;)}

(Pk)

subject to (xz,y) € F,
S )&’k,

P = P\{(P})}
4°  Let cf(z;) be a linear underestimating function of ¢;(z;) over the
interval ﬂ]’? <z, < ozf, 7 =1,---,n and define a linear programming problem

n

maximize gi(z) = Y {rja:j — (’f(;rj)}

j=1
(@) subject to (x,y) € F,

xr € Xy,

If (Qg) is infeasible then go to 2°. Otherwise let z* be an optimal solution of

(Qr)-
If [gi(x*) — f(x)| >  then goto 8. Otherwise let f = f(x").

5° If fk < f then goto 7°; Otherwise goto 6°.
6° If f = fr; & = 2* and thmafe all the snhproblems () for Whl(h

g(x) < f
7° I ge(z®) < f then goto 2°. Otherwise goto 8°.
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8° Let c,(z*) — cf(2F) = max{cj(:cf) — cf(ﬁf)| j=1,---n}l,

X1 = XpN{pF <a, < (BF+ak)/2},
Xipa = XpN{(BF+0b)/2 <z, <al},

and define two subproblems :

maximize f(x)
(Pj41) | subject to (z,y) € F,

maximize f(x)
(Piyo) | subject to (x,y) € F,
T c XH_Q.

P = PU {.PH_l,.PH_Q}, k; = k; -+ ]. and gOtO 30.
where (P,) represents the problem in P with the largest subscript.
9° Stop : (Z) is an approximate optimal solution of (7))

Theorem 3.2 : & converges to an ¢ - optimal solution of (F,) as k — oc.
Proof : See e.g. [7,15 |

The problem (F,) can, in principle be solved by this algorithm. To accelerate conver-
gence, we may replace the bisection scheme by a so-called w - subdivision scheme [15] in
which the interval [3*, of] is divided into two sub intervals [3¥, 2] and [ z*, a¥] where z* is

the s th component of the optimal solution =¥ of (Q}) as depicted in Figure 4.

Cost r

k Ak . k X
s O 'S

B

N
Figure 4: o - subdivision

This subdivision scheme usually accelerate convergence, though it is not theoretically guar-

anteed. An alternative scheme is to reduce the size of the problem by using the following

theorem.

Theorem 3.3: There exists an optimal solution x° of (Qy), at most T+1 components of
which satisfy 0 < 2§ < a.
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Proof : Let «*,y* be an optimal solution of (Q)y). Then z* is an optimal solution of the
linear programming problem :

n
maximize go(w) = Z (rj — 6j)g;]-
n =1
subject to ray—ri)z; <y, t=1,---T,
J ft]z:;( Jjt ]) > Y (3.17)
n
Z.CE]' - 1,
j=1
ngjg()z], j*_—‘]_,-..vn.

By the fundamental theorem of linear programming, this problem has a basic optimal solu-
tion. It is straightforward to see that any basic solution has at most 741 components with
the property 0 < z; < «;. This theorem implies that at most T'+1 assets are subject to
approximation error (Note that ¢;(z;) = 0;z; if ; = 0 or z; = ;). Also those assets with
smaller fraction of investment are subject to relatively large transaction cost since the cost
function is concave. Therefore, most of those assets with x? = 0 are expected to satisfy the
property 7 = 0, where x* is the optimal solution of ().

This observation leads us to another approximation of the original problem (/). Let us
assume without loss of generality that the first J(< T + 1) components of z° are positive.
We will apply the branch and bound algorithm to the reduced problem:

J
maximize go(x) =Y _{rjz; — ¢;(z;)}
j=1
subject to  (zy,---,2,,0,---,0, y) € F,
J
Z.Ylj = 1./
j=1

0<uz; <ajy, » j=1--,J

(Fy) (3.18)

It is expected that the optimal solution of (P)) is a good approximation of the optimal
solution &* of (Pp). In fact, our experiments show that the relative difference of the optimal
value of (P) and (Py) is usually no more than 1.5%.

4. Results of Numerical Simulation

We tested the algorithm proposed in Section 3 using 10 sets of 36 monthly data of 200
stocks using the real transaction cost data. These stocks are chosen from the set of stocks
included in NIKKEI 225 Index. The program was coded in C*" and was tested on SPARC

[T workstation.

Figure 5 and 6 show the average and the standard deviation of the computation time
required to calculate an e - optimal solution where £ = 107°. Also we employed breadth
first rule and w- subdivision strategv throughout the test.
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Figure 5: CPU Time for Different n Figure6: CPU Time for Different T’
We see from these figures that the computation time increases almost linearly with re-
spect to T and n. Common observations in nonconvex minimization is a sharp increase of
computation time with respect to the rank of nonconvexity, namely 7" in this case. This
remarkable efficiency is partly due to the fact that linear underestimating function is a very
good approximation to the concave cost fiinetion. Also, the breadth first search resulted in
a good feasible solution in the earlier stage and many subproblems have been eliminated
by bounding procedure. The average number of subproblems solved was 12. By improving
the implementation, problems with over ¢ = 60 and n = 1000 (withont variable reduction)
would be solved in a practical amount of time.
Figure 7 shows the transaction cost where the amount of investment is 1 billion .

1600 T T T T —T T T T T
1400 | 4
1200 |- {
1000 | i
800 .

600 k B

400 - 1

cost * (1000)

200 T.Cost curve for 1 billion — -

0 L 1 i 1 I f 1 L {

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
X - propotion of investment

Figure 7: 'Iransaction cost function
Figure 8 shows the efficient frontier for different amount of fund. Also Figure 9 is the graph
of the maximal expected rate of return with and without transaction costs.
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The dotted graph in Figure 8, represents the actual expected rate of return calculated by
MAD model without transaction cost and then adjusted by the transaction cost for pur-
chasing the portfolio is showed by the broken lines in Figure 9. We see from this figure that
the exact treatment of transaction cost leads to much better results.
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15|
1417
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0.6 . —— Proposed MAD model

0.5 o ’ = Sud. MAD model with T.C |

0.4 e '
1.5 1.6 1.7 1.8 1.9

Risk
Figure 9: Efficient Frontiers for
Standard and proposed (MAD) model

The difference of the number of assets included in the optimal portfolio when n=200, and
T=36, are between one to three. For example, when «; = 0.06, w = 1.5, the number of
assets in the portfolio is 21 when there is no transaction cost, while it is 18 when there is
transaction cost.
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5. Extension to Minimum Cost Rebalancing

The algorithm developed in Section 3 can be extended to rebalancing situation. Let x° be
the portfolio at hand and assume that an investor wants to rebalance a portfolio in such a
way that the rate of return E[R(x)] is greater than some constant p and that the risk is
W[R(x))] is smaller than some constant w. Let X be an investable set. Then the problem
can be formulated as follows.

minimize c¢(x)

subject to E[R(x)] > p,
WIR@) < w, o)
e X,

where ¢(x) is the cost function.
Let us introduce a new set of variables

v=x—a°,

Then the problem (5.1) can be represented as follows

minimize »_ ¢;(v;)
=

n n
subject to Z TiV; > p— Z T‘jl‘?,
j=1 j=1

T
(H) >z < w,
t=1
n
2= fo 3 [(rje —rj)vj + (rze —rj)ag), t=1,---.T,
=1
——xggngaj-—x?, j=1--,n,

veV,

where V is the set act of feasible v’ s corresponding to X, and ¢;(v;) is the cost associated
with purchasing v; units (if v; > 0) and selling v; units (if v; < 0) of j th asset. Let us
assume again that c;(v;) is piecewise concave and that ¢;(0) = 0 for all j (Figure 10)

B, ° o, V;
J

Figure 10: Piecewise Concave Cost Function
We can construct a branch and boiund method similar to the one discussed in Section 3.
Let (Hy) be a subproblem

n
l minimize ch’uj
j=1

Hy) | =
(H) subject to (v, 2) € F,

|

l

I nk k c 1

| o] Svj <aj, =100,
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where

7=1
2= fi ) [(rje—rj)v;+ (rj — rj)x?], t=1,---,T,veV}.
j=1

We will approximate the function ¢;(v;) in the interval [, 5] by a piecewise-linear convex

function ¢*

7(v;) as depicted in Figure 11.

!
1
| |
! | I
[ 1 1
i | i
| | 1

0 k k k 0 k
% B % p

Figure 11: Piecewise Linear Underestimating Function
and define a relaxed subproblem
n
. . « k
i minimize Z ¢ (vy)
(Hk) . j=1
subject to (v, 2) € F,

/B‘fSU]S(Y‘l;a jzl,“'vnﬂ

which can be reduced to a linear programming problem by using a standard method.

6. Conclusion and Future Direction of Research

In this paper, we proposed a branch and bound method for solving a portfolio optimization
problem under concave transaction costs. It has been demonstrated that practical problems
with over 200 assets using upto 36 historical or scenario data can be successfully solved in
a practical amount of time. It is also expected that the problem with over one thousand
assets with 36 data can be solved by the same approach. This means that we can now
handle the transaction costs in a rigorous way as long as it is a concave function of the
amount of transaction. When the number of data is over 60 or when the transaction cost is
neither convex nor concave as depicted in Figure 1, the problem is much more difficult and
needs further research.

Another difficult problem associated with portfolio optimization is the handling of mini-
mal transaction unit constraint. When the amount of investment is large enough, rounding
the amount of transaction to the closest integer multiple of mininal transaction unit would
have negligible effects. However, when the amount of investment is relatively small, above
rounding method would not work. We are now extending the branch and bound method
proposed in this paper to the problem with concave transaction costs and minimal transac-
tion unit constraints, whose results will be reported subsequently.
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