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Abstract We will propose a branch and bound algorithm for solving, a portfolio optimization model under 
nonconvex transaction costs. It is well known that the unit transaction cost is larger when the amount of 
transaction is small while it remains stable up to a certain point and then increases due to illiquidity effects. 
Therefore, the transaction cost function is typically nonconvex. The existence of nonconvex transaction costs 
very much affects the optimal portfolio particularly when the amount of fund is small. However, the portfolio 
optimization problem under nonconvex transaction cost are largely set aside due to its computational 
difficulty. In fact, there are only a few studies which treated nonconvex costs in a rigorous manner. In 
this paper, we will propose a branch and bound algorithm for solving a mean-absolute deviation portfolio 
optimization model assuming that the cost function is concave. We will use a linear underestimating function 
for a concave cost function to calculate a good bound, and demonstrate that a fairly large scale problem 
can be solved in an efficient manner using the real stock data and transaction cost table in the Tokyo Stock 
Exchange. Finally, extension of our algorithm to rebalancing will be briefly touched upon. 

1. Introduction 
Practitioners are very much concerned about transaction costs since it has significant ef- 
fects on the investment strategy. In particular, when t,he amount of fund is relatively small, 
diversification of fund may incur an unacceptably large transaction costs. Unfortunately, 
however transaction costs are often ignored or treated in an ad-hoc manner because the 
precise treatment of transaction costs leads to a nonconvex minimization problem for which 
there exists no efficient method for calculating its exact optimal solution. a t  least until re- 
cently. As a result, there are very few serious works in this field . The only exception, t o  the 
authors knowledge, are the works by A. Perold [l31 and J .  Mulvey [l01 in which txansaction 
cost function is approximated by a piecewise linear convex function. However, this approach 
is not valid for t,he more important nonconvex transaction cost function. 

The primary purpose of this paper is to develop a computational scheme which can gen- 
erate an optimal solution of a mean- absolute deviation model under concave transaction 
costs. We will propose a branch and bound method by exploiting the special structure, 
namely the low rank nonconvex structure of this problem and show that t,his approach can 
calculate a globally optimal solution in an efficient manner. 

Figure 1 shows a typical form of the transaction cost c (%[ * )  as a funct,ion of the amount of 
transaction .X. As shown in this figure. the unit transaction cost is larger when ,r is small. 
while it giadually decreases as J increases. Therefore, the cost funct,ion ( . ( , L )  is concave up 
to certain point, say point A. When ,I: passes this point, the unit transaction cost becomes 
constant and hence ('(I-) increases linearly up to some point, say B. When the amount of 
transaction .X passes this point. the unit price of stock increases due t o  illicyiidity. namely 
due to the shortage of supply. Therefore, the function C ( J )  becomes convex bevonci point 
B. 
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Unfortunately, however we do not know in advance where the point B is located. Only 
a small amount of purchase may increase the unit cost significantly if many investors want 
to purchase the same stock. Also, the effect of a large amount of purchase may be canceled 
by a large amount of sale of some other investors so that  the unit price may remain stable. 

Figure 1 : Transaction Cost Function 

Therefore, we restrict our discussion to the situation where the amount of fund is within 
the range where we can ca lc~ la t~e  the cost function exactly, i.e., within the range where the 
cost is concave. 

In the next section, we will formulate the problem as a convex rnaximization problem. 
We assume that  the risk function is given by the absolute deviation of the rate of return 
instead of the standard deviation (or variance). 

The mean-absolute deviation (MAD) approach is proposed by one of the authors in [5] 
now widely used by practitioners to  solve a large scale portfolio optimization problem with 
more than 1000 assets because it can be reduced to a linear programming problem, instead 
of a quadratic programming problem in the case of mean-variance (MY) model [g]. In 
section 3, we will propose a branch and bound algorithm for solving a linearly constrained 
convex maximization problem by adapting the algorithm proposed by Phong et a1 [14]. We 
will show that the subproblem to be solved in the branch and bound method becomes a 
linear programming problem which can be solved very fast. Section 4 will be devoted to 
the results of numerical experiments of the algorithm proposed in Section 3 using real stock 
dat,a and real transaction cost data in the Tokyo Stock Exchange. We will show that our 
algorithm can in fact generate a (nearly) optimal solution in a very efficient manner. In 
Section 5, we will extend this algorithm to a more complicated rebalancing problem. 

2. Mean- Absolute Deviation Model with Transaction Costs 
Let there be n assets S, ( j  = 1, - , n) in the market and let R, be the random variable 
representing the rate of return of S, without transaction cost . We will assume that the 
vector of random variables {Rl .  - - - , Rn) is distributed over a finitely many set of points 
{(r i i .  - .  , r d ) ,  t = 1. . ,  T } and that the probability 

f t  = PMR, . - . - .  RJ = (ru.Â¥Â¥-.r t = l : - - . T .  (2.1) 
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is known. Then the expected rate of return rj without transaction cost of Sy is given by 

t=l 

Let X, be the proportion of fund to be allocated to S,. Then the expected rate of return of 
n 

the portfolio %=(xi ,  - . . ,  an) is given by rjxy. The actual expected rate of return under 
J=l 

transaction costs is therefore, given by 

where cj(-) is a concave transaction cost associated with stock Si. As in [5], we will employ 
the absolute deviation 

as the measure of risk. The mean-absolute deviation (MAD) efficient frontier under trans- 
action oust can be calculated by solving a following convex maximization problem. 

maximize f (X) E {rjx j  - cJ (X,)} 

j = l  
T n 

subject to X ft\ X(rf i  - rj)x,\ 5 W ,  

t=l  J=1 

5 aj = 1, 
J=1 
0 < x j  <_ a,, j = 1 , . - - , n .  

The MAD model (without transaction cost) was first proposed by one of the authors as 
an alternative to the standard mean-variance (MV) model [g]. I t  has been demonstrated 
in [5] that MAD model can generate an optimal portfolio much faster than the MV model 
since it can be reduced to a linear programming problem instead of quadratic programming 
problem. Also, it is shown in Konno et al.[6] that MAD model shares the same properties 
as the MV model including well known CAPM type relations. Further, it is proved by 
Ogryczak and Ruszczynski [l21 that  those portfolios on the MAD efficient frontier corre- 
sponds to efficient portfolios in terms of the second degree stochastic dominance. 

Let us now introduce an alternative representation of the problem (2.5) which is more 
suitable to construct a branch a n d  bound algorithm First let 11s introduce a set of nonneg- 
ative variables h, G, t = 1, . a , T satisfying the following conditions. 

Then we have t lie following represent at ion 
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Therefore, the problem (2.5) can be rewritten as follows. 
n 

maximize f (X) {rjxj - cj(xj)} 
J=l 

T 

subject to E(yt + zt) $ w 
t=l 

n 

yt - zt = ftx(rjt -r j )x j ,  t = l , - - -  l 57, 
J=1 

YtZt = 0, t = 1 , - - ,T ,  
n s> = l, 

j=l 
Yt > 01 zt > 01 t = 1 , - . - , T ,  

0 2 xj  < QJ, 7 = l , - - - , n .  

Theorem 2.1 : The complimentarity constraint ytzt = 0 , t = 1, , T can be eliminated 
from (2.7). 
Proof : Let (X;, m . . , x i ,  y',, . , y^, z; , <^) be an optimal solution of equation (2.7) 
without complementarity condition and let us assume that 9: zl > 0, t E I C {l, - - ,  T}. 
For t G 1, let 

Then (X;, . , xi,. yl, . - , yr, & . . - , fT) satisfies all the  constraint,^ of (2.7). Also it has tlhe 
same objective values as (X: . , X*, y{, , y:, & . ,z*r}. 
In view of the relation 

T T n  

we can eliminate (zl,  - . , W )  from (2.7) to obtain an alternat'ive representation, 
l n 1 maximize f (X)  X {rjxj - cj(xj)} 

l j=l 
r 

subject to X gt 5 ~ 1 1 2 ,  
t= 1 

n 
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3. A Branch and Bound Algorithm 
Let us describe a branch and bound algorithm for solving a linearly constrained convex 
maximization problem (2.8). Let X = (xi, - , .xn), y = ( y I ,  . - , yT) and let 

The problem (2.8) can be denoted as follows 
n 1 maximize /(X) = '> {r,xj - c, (x,)} 

j=l 

subject to (X, y) E F, 

where a = (ai, - - - , an).  Let (X*, y*) be an optimal solution of (3.2) and let f * = f (X*). 
Let us replace C&) by a linear underestimating function 6, , (q)  

and denote 

(/ .V - 

Figure 2: A Linear Underestimating Function 

and define a linear programming problem 

1 maximize go(x) = ( r , ,  - S,)% 
((20) 1 3=\ 

subject to (X, y) E F, 

Let us not,e tehat 

Let x0 be an optimal solution of (3.4). If 
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then ( x ~ , ~ ~ )  is an approximate optimal solution of (Po) with error less than E 

Theorem 3.1: 

g0(x0) ̂f* 2 fix0). 

Proof: It  follows from (3.5) that 

go(xO) = umx {go(x) 

2 max {/(X) 

The relation f *  > f(xO) follows from 

\(x,y)^F, 0 < x < 0 t }  = p. 

the fact that  xO is a feasible solution of (3.4). 
Let us consider the case when (3.6) does not hold. Let 

and let 

and define two subproblems 

(Pi) 

Let xl, x2 be, respectively an optimal solution of (Pi) and (Pz) .  Then cither X', or x2 is 
an optimal solution of (Po). Corresponding to the subproblem (Pi), let us define a linear 
function gi(x) underestimating /(X) as shown in Figure 3. 

maximize f (X) 
subject to (x, y) E F, 

X â‚¬X 

(P',) 

Figure 3: Bisection Scheme 

maximize f{x) 
subject to (X, y) E F, 

X â X',. 
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and define a relaxed linear programming problem 

If (Ql) is infeasible, then (Ql) can be fathomed. Otherwise, let 2 be an optimal solution 
of (Qi). If 

(Ql) 

then the problem has been solved with an approximate optimal solution a". 
Since g\ (X) > f (X ), V X â  Xi, we have 

maximize gl (X) 
subject to (x,y) E F, 

X â‚¬X 

Â¥̂ !{X1 > f W). 
Therefore, if 

then (Pi ) can be fathomed since f (X l) < f (xO). 
Algorithm (Branch and Bound Method) 

l0 P = {(PO)}, f = -m, k = 0. 
QÂ¡-0 a0 =a; X. = {X ( 3 O <  X < d}. 

2' If P = U}, then got,o 9'; Otherwise goto 3'. 
3' Choose a problem (Pk) E P : 

1 maximize /(X) = 2 {r,r:, - c,(ij)} 
j= 1 

subject to (X, y) <E F, 

p=p\{(J'k)}. 

4' Let c3zj) be a linear underestimating function of cLxy) over the 

interval j3: < x j  < 4, j = 1, . . , 7 ~  and define a linear programming problem 

11, 

k maximize gk (X) - {r jx , ,  - c^%)}  ,=.- 1 

subject t u  (X, g) E F, 
X 

If (Qk) is infeasible 
( 0 , s )  

then go to 2'. Oth(~rwise let xk bo an optirrial solution of 

If Igk(xk) - f{xk) \ > E tlieil goto 8'. Otherwise let A = f(xk). 

5' If fk < f then goto 7'; Otherwise goto 6'. 
6' Tf f = f lc;  2 = ii? and ~liniiiiate al l  the snhpi-oltleins (P;) for whirh 

.Qt( XL) 5 f .  
7 If flk (X') < / i lien gulo 2'. Ot,herwise gun) 8@. 
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k k  
8' Let cs (X:) - c: (X.) = max{cj (X:) - c,. (X,.) 1 j = 1, , n }, 

and define two subproblems : 

maximize f (X) 

subject to  (X, y )  E F, 
X E &+l. 

maximize f (X) 

subject to (X, y )  E F, 
X E &+2- 

P = P U k = k + 1 and goto 3'. 
where (Pl) represents the problem in P with the largest subscript. 
9' Stop : (X) is an approximate optimal solution of (Po)) 

Theorem 3.2 : X converges to  an E - optimal solution of (Po) as k -+ oo. 
Proof : See e.g. [7,15 ] 

The problem (Po) can, in principle be solved by this algorithm. To accelerate conver- 
gence, we may replace the bisection scheme by a so-called W - subdivision scheme [l51 in 
which the interval [p!, Q':] is divided into two sub intervals [p:, X!] and [ X:, a:] where X: is 
the S t h  component of the optimal solution xk of ( Q k )  as depicted in Figure 4. 

Figure 4: co - subdivision 

This subdivision scheme usually accelerate convergence, though it is not theoretically guar- 
anteed. An alternative scheme is to reduce the size of the problem by using the following 
theorem. 

Theorem 3.3: There exists an optimal solution xO of (Qo) ,  a t  most T+l components of 
which satisfy 0 < X: < o,. 
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Proof : Let X*, y* be an optimal solution of (Qo). Then X* is an optimal solution of the 
linear programming problem : 

n 

maximize go (X) = X (rj - dj)xj 
j=l 

n 

subject to ft - rj)xj 5 y;, t = 1, a m S ,  T ,  

By the fundamental theorem of linear programming, this problem has a basic optimal solu- 
tion. It is straightforward to see that any basic solution has at most T+l components with 
the property 0 < X, < a,. This theorem implies that at most T+l assets are subject to 
approximation error (Note that c, (X,} = if X, = 0 or X, = 0,). Also those assets with 
smaller fraction of investment are subject to relatively large transaction cost since the cost 
function is concave. Therefore, most of those assets with X; = 0 are expected to satisfy the 
pi~iperty .r* = (l0, where X* is t,lie oyt.iina1 sol~~t~ion of ( P d .  

This observation leads us to another approximation of the original problem (Po). Let us 
assume without, loss of g~neralit~y that the first J(<^ T + 1) compon~nt~s of xO are positive. 
We will apply the branch and bound algorithm to the reduced problem: 

maximize 

It is expected that the opt,imal 

(G) 

~olut~ion of (Pi )  is a good approximation of the optimal 

subject to 

solution X* of (Po). In fact, our experiments show that the relative difference of the optimal 
value of (Po) and (Pi) is usually no more than 1.5%. 

4. Result S of Numerical Simulation 
We tested the algorithm proposed in Section 3 using 10 sets of 36 monthly datja of 200 
stocks using t,he real transaction cost data. These stocks are chosen 
included in NIKKEI 225 Index. The program was coded in C++ and 
II workstation. 

Figure 5 and 6 show the average and the standard deviation of 
required to calculate an E - optimal solution where E = 1 0 5 .  Also 
first rule and W -  subdivision strategy throughout the test. 

from the sot of storks 
was tested on SPARC 

the computation time 
we employed breadth 
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I 36 months 

50 100 150 200 

Number of Assets 

200 assets 
l 

6 12 18 24 30 36 
Number of months 

Figure 5: CPU Time for Different n Figure6: CPU Time for Different T 
We see from these figures that the computation time increases almost linearly with re- 
sped t o  T and n .  Common observations in nonconvex minimization is a sharp increase of 
computation time with respect t o  the rank of nonconvexity, namely T in this case. This 
remarkable efficiency is partly due to the fact that linear underestimating function is a very 
good approximation to the concave cost function. Also. the breadth first search resulted in 
a good feasible solution in the earlier stage and many subproblems have been eliminated 
by bounding procedure. The average number of subproblems solved was 12. By improving 
the implementation, problems with over t = 60 and n = 1000 (without variable reduction) 
would be solved in a practical amount of time. 

Figure 7 shows the transaction cost where the amount of investment is 1 billion . 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 
X - propotion of investment 

Figure 7: Transact ion cost function 
Figure 8 shows the efficient frontier for different amount of fund. Also Figure 9 is t,he graph 
of the maximal expected rate of ret,urn with and without transaction costs. 
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L +Invest 1 billion 

- 9- Invest 5 billion 
-. .-pp- 

1.2 1.5 1.8 2.1 2.4 2.7 3 3.3 3.6 3.9 4.2 4.5 4.8 

Risk 

Figure 8: Efficient Frontier for 
Different Amount of Funds (a j  = 0.06) 

The dotted graph in Figure 8, represents the actual expected rate of return calculated by 
MAD model without transaction cost and then adjusted by the transaction cost for pur- 
chasing the portfolio is showed by the broken lines in Figure 9. We see from this figure that 
the exact treatment of transaction cost leads to much better results. 

0.9 

0.8 

0.7 * Â ¥  Sid. MAD model wiihouf T.C 

0.6 P r o p o s e d  MAD niodcl 

0.5 Sid. MAD model wifh T.C 

0.4 4 . ..............................................................................................7................ ..................................................................................... ! 
d 7 ,.a 1 .G 1.7 1.8 1.9 

Risk 

Figure 9: Efficient Frontiers for 
Standard and proposed (MAD) model 

The difference of the number of assets included in the optimal portfolio when n=200, and 
T=36, are between one to three. For example, when o, = 0.06. w = 1.5, the number of 
assets in the portfolio is 21 when there is no transaction cost, while it is 18 when there is 
transaction cost. 
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5.  Extension to Minimum Cost Rebalancing 
The algorithm developed in Section 3 can be extended to rebalancing situation. Let xO be 
the portfolio a t  hand and assume that an investor wants to rebalance a portfolio in such a 
way that the rate of return E[R(x)]  is greater than some constant p and that the risk is 
W[R(x)] is smaller than some constant W .  Let X be an investable set. Then the problem 
can be formulated as follows. 

minimize c(x) 
subject to E[R(x)]  > p, 

W[R(x)l -5 W ,  

X Â X, 

where c(x) is the cost function. 
Let us introduce a new set of variables 

Then the problem (5.1) can be represented as follows 

minimize X cj (vj) 
j=l 
n n 

where V is the set act of feasible U' S corresponding to X, and %(vi) is the cost associated 
with purchasing v, units (if v, > 0) and selling 71, units (if U, < 0) of j th  asset. Let us 
assume again that cj(uj) is piecewise concave and that cj(0) = 0 for all j (Figure 10) 

Figure 10: Piecewise Concave Cost Function 
WP can (aonstr i~r t  a branch and honnd tnethod similar t o  the  ono clisriissed in Section 3. 
Let (h) 1)e a subproblem 

1 r n i n i m i  E 
(*Vk) ! j=1 1 subject i,o ($0, z )  G F., 
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where 

We will approximate the function c_ ( v j )  in t,he interval [c$, ,h';] by a piecewise-linear convex 
function c%uy} as depicted in Figure 11. 

Figure 11: Piecewise Linear Underestimating Function 
and define a relaxed subproblem 

1 m i n i i e  E C*) 

j= 1 

subject to  ( v ,  z )  E F, 

which can be reduced to  a linear programming problem by using a standard met,hod. 

6. Conclusion and Future Direction of Research 
In this paper. we proposed a branch and bound met,hod for solving a portfolio optimization 
problem under concave transaction costs. It has been demonstrated that practical problems 
with over 200 assets using upto 36 historical or scenario data  can be successfully solved in 
a practical amount of time. It  is also expected that the problem with over one thousand 
assets with 36 data  can be solved by the same approach. This means that we can now 
handle the transaction costs in a rigorous way as long as it is a concave function of the 
amount of transaction. When the number of data  is over 60 or when the transaction cost is 
neither convex nor concave as depicted in Figure 1, the problem is much more difficult and 
needs further research. 

Another difficult problem associated with portfolio optimization is the handling of rriini- 
rnal transaction unit constraint. When the amount of investment is large enough, rounding 
the amount of transaction to the closest integer multiple of minimal transaction unit would 
have negligible effects. However, when the amount of investment is relatively small, above 
rounding method would not work. We are now extending the branch and bound method 
proposed in this paper to  the problem wit h concave transact ion costs and minirrial t ransac- 
tion unit constraints, whose results will be reported subsequently. 
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