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Abstract Suppose that there are two types Jo of m jobs and J\ of n jobs, which are processed by either 
one of two identical machines. The processing time of one job of class Jo or J\ is the random variable from 
the exponential distribution with parameter U or v ,  respectively. The true value of v is unknown, but it has 
the gamma distribution with parameters W and a as the prior distribution. Preemption is not allowed in 
this problem. The objective is to minimize the expected total flowtime. From the Bayesian point of view, 
the problem is formulated by the principle of optimality of dynamic programming and the optimal solutions 
are obtained for some special cases. 

1. Introduction 
Let us first review the classical scheduling problem with two types of jobs and two identical 
machines when the objective is to minimize the expected total flowtime. Suppose that there 
are m jobs of type 0 and n jobs of type 1, all of which are available at time 0. A job of type 
z (i = 0, l )  is simply called Ji job. Two identical machines are available for processing these 
jobs. To process a job, that job must be put on one of the machines (either of the two can 
do) for a random duration (processing time), after which it is complete. Jobs are processed 
consecutively starting at time M, so that as soon as a job is complete, another job is put 
on the machine that is freed. The processing time of Jo job or J1 job are exponentially 
distributed with known parameter U and unknown parameter v, respectively. The order 
in which putting m + n jobs on two machines determines a schedule. Given a schedule, 
flowtime is defined for each job as a time until that job has been completed. We wish to 
find a schedule that will minimize the expected total flowtime. In the case that U and v are 
known, it is well known (see, Pinedo and Weiss [7])  that processing Jl jobs first minimizes 
the expected total flowtimes if u > v  (order among the jobs of the same type is of course 
immaterial). Bruno, Downey and Frederickson [l] and Kampke [6] generalized this to allow 
more than two machines. 

The problem we consider here is a Bayesian version of the classical scheduling problem, 
in which U is known in advance but v is unknown and has a gamma distribution as its 
prior. We call this problem (m, n)-problem when there are m Jo-jobs and n Ji-jobs. To 
our knowledge, although the incomplete information cases have been studied for a single 
machine in several papers, no Bayesian problem with two machines has been studied so 
far. Gittins and Glazebrook [4] discussed a Bayesian single machine scheduling problem, 
in which the processing time of each job is a random variable with unknown parameter. 
Burnetas and Katehakis [2] considered the model of sequencing two types of jobs on a 
single machine. Hamada and Glazebrook [5] derived the method to calculate the critical 
value related with the value of index which described the optimal strategy. Rieder and 
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Weinhaupt [g] considered the stochastic scheduling problem with incomplete information 
and linear waiting costs. In these papers, only the single machine problems have been 
considered. 

In Section 2, the (m, n)-problem is formulated via dynamic programming. We analyze 
the (m, 1)-problem in Section 3 and the (l, n)-problem in Section 4. 

2. Formulation of the (m,n)-problem. 
Let X denote the processing time for Jo job and Y denote that for Jl job. X and Y are as- 
sumed to be independent and exponentially distributed random variables with parameters u 
and v respectively, that is, if we denote by f ( X )  and g(y) their densiy functions, respectively, 
then they are given by 

f(x)  = u e u x ,  X 2 0 

and 
-VY g(y) = we , Y 20. 

Each of the processing times of the same type is also assumed to be independent. One 
of the remarkable properties of exponential distribution is that min(X, Y) is exponentially 
distributed with parameter U + v. Thus, in particular 

1 
E[min(X, Y)] = -. 

u + v  
Another property used later is 

By scale transformation, U is assumed to be unity without loss of generality. Since v is 
assumed to be a random variable, we use Vinstead of v and a gamma prior with parameters 
W > 0 and a > 1, denoted byp(v\w,a), 

is assumed on V. Thus the density functions of X and Y are now respectively given by 

and 

For later use, define the followings: 
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and 

for k = 0,1,2,3, -. Then, some properties of these functions are given in the following 
lemma. 

Lemma 1 For k > 1 and a > 1, 
(i) Ak{w, a) is strictly increasing in W and Bk(w, a} is strictly decreasing in W. 

(ii) Ak(w,a) <, 1, and Bk(w, a )  <, 1, 
W 

(iii) Ak(w, a) 2 (-)', 
w + a  

(iv) A&, a) + &(W, a) = 1, 
/Â¥ 

(v) ] g(xIw, a ) e x d x  = 1 - Al(w, a), 

-X- (vii) l0--e G(xlw,a)dx= Al(w,a), 
O0w+x 

(viii) -g (x I~ ,a )e -~dx=  Al(w,a), 
a 

(ix) A ~ ( W  + X, a + l)g(xIw, a)e-%dx = Ak(w, a) - Ak+l(w, a), 

(X) 1 Ak(w + X, a)exG{x\w, a)dx = Ak+l(w, a}, 

Proof. (i) is easily derived by rewriting (2.5) and (2.6) as 

and 

respectively. (ii) is trivial from (2.5) and (2.6). Since the function h(z) = (1 -l- 2) -' is convex 
in 2, (iii) is derived from Jensen's inequality (see, for example, Ross [8]) 

E[^)] 2 h(E[Zl)> 

where E[Z]=a/w. Equations (iv) is immediate from (2.5) and (2.6). Since 
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(v) is derived from (2.6) and (iv). 

O0w+x- 
-G(x\w, a ) e x d x  = fn a - l  

Also, since 

(vi) is derived from (2.5). Since 

(vii) is derived as follows: 

(viii) is derived from 

and (ix) is immediate from the definitions of g (X\ W, a) and Ak (W, a). (X) is derived from 

= Ak+l (W, a) 

Also, (xi) is derived from the equation 

Preemption is not allowed, that is, every job is processed until it is completed. In this 
section, we formulate the (m, n)-problem via dynamic programming. The (m, n)-problem 
is sometimes referred to as the (m, n, W, a)-problem when the current prior is gamma with 
parameters W and a. Now, imagine a state where one of the machines is just freed, while the 
other machine is still processing Ji job. Then this state is described as (m, n, W, a, i) if there 
remain m Ja jobs and n Jl jobs yet to be processed and the distribution of V is gamma with 
parameters W and a. It is well known from the conjugate argument (see DeGroot 131) that 
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if a prior distribution of V is gamma with parameters W and a, then after having observed 
that the processing time of Jl job is y, the distribution undergoes Bayesian updating and 
becomes gamma with parameters W + y and a + 1 (Note that when we observe that job is 
not completed within y units of time, i.e., Y > y) then the posterior distribution becomes 
gamma with parameters w + y and a) .  

Assume that, in state (m, n, W, a, i ) ,  J j  job is assigned to the idle machine. Then, if i # j, 
the state makes transition into (m - 1, n, W + X, a, 1) or (m, n - 1, W + Y, a + 1 , O )  in time 

epending on whether X < Y or X > Y. Similarly, depending on i = j = 0 
or i = j = 1, the state makes transition into (m - l, n, W ,  a,  0) in time min(X, X') or 
into (m, n - 1, W + 2min(Y, V) )  a + 1 , l )  in time min(Y, V) ,  where X and X' (Y and Y') 
are independent and exponentially distributed random variables wit h parameter 1 (with 
parameter V). he expectations of min(X, l'), min(X, X'), and rnin(Y, Y') are derived as 
follows: 

and 

Observe that from (2.7) the expected total flowtime when m jobs of type 0 are processed 
consecutively by two machines, denoted by fm, is calculated as 

Similarly, from (2.8) the expected total flowtime when n jobs of type 1 are processed con- 
secutively by two machines, denoted by gn(w, a), is given by 

Let F (m, n, W, a) be the minimum expected total flowtime for the (m, n,  W, a)-problem. 
Also, let F(m,  n, W, a, i) be the minimum expected total (remaining) flowtime under an 
optimal schedule starting from state (m, n, W, a, i) . Then, we obviously have 
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Let further Fj(m, n, W, a, i) be the minimum expected total (remaining) flowtime when we 
assign J j  job to the idle machine in state (m, n, W, a, i) and continue optimally thereafter. 
Then the principle of optimality yields for m>, 2 - i, n '>_\ + i with i = 0,1, 

with the boundary conditions 

for n > 1 and 
F(m, l , w , a , l )  = F O ( m , l , w , a , l )  

for m >, 1, where 

for m >, 1 and n >, 2, 

for m >, 1 and n >, 1. Starting with the initial conditions 

W 
l + -  

a - l '  

for n > 1, we can solve in principle the equations (2.9)- (2.19) recursively to yield the optimal 
policy and the optimal value F (m, n,  W, a) .  

3. (m,l)-Expected Total Flowtime Problem. 
In this section, the (m, l)-problem is considered and in this case, as to observe the processing 
time of a job of type 1 does not influence the decision to reduce the total flowtime for the 
jobs to be processed after that job. Therefore, a schedule is to determine when to start Jl 
job. 
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Theorem 1 For m > 2, W > 0 and a > 1, 

and 

W 
F ( m ,  l , w ,  a , 0 )  = min +- - i  + l ) A i ( w , a )  - ( k  - 2)  

l<fe<m 

(3.2) 

Proof. From (2.12) and (2.16) 

Since F (m, 0 ,  W + X, a + 1,O) = fm = (m2 + m + 2 ) / 4  and (v) of Lemma 1, 

By using this equation and (2.17)) 

which means (3.1) is true for n = 2. Assume that 

holds. Then 
m 2 + m + 2  m 2 - 3 m - 2  

F ( m ,  l ,  W ,  a, 1)  = 
4 4 A1 ( W ,  a )  
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Therefore, (3.1) holds for n > 2. Also, since 

and 
^'(m, l,w,a,O) = F(m, l ,w , a ,  l), 

F (m, 1, W, a, 0) is rewritten as follows: 

For m = 2, 

Therefore, (3.2) is true for m = 2. Assume that 

(m - l)2 + 3(m - 1) - 2 W 
F(m- l , l ,w ,a ,O)  = min [ 

4 
+- 

l<k<m-l a -1  

- i +  l)A,(w,a) - ( k  

holds for m > 3. Then 

m + l  (m - + 3(m - 1) - 2 W 
= min - 

4 
+- 

l<k<m-l { 2 + - [  a - l  

m2+3m-2  W 
1 k-1 

= min { min [ 
l ~ f c < ~ - l  4 + - + - { ~ ( k - i + l ) ~ i ( w , a ) - ( t - 2 )  a - l  2 iFl 
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This completes the proof. D 

for k > 1. Then, from (3.2), the optimal schedule is one that minimizes Rk(w, a). Let ,Sk, 
1 <: k < m, denote a schedule that starts processing Jl job just after m - k Jo jobs have 
been completed. Note that & (Sl), corresponds to the schedule that starts Jl job initially 
(finally). 

Lemma 2 For k >, 2 and a > 1, Rk(w, a) is strictly increasing in W. 

Proof. This is immediate from (3.3) and (i) of Lemma 1.0 

Lemma 3 IfAi(w, a) > 112, then 

min R k ( w 7 a ) = R l ( w 7 a ) = 1  
l s k < m  

for m > 2, i e., Sl is optimal. 

Proof. Since Rl(w, a) = 1, it suffices to show that Rk(w, a) > 1 for k > 1 when AI (W, a) > 
1/2. To prove this, we use Jensen's inequality which states that if p is a convex function, 
then for any random variable X, 

provided the expectations exist. Take 

and 

then the inequality (3.4) is equivalent to 

Applying (3.5) to (3.3) with Ai(w,a) >, 1/2 yields, for k >, 2 

which completes the proof. D 

emma 4 F o r k  2 2 , w  > 0 and a > 1, 
(i) Rk(w, a) - Rk-l(w, a) = Ai(w, a) + At-~(w, a) - 1, 
(ii) Rk(w, a) - Rk_^(w7 a) is strictly increasing in W, 

(iii) the following equation of W has a unique positive root rk (a) and Rk (W, a) < Rk-1 (W, a) 
i f  and only i f  W < ̂ (a): 

&(W, a) - R ~ - ~ ( W ,  a) = 0. (3.6) 
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Proof. From the definition of Rk (W, a), 

Since AÃˆ(w a) is strictly incresing 
strictly increasing in W. Since 

lim Ai (W, a) = 
w+O+ 

and 

lim Ai(w, a) = 
w+m 

i= 1 

in W ((i) of Lemma l), Rk{w , a)  - Rk-1 (W, a) is also 

we can derive from (3.7) that 

lim {Rk{w, a) - Rk_1(w, a)} = -l 
w->o+ 

and 
lim {&(W, a) - Rk-1(w, a)} > 0. 
w+m 

This completes the proof. D 

From (3.6) and (3.7), rfc (a) is the unique root of the following equation of W: 

Although the optimal strategy is difficult to obtain analitically, we can compute the val- 
ues of r&) numerically by using the equation (3.8). After the calculation of rk (a) for 
k = 2.3, , 2 0  and a = 2,3, -, 30, we found that the inequality rk-1(a) > rk(a) holds for 
3 < k <, 20 and2 < a <, 30. Thevalues of rJa) fork = 2 , 3 , - - - , l 2  and a = 2 , 3 , Â ¥ - , 3  are 
listed in Table 1. 

Claim 1 If r2(a) > *) > > rn(a) holds for some n >, 2 and a > 1, then for 
2 <: m < n and W > 0, the optimal strategy for (m, l, W, a)-problem is described as follows: 
(i) Ifr2 (a) < W, then assign Jl immediately after (m- 1) jobs of type Jo have been completed. 
(ii) If ~ - k + ~ ( a )  < W < r k  (a) (2 < k < m - l), then assign Jl immediately after (m - k) jobs 
of type Jo have been completed. 
(iii) If 0 < W < rm(a), then assign Jl immediately. 

4. (l, n)-Expected Total Flowtime Problem. 
Since learning mechanism is included in the case of ( l ,  n)-problem if n > 2, the problem is 
more difficult than the single machine stochastic scheduling problem. The following theorem 
shows how F(1, n, W, a, 0) is related to {Ai(w, a)}:, or {Bdw, a)}&. 
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Table 1: rn(a} f o r  n = 2 , 3 , - - - , l 2  and a = 2 , 3 , - - . , 3 0  

Theorem 2 F o r n > 2 , w > O a n d a > l ,  

where 

f o r n - 1 > k > 1 .  

Proof. Since F ( l , 2 ,  W, Q) = 1 + 2w/(a - 1) + Al(w, a) is derived from (2.11), (2.16), 
(2.17), (2.19) and Lemma 1, (4.1) is trivial by using 0 3 1  = 1 for n = 2. For n > 3, suppose 
that (4.1) is true for the ( l ,  n - 1, W, a)-problem. That is, 

(n - + (n - 1) + 2 W n-2 
^(l, n - l, W, a, 0) = 1 + 

4 
- + y an-i,iA.i(w, 0). 
a - l  ,j=l 
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For the (1, n, W, a)-problem, 

Using (vi), (v), (viii) and (ix) of Lemma 1, 

F( l ,n ,w,a ,O)  = (n + l)Ai(w,a) + 
a - l  

Since 

and 
an,n-l = -an-1,n-2 

for n > 3 and 
an,i an-lli - an-1.i-l 

for n - 2 > i > 2 with n > 4, (4.1) is derived. From (xi) of Lemma 1, 
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n-l r 1 1 n-1 

Therefore, (4.2) is derived from (4.1), which completes the proof. D 

Theorem 3 For W > 0 and a > 1, 

5 w  2w 
F ( l ,  2, W, a, l )  = rnin 1 + -- { 2 a - l  

2 + - -  
a -1  

and 
F ( l , n , w , a ,  l )  = min F 1 7 n 7 w 7 a 7  l ) ,  ~ l ( l , n ,  w , a ,  l )}  { O( 

fo r  n > 3, where 

and 

Proof. (4.3) was given in Section 2. Also, (4.4) is easily derived from (2.10), (2.15), (2.14), 

w + x  
F ( l , l , w + x , a +  l , 0 )  = l +  - 

a 

and 

(4.5) is the same as (2.10). (4.6) is from (2.15) and (4.2). (4.7) is the immediate consequence 
of (2.14). D 
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5. Conclusion 
In this paper, we considered a Bayesian version of the sequencing problem, in which job is 
assigned to the machine which becomes idle. Two types, Jo and Jh of jobs are considered 
and the processing times of jobs of each type is assumed to be distributed in the exponential 
distribution with known parameter U and unknown parameter v ,  respectively. The decision 
of assigning jobs is made one by one dynamically after observing the processing times of 
jobs which have been completed up to the current time. The objective of the problem is 
to minimize the expected total flowtime. This problem is formulated by the principle of 
optimality of dynamic programming and the recursive formula are obtained. The explicit 
formula of the objective function is derived in both the case of m Jo jobs and one Jl job 
and the case of one Jo job and n Jl jobs. 
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