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Abstract In a controlled Markov set-chain with a discount factor Q ,  we consider the case of Q = 1 as 
a limiting case of j3 < 1 and find a non-discounted optimal policy which maximizes Abel-sum of rewards 
in time over all stationary policies under some partial order. We analyze the behavior of discounted total 
rewards as discount factor Q approaches 1 under regularity conditions, and prove the existence of a non- 
discounted optimal policy, applying the Kakutani's fixed point theorem and policy improvement method. 
As a numerical example the Toymaker's problem is considered. 

1. Introduction 
Discrete-time stochastic processes, known as Markov decision processes (MDPs), have 

been well studied (cf. [l] [2] [l 01 [l l] [l 61). In those mathematical models the required data is 
assumed to be exact while in practice this data is estimated. Thus, the mathematical model 
of MDPs can only be viewed as approximations. 

So, it may be useful that  we ameliorate the model of MDPs so as to  be more "robust" than 
the traditional MDPs in the sense that it is reasonably efficient in rough approximations. A 
more realistic way to  consider such a problem is to use intervals which contain the required 
data. Hartfiel [S] [6] [7][8] [g] applied this interval technique to Markov chains and studied 
Markov set-chains, where the transition matrix is allowed to change wit,h time in a given 
interval. 

As a model which is robust for rough approximation of the transition matrix in MDPs, 
Kurano et a1 [l41 has introduced a decision model, called a controlled Markov set-chain, 
based on Markov set-ch ains developed by Hart fie1 (cf. [g]), and discussed the optimization 
of the discounted expected rewards under some partial order. However, the case that the 
discount factor Q approaches 1 was not treated there. The objective of this paper is to find a 
policy, called non-discounted optimal, which maximizes Abel-sum of rewards in time under 
some partial order. We analyze the behavior of discounted total rewards as j3 approaches 1 
under regularity conditions for a Markov set-chain induced by a policy. A non-discounted 
optimal stationary policy is shown to exist by constructive proofs. Also, the  Toymaker's 

oward [l l] is numerically considered to explain how the theoretical results are 

We notice Takahashi's [19][20] work. He has introduced weak D-Markov chains to  con- 
sider bounds for state probabilities of aggregated chains of large scale Markov chains, and 
discussed its applicability to  tandem queueing networks. The idea of weak D-Markov chains 
is essentially same as that of a series of papers by Hartfiel, and their studies have been done 
independently. The results of Takahashi [19][20] are closely related to ours, which will be 
clear in the sequel. 
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Controlled Markov Set-chains 

In the remainder of this section we shall give some notation referring to the work on 
Markov set-chains and interval arithmetic [l51 and formulate a controlled Markov set-chain 
which will be examined in the sequel. 

We andopt the notation in [8] [l41 [15]. Let R, Rn and P be the sets of real numbers, 
real n-dimensional column vectors a,nd real n X m matrices, respectively. We shall identify 
n X 1 matrices with vectors and 1 X 1 matrices with real numbers, so that R = Rlxl and 
R" = Rnx l. Also, we denote by R+, R D n d  R^"' the subsets of entrywise non-negative 
elements in R, R'1 and respectively. 

We equip R '̂" with the componentwise relations 2, <, >, > . For any A = (g; ; ) ,  A = 

( a )  in R',̂ "'' with A <: A, we define the set of stochastic matrices, (A, A), by 

(A,A) = { A  1 A = (a,;) is an. n X m stochastic matrix with A < A 5 A}. 

Let 
Mn := {A = &A) 1 # @,A A and A,A 6 R y } .  

The product of A and B E Mn is defined by 

AB = { A B \ A e  A,B  ̂B}. 

For any sequence {Ai}% with G Mn (t > l), we define the multiproduct inductively by 

Denote by C{R+) the set of all bounded and closed intervals in R+. Let m+)"' be the 
set of all n-dimensional column vectors whose elements are in C(R+), i.e., 

C(R+ln = {D = (Di,  D2,. . . , Dn)'\Di â C(R+) (1 <, i < n)}. 

where d' denotes the transpose of a vector d. 
The following arithmetics are used in Section 2. For D = (Dl,  -D2,.. , Dn)', E = 

(El, E27 .. - 9  En)' â C(fi+)", A R+nd A E R+, L) + E = { d  + e 1 d D, e 6 E}, \D = 
{ \ d l d ~ D } a n d h + D = { h + d l d ~ D } .  

- 
If D = ([dl, dl], . . . , [(;Ã£,dn])' D will be denoted by D = [d,3], where d = (cll, . . . 

d = ( d l  ,..., dn)'and [d,3]={d \ d~ 13';,d<d<d}. 
For any D = (Dl, Di, .  . . , Dn)' E C(R+)'" and subset G of ~ 1 , " ~  the product of G and 

D is defined as 

The following results are used in the sequel. 
Lemma 1.1 ([5][14]) 

(I)  Any A E M is a polyhedral convex set in the vector space Rnxn . 

(ii) For any compact convex subset G C R y n  and D = (Dl,  D2 , .  . . , Dn)' E C{R+)", it 
holds GD 6 C(R+). 

We will give a partial order >, > on C(R+) by the definition: For [c1, c2], [dl , d2] 6 C(R+), 

[cl,c2]>[dl,d2] if c l > d l ,  c22d2 ,  and 
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For v = (vi? v2,. . . ) vn)' and W = (,wl, W Z , . .  . ,W.,;)' E we write 

v > w  if v > w  and v # w .  

Define a metric A on C(R+Y by 

( v ,  W) = rgax ZES 5(vi, W^ 

for v = (vi, v2,. . . , vra)', W = (wi, ~ 2 , .  . . ,tun)' C C(R+)"', where 5 is the HausdorfE metric 
on m+.) and given by 

&([a, b], [c, 4) := \ a  - cl V \ b  - d\ for [a, b], [c, d] E C(A+), 

where x V y = max{x, y}. Obviously, A) is a complete metric space (for example, 
[2] [13]). A controlled Markov set-chain consists of four objects; S, A, q q, r, where S = 
{1,2, . . . , n }  and A = { l ,2 , .  . . ,k} are finite sets and for each ( i , a )  E 5; A, q = q( - \<a)  E 

Byn,  ij = ij(,li,a) E Ry" with q 5 ij and (q,q) - # 0 and r = r ( i , a )  a function on S x A 
with r > 0. Note that A is used a s  a set here, different from the above. We interpret S as 
the set of states of some system, and A as the set of actions available at each state. 

When the system is in state i E S and we take action U 6 A, we move to a new state 
j E S selected according to the probability distribution on S, q(- \ i ,  a), and we receive a 
return r ( i ,  a) ,  where we know only that q(- \i, a)  is arbitrarily chosen from (q(- - \ i ,  a),  q{- \ i ,  a)).  
This process is then repeated from the new state 7 .  

Denote by F the set of functions from S' to A. 
A policy TT is a sequence (f i ,  f 2 , .  . .) of functions with f t  E F, ( t  1). Let I1 denote the 

class of policies. We denote by f m  the policy (hi ,  h2 , .  . .) with = f for all t > 1 and some 
f E F. Such a policy is called stationary, denoted simply by f ,  and the set of stationary 
policies is denoted by Tip- 

We associate wit,h each / â F the n-dimensional column vector r (  f )  ? R: whose 
ith element is r ( i , / ( i ) )  and the set of stochastic matrices Q ( / )  := (Q(f) ,Q(f))  - E Mn, 
where the ( i , j }  elements of v Q(f)  and Q(/ )  are - q(j\i, f (i)) and q(j\i, f (i)),  respectively, and 
(Q ( f ') , Q( f )) is as defined already. 

For any TT = ('fh.. .) E 11, and discount factor /3 (0 < /3 < 1) , let 

We observe, for example, that 

so that by Lemma l.l(ii) <figT(7r) E C(R+)" for all T > 1. 
Also, it is shown in [l41 that {40,T(7r)}Ei is a Cauchy sequence with respect to A, so 

that the set of discounted expect,ed total rewards from TT in the infinite future can be defined 

by 
<^(TT) := lim ( 7 r ) .  

T-5-m 
(1 -21 
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Since +P(v) E C(R+)", let denote 4P(7r) by 

In general, (j>P(7r) is unbounded if (3 -+ 1 ,  so we will treat this case using Abel-sum of 
rewads in time. Let 

(j>( f )  := lim inf (l - W p ( f ) .  
p+1- 1 . 3 )  

where, for a sequence {&} C C(I<+)", 

and S+, D)  = inf &(X,  g ) ,  & is a metric in Rn. Since </)(/) E C(R+)"', 4(f) is written as 
Yâ‚ 

W )  = @(.f &.f)l. 
Definition A policy f* G Hp is called non-discounted optimal i f  there does not exist 
f E IIF such that  4(f*) < 4(f) .  

In the above definition, we confine ourselves to the stationary policies, which simplifies 
our discussion in the sequel. 

In Section 2, a regurality condition is given for transition matrices, and several results for 
(3 < 1 are cited from [14]. In Section 3, the asymptotic behavior of <p0{f) as /3 approaches 1 
is obtained, by which the existence of a, non-discounted optimal stationary policy is proved 
in Section 4. 

2. Preliminaries 
Henceforth, the following assumption will remain operative. 

Assumption A For any f G F ,  each Q E Q(f) is primitive i.e., Q' > 0 for some t > 1. 
Obviously, if for any f E F - Q{ f )  is primitive as a non-negative matrix (cf.[17]), Assump- 

tion A holds. 
The following facts on Markov matrices are well-known (cf.[3] [12]). 

Lemma  2.1 For any f E F ,  let Q be any matrix in  Q( f ) .  

(i) The sequence (I + Q + - m - + Qt)/(t + 1) converges as t -+ oo to  a stochastic matrix 
Q* with QQ* = Q*, Q* > 0 and ra,nk(Q*) = 1. 

(ii) The stochastic matrix Q* sa,tisfying QQ* = Q* and rank(Q*) = 1 exists uniquely. 

(iii) I - (Q - Q*) is nonsingular, and 

where I is the identity matrix, ij = (1/n)e1Q*r(f} and h = ((I - Q + Q*)-1 - Q*) r ( f )  
and e = (1, 1 , .  . . , l)'. 
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Associated with each f E F and /? G ( 0 , l )  is a corresponding operator Lu{ f ) ,  mapping 
C(R+)lZ into C(R+ln, defined as follows. For v E C(&+)", 

Note that from Lemma 1 .l, Lp{ f )v E C(R+)" for each v E C(R+)". Putting v = [E, c] with 
v < E, g,Z E R I 7  (2.2) can be written as - 

where .& and Lp are operators, mapping R', into R h  defined by : 

- 
Lp(f)v = r ( f )  + /? max Qv. 

Qâ‚¬<2( 

and mill (rnax) represents componentwise minimization (maximization) 
The following results are given in Kurano, et a1 [14]. 

Lemma  2.2 ([14]) Forany f E F ,  wehave: 

(i) Both &(f} and L g ( . f )  are contractions with modulus j3 and 4 ( f )  and &(f) are 
-13 

unique fixed points of &(l) and LP( f ), respectively, where 4@( 5)  = [$ (f), $P (f )l. 
-P 

(ii) F o r a n y h ?  R+, <t> ( f ) =  lim.Lg(f)'h and $,@(f)= limLfi(f)th. 
-P t-+m t-+m 

3. AsymptoticPropertiesof4^{f) 
In this section we study the asymptotic behavior of $bp( f )  as /? -+ 1 under Assumption 

A. To this end, for each f E F we consider the following interval equation 

where ip = [i/ie,$e], h = [&E] E C(R)Â¡ + , E R , A ,  ?! E R" with - $J < $, h. < h. 
~bviously, (3.1) can be rewritten by 

min Qh_ = t/le +h. 
r ( f )  + Qâ‚¬ - 

where $J , $'E R ,  h ,  h E R" with $J <^, h< h. (3.4) 

Takahashi ([19][20]) has showed that upper or lower bounds of the average rewards for 
weak D-Markov chains satisfy the equations (3.2) to (3.4) and can be calculated with the 
Howard's policy improvement ([Ill).  Also, the existence and uniqueness of a solution of the 
equations (3,2) to (3,4) can be proved by a slight modification of the proofs of Theorem 2.4 
in Bat her [l 1. 

However, to make the paper self-contained we give here another proof of these results 
which is done by applying the Kakul,ani's fixed point theorem and policy improvement. 

For simplicity of the notation, let, for any d E R"' and f E F, 
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and 

The following fact can be easily proved by applying Theorem 1.2.2. in [4]. 
Lemma 3.1 Let {dt}El C Rn be such that dt converges as t -+ oo to  d .  Then, it holds 
that 

lini inf Q{f\ dt) C Q( f ,  d) and 
t+m - 

lini inf a( f ,  dt) C Q( f ,  d) for all f E F. 
t+m 

Proof. For each i (1 < i < n) ,  f E F and d G Rn, let 

n 

where q~ is the (i, .?')element of Q. Then Q( f ,  d) = 0 Q( f, d)i. Also, for any {&'}gl such 
i= 1 

that dt -+ d as t -+ oo , from. Theorem 1.2.2. in [4] , liminfQ(f, dt),: C Q(f, d\. 
t+m - 

So we get that 
1% 

lim&f Q(/, dt) C f"1 lim inf Q( f ,  dt), 
t+m - 

i= 1 
n 

which completes the pr0of.D 
Theorem 3.1 For any f E F ,  the interval equation (3.1) determines $ uniquely and h u p  
to  an additive constant [cle, c2e] with cl, c2 E R (cl < 04. 
Proof. Let h: Q(f)  -+ Rn be defined by 

1 
where Q* = l i rn - Q'. 

r+mT ,o 
By Lemma 2.1 we observe that h is continuous. 
Let A(Q(f))  denote the set of all compact and convex subsets of Q( f ) .  Then, noting 

Q(f,d) E A(Q(f)) for d Rn, from Lemma 3.1 the map Q(f,h(-))  : Q(f) -+ A(Q[f}) is - - 
upper semicontinuous. 

Thus, applying Kakutani's fixed point theorem (cf.[18],p.l29), there exists - Q E Q(f) 
such that Q E Q( f ,h(Q)),  which implies from Lemma 2.1 that h_ := &Q) and i / }  := 

- - 
( l / n ) e ' ~ * r m  is a solution of (3.2). 

Forany Q e Q(/), we have 

1 T-l 

Since QQ* = Q* for Q* = lim - Q', (3.5) derives tha,t 
T̂  '=0 
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Also, for - Q C Q( f ,  h), (3.2) implies - $e = - Q*r(f).  

Thus, letting Q'($) = 

which shows the uniqueness of $ in (3.2). 
Let A' be another solution of  (3.2). Now, we will prove that Q( f ,h )  = Q(f,hl).  To this 

end, let assume that Q( f , h )  # Q(f ,h l )  and that there exists Q ~ x ( f , & ' )  with Q 6 Q(f,h). 
Then, by the definition., we have 

where for X, y ? Rn, x>y means X; > yt (1 < i <: n )  and x # y. 
# 

By multiplying both sides of (3.6) by Q*? we get from Q* > 0 that +e = Q*r(f)  and 
i/'e<Q*r(f), which leads to a contradiction. Thus, we get Q(f, h) = g(/,&'). 
- # 

From (3.7) we get that Q(& - //) = h - //, so that, by induction, we can prove that 

Qt (h-  h-') = h- h' for all t 2 1, 

which leads that 
Q*@-/L) =&h; 

for Q* = lim 2- V Q'. 
^ T t=o 

We note that each low vector of Q* is identical under Assumption A.  Therefore, (3.8) 
implies that each clement of h - h' is identical, as required - -  for a solution (V:, - h} of (3.2). 

Similarly we can prove the assertion for a solution ($,h) of (3.3). This completes the 
proof. - 

Since the unique solutions $, + of (3.2) and (3.3) are depending on f E F ,  we will 
denote them respectively by ih[f} and $( f ). 

The following theorem is concerned with the asymptotic properties of (^g(f) as {3 + 1 .  
Theo rem 3.2 For any f E F, there exists 01, 0 2 ,  c' c; E R (cl < c', c2 < c?>) such that 

W) W) [(- W) + c,) e ,  (%) e] (3.9) 
[ ( ^ + , W Ã ‘ Ã ‘ Ã ‘ + c 2  1 - 3  C W I C  ; p  1 - P  

where [a, b] = 0 i f  a > b. - - - 
Proof.  For any f C F', let h _ =  (hi,/12 , . . . ,  and /i= (h i ,h2 , .  . . , h n )  be m y  solution of 
(3.2)-(3.4). We will prove by induction that,  for any ,B (0 < 0 < l), 
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We have: 

inin Qh_, for the definition of ( f ) W)h = r ( f )  + PQ&( f )  

W ) e + h + ( P -  - 1) min Qh, by ( 3 4 ,  
Qâ‚¬Q( 

which implies that (3.10) holds for t = 1. 
Now, we assume that (3.10) holds for t .  Then, 

by the hypothesis of the induction. This leads to the inequality of the right hand in (3.10) 
for t +  1. 

Similarly we can prove the inequality of the left hand in (3.1 0) for t + 1. As t -+ oo in 
(3.10)) we get from Lemma 2.2 (ii) that 

Similarly as the above, we get 

Letting 
cl = min& - max,/;:, , c' = -cl, 

- 
c2 = minihi -maxihi, c = -c2, 

by (3.11) and (3.12), (3.9) follows, as required.0 
Corollary 3.1 For any  f E .F, it holds that 

;/>(f)e= rnin Q*r(f)  and V>(f)e= rn.ax Q*r( j ) .  - Q*â‚¬Q*( Q*â‚¬Q*( 

Proof. (i) follows from Theorem 3.2. Also, the proof of (ii) is appearing in the proof of 
Theorem 3.1. 

4. Non-discounted Optimal Policies 
In this section, we give the existence theorem of a non-discounted optimal policy under 

Assumption A. 
Let q( i ,a)  := (q(-\i,a),q(-\i,a)) for each i E S and a G A. For each i E S and f G F, 

denote by G(i, f )  the set of a E A for which 
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where $( f )  and A( f )  = (A.( . . ,A(  f ) n )  is a solution of (3.2). 
L e t 7  E F be such that  g(!') G G(i ,  f )  for any i with G(z, f )  # 0 a,nd = f (i) for any 

i with G{i, f )  = 0. Then, we have the following. 
Lemma 4.1 For any f with G(i,  f )  # 0 for some i ? S ,  $(f) < $(g). - 
Proof. It holds from the definition that  for any Q E ~ ( 3 ,  

By multiplying both sides of (4.1) by Q*, we get from Q* > 0 that - $(f)e < Q*r(g)7 
# 

which implies by Corollary 3.1 (ii) that $'(/) < - {̂g\ as required. D 

The following lemma is proved from The idea of policy improvement (cf.[ll]). 
Lemma 4.2 The  left-side optimality equations (4.2) below determine - $* uniquely and 
h 6 -Rn up t o  an addtive constant. - 

Proof. Let fl  E F.  If W ,  f i )  = 0 for all ? S, ($(fi),b(fi)) is a solution of (4-.2). If 
G(i ,  /l) # 0 for some i E S, we define f; E F by f;(i)% G(i ,  f l)  for any i with G(!, fl) # 0 
and /2(i) = f l ( i )  for any i with G( i ,  f i )  = 0. Then, from Lemma 4.1, i/)(fl) < - Mf,). If 
G(< f 2 )  = 0 for all i â S, ($(f2),h(f;)) is a solution of (4.2). If G(i, f 2 )  #0 for some i 6 S, 
we define f3 E F by the same way as we define fa  from fl. Then, it holds $( f 2 )  < ̂ { f3). 

Repeating this operation, we rea,ches the case that G(< f k )  = 0 for a l l i  E S (k 2 3). 
Obviously ($(,fk), h( fk))  becomes a solution of (4.2). 

Also, thFuniqueness of (4.2) follows from Theorem 3.1.0 
Let, for each i (1 < i 5 nn}, 

For ea,ch i E S and f E F with f ( i )  6 Ai for all i E S, denote by G(i ,  f )  the set of 
a E A; for which 

n 

- 
where M f }  and K(f )  = (/>(/)l,. . . , h ( / ) n )  is a solution of (3.3). 

Using G(i, f )  instead of G( i ,  f )  and applying the same way as the proof of Lemma 4.2, 
we can prove the following. 
Lemma 4.3 The  right-side optimality equations (4.3) below determine uniquely and 
- 
h E Rn up t o  an addtive constant. 

Let, for each i (1 <  ̂ i <  ̂ n},  
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Then we ha,ve the following Theorem. 
Theorem 4.1 Let f * be any policy with f *(g E Apor  all i 6 S. Then f * is non-discounted 
optimal and 4>( f *) = [+*e, q e ] .  
Proof. For any f E F with f ( i )  E A, (1 < i 2 n) ,  we get, from (4.2), that 

$l* + h=r(f) + min Qh. - 
QEQU] 

By Theorem 3.1, vf = +( f ). Also, applying Theorem 3.1 again, we can assume h = Kf). 
Let g E F be anypolicy. Then, from (4.2) it holds 

1 T-l 

This inequality leads to - +(f)e > Q*r(g) for Q* = lim - Q'. 
T-4- T 

k0 

Thus, from Corollary 3.1, we have +( f )  > - +(g). The above shows that 

Now, let f E F be such that f (i) $ A; for some i E S. Then, we have, from (4.2), 

T-l 

so that, noting Q** > 0 with. Q** = lirn -E Q' weget - +*e > Q**r(f). Thus, 
T t=o # 

+ * e >  min Qr(f)=Â¥ij>(f)e - # Qâ‚¬Q*(  

which implies that (4.5) does not hold for this f. 
Here, we can summarize that f ? F satisfies (4.5) if and only if f (i) E A, for all i G S. 
For any f *  E F which f*(i) E 4 for all i E S, repeating the same discussion as (4.4),(4.5) 

obtains that 0 = M f * )  and v>( f )  < ?Â¥(/* for all f E F with f (i) E A, ( i  E S). This shows 
tha,t f * is non-discounted optimal, which completes the proof. 
Remark  Theorem 3.1 provides bounds on the possible behavior of the decision process 
resulting from interval estimate, which can also be used for best/worst scenarios of the 
decision process. 

It should be noted that our results do not give bounds for the accuracy of approximate 
Markov chains (cf. [21] [22]). 

Here, as a numerical example we shall solve a Markov set-chain version of the Toymaker's 
problem dealt with in Howard [Ill,  whose data is presented in Table 1 with S = {l, 21  and 
A = {l, 2}. 

The return r(i,  a ,  j )  in Table 1 is associated with the transition from state i to state j 
under action a ,  which does not affect our theoretical results with a slight modification. 
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The interval of 
State Alternative tra,nsition Rewards 

probability 
i U q(Il2, U )  q(Zli, 4 7 - 6 7  a?  1) rG, a ,  2) 

l(Successful toy) l(No advertising) [0.3,0.5] [0.5,0.7] 9 3 
2(Advertising) [0.:5,0.8] [0.3, Oa5] 4 4 

2(Unsuccessful toy) l (No research) [03?  0.41 [Oa5, 0.71 3 -7 
2 (Research) [0.6? OS?] [0.3,0.5] 1 -19 

Then, by checking up extreme points of the corresponding polyhedral convex set (cf.(i) 
of Lemma l .  l ) ,  equation (4.2) with - $* and = (hl,  b2)' is given as follows: 

min{O.3/z1 + o.7b2 - 4, o.4/L1 + 0.6b2 - 3) 
G* + b2 = max - 

min{O.6b1 + - 7> 0.7/LL + o.3/z2 - 51, 

After a si~nple calculation7 the solution of the above with /zl = 0 becomes that - $* = -1 
and h = (0, -10)'. Also? we easily find AI = {2} and - 4 2  = {l, 2). 

Similarly, by solving the equation (4.3) with Kl = 0, we get $* = 1.3,E = (07 -g)', = 
{2} and A; = {2}. So7 by Theorem 4.1, .f* with f * ( l )  = 2 and f *(2) = 2 is non-discounted 
optimal and g5( f*)  = [-e, 1.3eI. 

111 this example, we find that  Abel-sum of rewards in time will be positive in best behavior 
but negakive in worst behavior. 
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